转子动力学的求解辛体系及其数值计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文继承了应用力学对偶体系的辛数学方法,将它应用于陀螺转子动力学中。结合陀螺转子动力学自身的特点,构建了陀螺转子动力学的求解辛体系,并提出了相应的数值计算方法。这一套方法与传统的陀螺转子动力学方法不同,从一个全新的角度研究了陀螺转子动力学问题,为陀螺转子动力学的研究开辟了一条新路。
     本学位论文的思想首先是将陀螺转子动力系统导入到哈密顿体系,然后在哈密顿体系下对陀螺转子动力学问题展开研究。主要研究了陀螺转子动力学的四个常规问题:陀螺系统的本征值问题、状态空间内的模态综合方法、陀螺系统的时间有限元方法以及一般线性哈密顿系统的本征摄动问题。从本论文的工作中可以看到,这种方法较好地解决了陀螺转子动力学的一些问题,大量的数值算例表明,该方法拥有其独特的优越性。主要研究工作如下:
     1)对陀螺系统的本征值问题进行了研究
     陀螺转子本征值问题一直是陀螺转子动力学的重要问题,在对应刚度阵正定的情况下已经提出了很多实用的方法。但对于不对称转子的情况,特别是在高转速情况下,采用相对坐标系,经常会出现系统刚度矩阵不正定的情况,特别是在自由度较多的情况下,其本征值问题是很难进行求解的。
     本文第三章针对上述情况,首先将辛子空间迭代法的思想应用于陀螺系统,发展出了适合于不正定陀螺系统的辛子空间迭代法,这种方法继承了子空间迭代法的特点,具有很好的稳定性。之后,为了使已成熟的正定算法能够应用于不正定陀螺系统的本征值问题,本文提出了一种能够有效计算不正定陀螺系统本征值问题的方案。以上两种方法比较好地解决了不正定陀螺系统的本征值问题。
     2)讨论了陀螺效应对转子系统的影响并建立了哈密顿框架下的模态综合方法
     本文举例说明了在动力转子系统中陀螺效应对实际模型的影响。分析了转子陀螺效应对进动角速度、振型以及临界角速度的影响。数值结果表明,在一些工程问题中特别是高转速情况下,陀螺力对于转子系统振动是很重要的一项。
     基于陀螺系统辛子空间迭代法,在哈密顿框架下提出了陀螺系统的模态综合方法(MSMGS)。可以看到此方法的转换矩阵为辛矩阵,保持了系统的哈密顿框架。算例证明了缩减后的系统能够比较好地近似原来的整体陀螺系统。
This dissertation inherits the symplectic method of duality system in applied mechanics, and it can be applied to gyroscopic rotor dynamics. Based on the characteristics of gyroscopic rotor dynamics, a new systematic methodology and the corresponding numerical computational methods are presented. This methodology is different from the traditional methodology and it studies some problems of gyroscopic rotor dynamics from a new viewpoint and a new way is developed for gyroscopic rotor dynamics.In this paper, gyroscopic systems can firstly be guided to Hamiltonian systems which constructs a perfect theoretical frame. In Hamiltonian systems, the theoretical analysis and computation of gyroscopic rotor systems can be studied. Four traditional problems of gyroscopic rotor dynamics are mainly studied in this dissertation: the eigenvalue problem of gyroscopic systems, modal synthesis method in the state space, time domain finite element method of gyroscopic systems, and a perturbation method for reanalysis of linear Hamiltonian systems. It is seen that some problems of gyroscopic rotor dynamics can conveniently be solved. The examples prove that this method have their own advantages. The main research work covers the following aspects:1) Study the eigenvalue problem of gyroscopic systemsThe eigenvalue problem of gyroscopic systems is always a typical mathematical problem of gyroscopic rotor dynamics. Many methods have been introduced when systemic stiffness matrix is positive definite, but when systemic stiffness matrix is not positive definite, i.e. the corresponding Hamiltonian function is not positive definite, the solving of the eigenvalue problem is very difficult.Firstly, using the idea of subspace iteration method of symmetric matrix and many parallel points in the characters of Hamiltonian matrix and symmetric matrix, an adjoint symplectic subspace iteration method of indefinite gyroscopic systems is proposed to solve the eigenvalue problem of indefinite gyroscopic systems. This method inherits the property of subspace iteration method and it has good stability. Secondly, the algorithms to solve eigenvalue problem of positive definite gyroscopic systems are wholesome. To use these algorithms to solve the eigenvalue problem of indefinite gyroscopic systems, a project is proposed to solve the eigenvalue problem of indefinite gyroscopic systems. This dissertation demonstrates by examples this algorithm is right. The above two methods can solve the eigenvalue problem of indefinite gyroscopic systems very well.2) Discuss influence of gyroscopic term to the vibration of rotor systems and propose modal synthesis method in Hamiltonian frame
    This paper demonstrates by example the effect of gyroscopic term to the true modal of rotor systems. The processional frequency, mode and critical speed are analyzed importantly. The state space method is used to solve the eigenvalue problem. This example demonstrates that gyroscopic effect can not be ignored for some vibration analysis.Based on an adjoint symplectic subspace iteration method of gyroscopic systems, modal synthefic method of large gyroscopic systems(MSMGS) is proposed. It shows that the whole transition matrix is composed of the eigenvector matrices of all the subsystems and a symplectic matrix which holds the Hamiltonian frame. The example proves that the whole gyroscopic system can be approximated by the reduced gyroscopic system.Finally, precise integration method is applied to the solving of the unbalance response of rotor systems that leads to high efficiency and good accuracy. The results demonstrate that the first few modes usually take main effects in rotor systems.3) Develop time domain finite element method of gyroscopic systemsBased on the variational principle, time domain finite element method of gyroscopic systems is presented. The corresponding trial function matrix, element stiffness matrix and inhomogeneous force are given. The interval combination method of time domain FEM is subsequently proposed which has higher efficiency. The method inherits the property of symplectic conservation and enhances computational accuracy. The examples comparing the numerical results obtained from three different methods: time domain FEM, 4th order Runge-Kutta method and Newmark method demonstrate the advantages of time domain FEM.Furthermore, time domain FEM is applied to nonlinear gyroscopic rotor systems. The computational results show that time domain FEM has good accuracy and stability.4) Propose a perturbation method for reanalysis of linear conservation systemsA perturbation method for reanalysis of linear Hamiltonian systems is studied via the self-adjoint simplectic orthonormality relation of Hamiltonian operator in this paper and a perturbation reanalysis method of Hamiltonian matrix(PRMHM) is proposed. The eigen-equation of Hamiltonian systems and the adjoint simplectic orthonormal relationship are presented. The second order eigensolutions of modified Hamiltonian systems are obtained. Based on the above method, the approximate method for computing 1st order eigenvector derivatives in general linear Hamiltonian systems is proposed, using the approximate method for computing eigenvector derivatives in free vibration. The examples prove that two algorithms are valid.
引文
[1] 孟光.转子动力学研究的回顾与展望.振动工程学报,2002,15(1):1-9.
    [2] 张文.转子动力学理论基础.北京:科学出版社,1990.
    [3] 钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制.大连:大连理工大学出版社,1993.
    [4] 钟万勰.应用力学对偶体系.北京:科学出版社,2002.Zhong W X.Duality system in applied mechanics and optimal control. New York: Kluwer, 2004.
    [5] 钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [6] Rankine W J. On the Centrifugal Force of Rotating Shafts. The Engineer, April, 1869, 27: 249-256.
    [7] Prohl M A. A General Method of Calculating Critical Speeds of Flexible Rotors. J. Appl. Mech. Trans. ASME, 1945, 67: 142-146.
    [8] Jeffcott H H. The Lateral Vibration of Loaded Shafts In The Neighbourhood of A Whirling Speed. Phil. Mag.. 1919, 6 (37): 304-314.
    [9] Newkirk B L. Shaft Whipping. General Electric Rev., 1924, 27: 169-178.
    [10] Newkirk B L. Journal bearing Instability. A review, Inst. Mech. Conf. On Lubr. And Wear, Oct., 1957.
    [11] Lund J W. Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings. J. of Tribology, 1987, 109: 37-41.
    [12] 胡海岩.应用非线性动力学.北京:航空工业出版社,2000.
    [13] 闻邦椿,武新华,丁千等.故障旋转机械非线性动力学的理论与实验.北京:科学出版社,2004.
    [14] 闻邦椿,顾家柳,夏松波等.高等转子动力学.北京:机械工业出版社,2000.
    [15] 郑铁生,伍晓红.复杂非线性转子-轴承系统动力特性数值分析.力学学报,2001,33(3):377-389.
    [16] Paardekooper M H C. An Eigenvalue Algorithm for Skew Symmetric Matrices. Numerical Mathematics, 1971, 17:189-202.
    [17] Wilkinson J H, Reinsch G. Linear algebra. London: Oxford University Press, 1971.
    [18] Meirovith, L. A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems. AIAA, 1974, 12 (10): 1337-1342.
    [19] Meirovitch L. A Separation Principle for Gyroscopic Conservative Systems. ASME J. Vib. Acoust, 1997, 119: 110-119.
    [20] 张文,包华丽.求解陀螺系统特征值问题的二个新算法.第二界全国转子动力学学术会议论文集,1989.
    [21] 包华丽.大型陀螺系统特征值问题的算法研究:(博士学位论文).上海:复旦大学,1991.
    [22] Cornelius, Lanczos. An Iteration for the Solution of The Eigenvalue Problem of Linear Differential and Integral Operators. J Res Nat Bur Standaras 4J, 1950: 255-282.
    [23] Benner P, Fassbender H. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem, Linear Algebra Appl. 1997, 263: 75-111.
    [24] Sehmi N S. The Lanczos Algorithm Applied to Kron's Method. International Journal for Numerical Methods in Engineering,, 1986, 23:1857-1872.
    [25] Bunse A, Mehrmann V. A Symplectic Like Algorithm for the Solution of Real Algebraic Riccati Equation. IEEE Trans On Autu Contr, 1986, 31: 1104-1113.
    [26] Ferng W R, Lin W W, Wang C S. The shift-inverted-J-Lanczos algorithm for the numerical solutions of large sparse algebraic Kiccati equations: Proceeding of the Cornelius Lanczos International Centenary Conference, 1994.
    [27] Golub G H, Van Loan C. F.. Matrix computation. Maryland: The John Hopkins University Press, 1996.
    [28] Najafi H Saberi, Haleghi E. K. A New Restarting Method In the Arnoldi Algorithm for Computing the Eigenvalues of a Nonsymmetric Matrix. Applied Mathematics and Computation, 2004, 156:59-71.
    [29] 任革学.大型陀螺特征值问题的实用数值方法:(博士学位论文).北京:清华大学,1993.
    [30] 郑兆昌,任革学.大型陀螺特征值问题的广义Arnoldi缩减算法.固体力学学报,1996,17(4):283-289.
    [31] 郑兆昌,任革学.陀螺特征值问题的广义SRR子空间迭代法及其加速法.振动与冲击,1997,16(2):6-11.
    [32] 钟万勰,钟翔翔.反对称矩阵的一种计算方法.数学研究与评论,1995,15(1):123-127.
    [33] Gupta K K. Free Vibration Analysis of Spinning Structural Systems, International Journal for Numerical Methods in Engineering, 1973, 5 (3): 395-418.
    [34] Gupta K K. On a Combined Sturm Sequence and Inverse Iteration Technique for Eigenproblem Solution of Spinning Structures, International Journal for Numerical Methods in Engineering, 1973, 7 (4): 509-518.
    [35] Wittrick W H and Williams F W. On the Free Vibration Analysis of Spinning Structures by Using Discrete or Distributed Mass Model, Journal of Sound and Vibration, 1982, 82 (1): 1-15.
    [36] Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems. J. Vib. And Acous. Trans ASME, 1997, 119: 334-340.
    [37] 李家春.广义Rayleigh商原理及其应用.中国科学,A辑,1983,8:727-735.
    [38] 胡海昌.多自由度结构固有振动理论.科学出版社,1987.
    [39] 王文亮,杜作润.结构振动与动态子结构方法.上海:复旦大学出版社,1985.
    [40] Li D F and Gunter E J. Component Mode Synthesis of Large Rotor Systems, Journal of Engineering for Power, 1982, 104 (3): 552-560.
    [41] Glasgow D A and Nelson H D. Stability Analysis of Rotor-Bearing Systems Using Component Mide Synthesis, Journal of Mechanical Design, 1980, 120 (2): 352-359.
    [42] 沈松.复杂转子-轴承-基础系统的非线性动力学研究:(博士学位论文).北京:清华大学,2001.
    [43] Sundararajan P and Noah S T. An Algorithm for Response and Stability of Large Order Non-Linear Systems—Application to Rotor Systems. Journal of Sound and Vibration, 1998, 214 (4): 695-723.
    [44] Fang H and Yang B. Modelling, Synthesis and Dynamic Analysis of Complex Flexible Rotor Systems. Journal of Sound and Vibration, I998, 211 (4): 571-592.
    [45] 钟一谔,何衍宗,王正等.转子动力学.北京:清华大学出版社,1984.
    [46] Ruhl R L. Dynamics of Distributed Parameter Turborotor Systems: Transfer Matrix and Finite Element Techniques:[doctoral dissertation]. Ithaca, New York: Comell University, 1970.
    [47] Ruhl R L and Booker J F. A Finite Element Model for Distributed Parameter Turborotor Systems. J. of Engineering for Industry, 1972, 94 (1): 126-134.
    [48] Nelson H D and McVaugh J M. The Dynamics of Rotor-Bearing Systems Using Finite Elements, Journal of Engineering for Industry, 1976, 98 (2): 593-601.
    [49] Nelson H D. A Finite Rotating Shaft Element Using Timoshenko Beam Theory, Journal of Mechanical Design, 1980, 102 (4): 793-803.
    [50] 于洪洁.多自由度转子系统非线性动力学数值分析及混沌控制:(博士学位论文).大连:大连理工大学,2002.
    [51] 闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用.沈阳:东北大学出版社,2001.
    [52] Bathe K J and Wilson E L. Numerical methods in finite analysis. New Jersey: Prentice-hall, Inc. Englewood Cliffs, 1976.
    [53] 凌复华等.常微分方程数值方法及其在力学中的应用.重庆:重庆大学出版社,1990.
    [54] Press W H, Teukolsky S A, Vetterling W T et al. Numerical Recipes in C. Cambridge Univ. Press, 1992.
    [55] 冯康,秦孟兆.Hamilton动力体系的Hamilton算法.自然科学进展,1991,1(2):110-120.
    [56] Feng Kang. On difference schemes and symplectic geometry. Proc. of the 5th Intern Symposium on Differential Geometry and Differential Equations, Beijing, 1984.
    [57] 冯康,秦孟兆.Hamilton体系的辛几何算法.杭州:浙江科技出版社,2004.
    [58] 于开平,邹经湘.时间域有限元法.力学进展,1998,28(4):461-468.
    [59] 于开平.时间有限元法及其应用:(硕士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [60] Zienkiewicz O C and Taylor R. The finite element method. 5-th ed.. NY: McGraw-Hill, 2000.
    [61] Howard J H and Penny J E T. The Accuracy and Stability of Time Domain Finite Element Solution, Journal of Sound and Vibration. 1978, 61 (12): 585-595.
    [62] Gellert M. A New Algorithms for Integration of Dynamics. Computer and Structures Journal, 1978, 9 (12): 401-408.
    [63] 钟万勰.分析结构力学与有限元.动力学与控制学报,2004,2(4):1-8.
    [64] 钟万勰,姚征.时间有限元与保辛.机械强度,2005,27(2):178-183.
    [65] 钟万勰.结构动力方程的精细时程积分.大连理工大学学报,1994,34(2):131-136.
    [66] Zhong Wanxie et al. A Precise Time Inegration Algorithm for Nonlinear Systems. Proc. Of WCCM-3, 1994, 1: 12-17.
    [67] 钟万勰.暂态历程的精细计算方法.计算结构力学及其应用,1995,12(1):1-6.
    [68] 林家浩,沈为平,威廉姆斯F.W..受演变随机激励结构响应的精细逐步积分法.大连理工大学学报,1995,35(5):601-605.
    [69] Lin J H, Shen W P, Williams F W. A High Precision Direct Integration Scheme for Structures Subjected to Transient Dynamic Loading. Computer and Structures, 1995, 56(1): 113-331.
    [70] Shen W P, Lin J H, Williams F W. Parallel Computing for the High-Precision Direct Integration Method. Computer Method in Applied Mechanics Engineering, 1995, 126: 315-331.
    [71] 蔡志勤.精细逐步积分及其部分演化:(博士学位论文).大连:大连理工大学,1998.
    [72] 孔向东.常微分方程的精细积分法及其在多体系统动力学中的应用:(博士学位 论文).大连:大连理工大学,1998.
    [73] 裘春航,吕和祥,蔡志勤.在哈密顿体系下分析非线性动力学问题.计算力学学报,2000,17(2):127-132.
    [74] 唐纪晔,钟万勰.交替方向的扩散方程精细积分并行算法.应用数学,1998,11(3):58-64.
    [75] 林家浩,钟万勰,张文首.结构非平稳随机响应方差矩阵的直接精细积分计算.振动工程学报,1999,12(1):1-8.
    [76] 陈飚松,顾元宪,张洪武等.瞬态温度场灵敏度分析的精细积分法.机械强度,2000,22(4):270-274.
    [77] 邓子辰,钟万勰.奇异控制系统控制律的精细计算.西北工业大学学报,2001,19(1):80-83.
    [78] 吕和祥,蔡志勤,裘春航.非线性动力学问题的一个显式精细积分算法.应用力学学报,2001,18(2):34-40.
    [79] 陈塑寰.结构动态设计的矩阵摄动理论.北京:科学出版社,1999.
    [80] 吕振华.结构动力学修改重分析方法的发展.计算结构力学及其应用.1994,11(1):85-91.
    [81] Meirovitch L, Ryland G. Response of Lightly Damped Gyroscopic Systems. Journal of Sound and Vibration, 1979, 67 (1): 1-19.
    [82] Meirovitch L, Ryland G. A Perturbation Technique for Gyroscopic Systems with Small Internal and External Damping. Journal of Sound and ibration, 1985, 100 (3): 393-408.
    [83] 郑兆昌.多自由度系统复模态理论摄动方法(一).应用力学学报,1985,(2):21-31.
    [84] 郑兆昌,谭明一.多自由度系统复模态理论摄动方法(二).应用力学学报,1985,2(4):17-32.
    [85] 李培均,郑兆昌.多自由度系统复模态理论摄动方法(三).应用力学学报,1990,7(4):11-32.
    [86] 刘满,陈塑寰.复模态矩阵摄动法.吉林工业大学学报,1986,16(3):1-9.
    [87] 王文亮,胡海昌.重特征值的小参数法.复旦大学学报,1993,32(2):168-176.
    [88] Liu Jike, Zhao L ingcheng, Fang Tong. A Geometric Theory in Investigation on Mode Localization and Frequency Loci Veering Phenomena, ACTA Mechanica Solida Sinica, 1995, 8 (4): 349-355.
    [89] 徐伟华,刘济科.阻尼系统振动分析的复模态矩阵摄动法.中山大学学报(自然科学版),1998,37(4):50-54.
    [90] Yang Xiaowei, Chen Suhuan, Wu Baisheng. Eigenvalue Reanalysis of Structures Using Perturbations and Paded Approximation. Mechanical Systems and Signal Processing, 2001, 15 (2): 257-263.
    [91] Liu J K, Tham L G and Au F. T. K. A Universal Perturbation Technique for Reanalysis of Gyroscopic Systems with Internal and External Damping. Journal of Sound and vibration, 2001, 240 (4): 779-787.
    [92] 刘济科,孙慧.广义特征值摄动问题的一种改进的通用方法。暨南大学学报,2005,26(1):39-42.
    [93] Arnold V I. Mathematical methods of classical mechanics. New York: SpringerVerlag, 1989.
    [94] Hairer Ernst, Lubich Christian, Wanner Gerhard. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. New York: SpringerVerlag, 2002.
    [95] Timoshenko S P, Goodier J N. Theory of elasticity, 3rd ed. New York: McGraw-Hill, 1970.
    [96] Timoshenko S P, Woinowsky Krieger S. Theory of plates and shells. New York: McGraw-Hill, 1959.
    [97] 周纪卿,朱茵远.非线性振动.西安:西安交通大学出版社,1998。
    [98] 契塔耶夫H G.运动的稳定性.国防工业出版社,1955.
    [99] 陈予恕.非线性振动.天津:天津科学技术出版社,1983.
    [100] 钟万勰,林家浩.不对称实矩阵的本征对共轭子空间迭代算法.计算结构力学及其应用,1990,11(4):1-10.
    [101] 隋永枫,吕和祥.陀螺效应对转子横向振动的影响分析.计算力学学报,2003,20(6):711-714.
    [102] McDonald R J, Namachivaya, N S. Global Bifurcations in Periodically Perturbed Gyroscopic Systems with Application to Rotating Shafts. Chaos, Solitons & Fractals, 1997, 8 (4): 613-636.
    [103] 张小龙,何洪庆.涡轮泵转子的临界转速研究(Ⅳ)分布质量轴的传递矩阵法.推进技术,2000,21(2):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700