光子晶体用结构基元的制备、自组装与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体由于具有独特的调节光子传播状态的功能,是光电集成、光子集成和光通信的基础材料。本论文主要研究了单分散SiO_2微球、SiO_2@CdS核壳微球和CdS空心球等光子晶体用结构基元的制备方法,采用多种自组装手段制备了SiO_2蛋白石和CdS反蛋白石光子晶体,结合理论计算研究了它们的光学性质,并建立了在光子晶体中引入可控缺陷的方法,最后研究了光子探针的制备及光学性质。论文的主要创新性结果如下:
     1.制备了粒径范围涵盖广(150nm—1μm),相对标准偏差小于5.0%的SiO_2微球。以不同粒径的SiO_2微球为结构基元,采用重力沉积、离心沉积和垂直提拉沉积等自组装手段制备了可见波段蛋白石光子晶体。以表面具有微米级周期图案的硅片为衬底,采用垂直提拉法多次生长,在蛋白石光子晶体内部制备了可控的人工微缺陷。
     2.建立了一种采用超声辅助化学水浴沉积制备SiO_2微球表面包覆CdS的核壳微球(定义为SiO_2@CdS)的新方法。该方法简单快捷,无需对SiO_2球表面化学改性,CdS壳层致密均匀且厚度可控,溶液中无游离CdS颗粒。采用稀释的HF酸将SiO_2@CdS核壳微球中的SiO_2内核择优腐蚀后,制备了单分散CdS空心球。所得CdS空心球具有较高折射率(n=2.45)和高空占比,粒径相对标准偏差小于5.0%,壳层厚度(10nm-60nm)可控,结构稳定,是一类新型的半导体基光子晶体结构基元。采用离心沉积法自组装,分别制备了由SiO_2@CdS核壳微球和CdS空心球组成的面心立方光子晶体。
     3.建立了一种无模板直接制备CdS反蛋白石光子晶体的新方法。先将CdS空心球自组装成面心立方光子晶体,然后在400℃下热处理,使CdS空心球收缩,得到了具有高填充率的CdS反蛋白石光子晶体。该方法打破了采用蛋白石模板来制备反蛋白石光子晶体的传统,直接以高折射率材料为结构基元自组装制备三维光子晶体,避免了模板法中复杂的填充过程和破坏性的模板去除过程。微区反射光谱表明:由直径为400nm的CdS空心球组成的反蛋白石光子晶体在530nm和920nm附近存在两个[111]方向性带隙,与光子能带的理论计算结果相符。
     4.建立了一种在CdS反蛋白石光子晶体制备可控点缺陷的新方法。在环境扫描电镜样品腔中引入一定压强(10Pa-100Pa)的气体,利用聚焦纳米电子束进行精密照射,实现了对CdS反蛋白石光子晶体中单个“原子”的精密控制,在反蛋白石光子晶体中可控制备了空位缺陷和杂质缺陷。研究了缺陷形成机
Photonic crystals (PCs) have attracted much attention because of their ability to manipulate, confine, and control light. In this dissertation, three classes of monodisperse spheres, including SiO_2 spheres, SiO_2@CdS core-shell spheres and CdS hollow spheres, have been fabricated by chemical routes for using as building blocks for PCs. They have been self-assembled into three-dimensional (3D) face-centered-cubic (FCC) PCs. The optical properties of these self-assembled PCs have been investigated, and were compared with the theoretical calculations. Moreover, two methods of introducing well-defined defects in opal and CdS inverse opal PCs have been developed. Finally, monodisperse luminescent rare-earth doped spheres and luminescent rugby-like ZnO particles for photonic probes have been prepared, and their optical properties have been investigated. The significant results achieved in this dissertation are given as below:1. We have modified and optimized the traditional Stober method for preparation of monodisperse silica spheres. The obtained silica spheres are highly uniform with diameters ranging from 150-900nm and with relative standard deviation less than 5.0%. Opal PCs composed silica spheres have been fabricated by several self-assembly techniques, including gravity-sedimentation, centrifugation and vertical dip-coating methods, whose pseudo bandgaps have been controllably adjusted from blue to red optical regions by varying the diameters of the silica spheres from 190 nm to 310 nm. Moreover, well-defined micrometer-sized defects have been embedded in the interior of the opal PCs using a vertical dip-coating method.2. We have developed an ultrasound-assisted chemical bath depositon (CBD) method for the fabrication of monodisperse SiO_2@CdS core-shell spheres. Using this method, the thickness of the shell can be flexibly controlled from 10 nm to 60 nm by adjusting the reaction time, while substantially eliminating the unwanted separated CdS nanoparticles. The obtained SiO_2@CdS core-shell spheres were highly uniform with homogenous and dense CdS shells. It is believed that the ultrasonic irradiation plays a key role for the formation of homogenous and dense CdS shell onto the silica cores. Subsequently, monodisperse CdS hollow spheres were obtained by selectively dissolving the silica cores with a diluted HF aqueous solution. The obtained CdS hollow spheres are highly uniform, mechanically robust, and possess high refractive-index (n=2.45) and high air-filling ratio. These
    hollow spheres thus provide ideal building blocks for 3D semiconductor PCs. Both SiO2@CdS core-shells and CdS have been self-assembled into FCC structures by centrifugation, confirming the high quality of these building blocks for photonic applications.3. We have developed a simple way to fabricate inverse opal PCs. The method involves directly self-assembling of CdS hollow spheres into FCC PCs from solution and subsequently annealing at 400 °C to minimize the interstitial spaces between the spheres. With this method, the stable CdS inverse opals with high filling ratio and the size as large as 20umx20um have been obtained. It directly uses the high refractive-index semiconductor material as building blocks to self-assemble into FCC PCs, thus overcoming some of the problems associated with traditional templating methods, such as sophisticated filling process and destructive template-removal process.The micro-reflectance spectrum shows that the CdS inverse opal composed 400-nm hollow spheres possesses two pseudo bandgaps at 530 nm and 920 nm along [111] direction, which is consistent with the theoretical photonic bandgap calculations.4. We have developed a simple and straightforward method of precisely fabricating point defects in CdS inverse opal PCs with a variable pressure scanning electron microscope. Well-defined point defects, not only vacancies but also an individual impurity, were directly fabricated by electron-beam irradiation under a gas atmosphere. This method has proven extensively practicable for precisely processing many other materials, such as ZnO and Si. Judging from the various advantages, including high resolution (<200 nm), the versatility of the fabrication process and the convenient in-situ control of e-beam for both observation and defect fabrication, we believe that this method holds great promise for the development of 3D PBG-based devices.5. We have developed a versatile yet simple approach for the fabrication of monodisperse luminescent beads doped with rare-earth (RE). Using a negatively charged CdS porous shell surrounding silica cores as a host matrix, trivalent RE ions have been electrostatically adsorbed into the CdS/silica core-shell beads in the suspension. After annealing at 750 °C for 2 h, the RE-doped core-shell beads are encode with sharp and strong luminescence of RE3+. By varying the RE species, including Tb3+, Eu3+, Nd3+, Er3+ and (Tb3++Yb3+), a wide varity of characteristic luminescences of RE3+ from visible to near-infrared region have
    been readily encoded into the core-shell beads. These highly luminescent and uniform RE-doped beads thus provide a new class of spectrum-rich photonic probes or light source for photonic applications.6. Uniform ellipsoidal ZnO microparticles have been synthesized in aqueous solution by sonication at the temperature below 80 °C. The obtained ellipsoidal particles are highly uniform with a hexagonal cross-section. The morphologies of the ZnO particles have been tailored from rugby-like ellipsoidal to half-ellipsoidal by increasing the TEA concentration. Moreover, a significant enhancement of ultraviolet (UV) emission has been observed in ZnO by a thermal treatment at 200 °C. Based on the thermal desorption spectroscopy results, the origin of this enhancement effect was attributed to the reduction of non-irradiative centers and hydrogen passivation through desorption of adsorbed water and hydroxyl groups. Finally, we have developed a simple technique of directly writing sub-micrometer UV emission patterns in ZnO that were prepared using a wet-chemical method. The technique utilizes an electron beam in SEM to precisely control the local desorption to enhance the UV emission in the ZnO samples. With this technique, we have not only created optical nanotags on individual ZnO nanorods, but have also written sub-micrometer (-400 nm) UV-emission patterns on ZnO films, while keeping the surface morphology unchanged. This patterning technique is a straightforward and highly efficient method without the use of sophisticated lithographic processes, and has proven extensively applicable in various chemically-grown ZnO samples.
引文
1 E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett., 1987, 58, 2059-2062
    2 S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, 58, 2486-2488
    3 J. D. Joannopoulos, R. D. Meade, J. N. Winn,"Photonic Crystals-Molding the Flow of Light," Princeton University Press, New Jersey, 1995.
    4 E. Yablonovitch, Photonic band-gap structures, Journal of Optical Society of Americal B, 1993, 10, 283-285
    5 E. Yablonovitch, and T. J. Gmitter, Photonic band structure: the face-centered-cubic case, Phys. Rev. Lett., 1989, 63, 1950-1953
    6 Z. Zhang, S. Satpathy, and M. R. Salehpour, Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations, Phys. Rev. Lett., 1990, 65, 2650-2653
    7 K. M. Ho, X. Chang, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectirc structures, Phys. Rev. Lett., 1990, 65, 3152-3155
    8 K. M. Leung, and Y. F. Liu, Full Vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Phys. Rev. Lett., 1990, 65, 2646-2649
    9 W. C. Sailor, F. M. Mueller, and P. R. Villeneuve, Augmented-plance-wave method for photonic band-gap materials, Phys. Rev. B, 1998, 57, 8819-8821
    10 H. S. Sozuer, J. W. Haus, and R. Inguva, Photonic bands: Convergence problems with the plane-wave method, Phys. Rev. B, 1992, 45, 13962-13965
    11 K. M. Leung, and Y. F. Liu, Photonic band structures: The plane-wave method, Phys. Rev. B, 1990, 41, 10188-10191
    12 Z. Y. Li, J. Wang, and B. Y. Gu, Creation of partial band gaps in anisotropic photonic-band-gap structures, Phys. Rev. B, 1998, 58, 3721-3729
    13 J. B. Pendry, and A. Mackinnon, Calculation of photon dispersion relations, Phys. Rev. Lett., 1992, 69, 2772-2775
    14 M. M. Sigalas, K. M. Ho, R. Biswas, and C. M. Soukoulis, Theoretical investigation of defects in photonic crystals in the presence of dielectric losses, Phys. Rev. B, 1998, 57, 3815-3818
    15 A. L. Reynolds, D. Cassagne, C. Jouanin, and J. M. Arnold, Optical properties of bare sintered and coated opal-based photonic crystals, Synthetic Metals, 2001, 116, 453-459
    16 D. Garcia-Pablos, M. Sigalas, F. R. M. de Espinosa, M. Torres, M. Kafesaki, and N. Garcia, Theory and experiments on elastic band gaps, Phys. Rev. Lett., 2000, 84, 4349-4352
    17 V. Kuzmiak, and A. A. Maradudin, Symmetry analysis of the localized modes associated with substitutional and interstitial defects in a two-dimensional triangular photonic crystal, Phys. Rev. B, 2000, 61, 10750-10761
    18 V. Kuzmiak, and A. A. Maradudin, Localized defect modes in a two-dimensional triangular photonic crystal, Phys. Rev. B, 1998, 57, 15242-15250
    19 H. Miguez, A. Blanco, C. Lopez, F. Meseguer, H. M. Yates, M. E. Pemble, F. Lopez-Tejeira, F. J. Garcia-Vidal, and J. Sanchez-Dehesa, Face-centered-cubic photonic bandgap materials based on opal-semiconductor composites, Journal of Lightwave Technology, 1999, 17, 1975-1981
    20 S. Boscolo, and M. Midrio, Three-dimensional multiple-scattering technique for the analysis ofphotonic-crystal slabs, Journal of Lightwave Technology, 2004, 22, 2778-2786
    21 K. C. Kwan, X. D. Zhang, Z. Q. Zhang, and C. T. Chan, Effects due to disorder on photonic crystal-based waveguides, Appl. Phys. Lett., 2003, 82, 4414-4416
    22 A. N. Fang, W. Y. Zhang, Z. L. Wang, A. Hu, and N. B. Ming, Photonic band gaps of AB(3) and B-3 structures of metallodielectric spheres, Journal of Physics-Condensed Matter, 2001, 13, 8489-8496
    23 A. Moroz, A simple formula for the L-gap width of a face-centred cubic photonic crystal, Journal of Optics a-Pure and Applied Optics, 1999, 1, 471-475
    24 A. Moroz, and A. Tip, Resonance-induced effects in photonic crystals, Journal of Physics-Condensed Matter, 1999, 11, 2503-2512
    25 S. John, and R. Rangarajan, Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion, Phys. Rev. B, 1988, 35, 10101-10105
    26 K. Busch, and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E, 1998, 55, 3896-3908
    27 A. Moroz, C. Sommers, Photonic band gaps of three-dimensional face-centred cubic lattices, J. Phys.: Condens. Matter, 1999, 11, 997-1008
    28 K. Busch, and S. John, Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum, Phys. Rev. Lett., 1999, 83, 967-970
    29 Z. Y. Li, J. Wang, and B. Y. Gu, Creation of partial band gaps in anisotropic photonic-band-gap structures, Phys. Rev. B, 1998, 58, 3721-3729
    30 Z. Y. Li, J. Wang, and B. Y. Gu, Full band gap in fcc and bcc photonic band gaps structure: Non-spherical atom, Journal of the Physical Society of dapan, 1998, 67, 3288-3291
    31 Y. N. Xia, B. Gates, and Z. Y. Li, Self-assembly approach to three-dimensional photonic crystals, Adv. Matt., 2001, 13, 409-413
    32 S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science, 2000, 289, 604-606
    33 G. Subramania, and S. Y. Lin, Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography, Appl. Phys. Lett., 2004, 85, 5037-5039
    34 B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, Theoretical study of photonic band gaps in woodpile crystals, Phys. Rev. E, 2003, 67, 066601-1-18
    35 O. Toader, M. Berciu, and S. John, Photonic band gaps based on tetragonal lattices of slanted pores, Phys. Rev. Lett., 2003, 90, 233901-233904
    36 O. Toader, and S. John, Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps, Phys. Rev. E, 2002, 66, 016610-1-18
    37 M. Maldovan, E. L. Thomas, and C. W. Carter, Layer-by-layer diamond-like woodpile structure with a large photonic band gap, Appl. Phys. Lett., 2004, 84, 362-364
    38 M. Maldovan, and E. L. Thomas, Photonic crystals: six connected dielectric networks with simple cubic symmetry, Journal of the Optical Society of America B-Optical Physics, 2005, 22, 466-473
    39 D. Roundy, and J. Joannopoulos, Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap, Appl. Phys. Lett., 2003, 82, 3835-3837
    40 R. Biswas, M. Sigalas, and K. M. Ho, Three-dimensional photonic band gaps in modified simple cubic lattices, Phys. Rev. B, 2002, 65, 205121-1-5
    41 S. -Y. Lin, J. G. Fleming, R. Lin, M. M. Sigalas, R. Biswas, and K. M. Ho, Complete three-dimensional photonic bandgap in a simple cubic structure dournal of the Optical Society of America B-Optical Physics 2001, 18, 32-35
    42 E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structures: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., 1991, 67, 2295-2298
    43 E. Yablonovitch, Photonic band-gap crystals, Journal of Physics-Condensed Matter, 1993, 5, 2443-2460
    44 S. Shoji, and S. Kawata, Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin, Appl. Phys. Lett., 2000, 76, 2668-2670
    45 S. Shoji, H. B. Sun, and S. Kawata, Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference, Appl. Phys. Lett., 2003, 83, 608-610
    46 L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography, Adv. Matt., 2001, 13, 1551-1555
    47 H. Segawa, K. Yoshida, T. Kondo, S. Matsuo, and H. Misawa, Fabrication of photonic crystal structures by femtosecond laser-induced photopolymerization of organic-inorganic film, dournal of Sol-Gel Science and Technology, 2003, 26, 1023-1027
    48 L. Pang, W. Nakagawa, and Y. Fainman, Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write, Applied Optics, 2003, 42, 5450-5456
    49 H. B. Sun, A. Nakamura, S. Shoji, X. M. Duan, and S. Kawata, Three-dimensional nanonetwork assembled in a photopolymerized rod array, Adv. Matt., 2003, 15, 2011-2014
    50 T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional recording by femtosecond pulses in polymer materials, Journal of Photopolymer Science and Technology, 2003, 16, 427-432
    51 H. Segawa, J. Tabuchi, K. Yoshida, S. Matsuo, and H. Misawa, Periodic structures of organic-titania hybrid materials recorded by multi-beam laser interference technique, Journal of Sol-Gel Science and Technology, 2004, 32, 287-291
    52 N. D. Lal, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique, Optics Express, 2005, 13, 9605-9611
    53 V. Berger, O. GauthierLafaye, and E. Costard, Fabrication of a 2D photonic bandgap by a holographic method, Electronics Letters, 1997, 33, 425-426
    54 V. Berger, O. GauthierLafaye, and E. Costard, Photonic band gaps and holography, J. Appl. Phys., 1997, 82, 60-64
    55 S. Rowson, A. Chelnokov, and J. M. Lourtioz, Two-dimensional photonic crystals in macroporous silicon: From mid-infrared(10 mu m) to telecommunication wavelengths(1.3-1.5 mum), Journal of Lightwave Technology, 1999, 17, 1989-1995
    56 M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, 2000, 404, 53-56
    57 R. G. Denning, C. F. Blanford, D. N. Sharp, and A. J. Turberfield, Holographic definition of photonic crystal structures., Abstracts of Papers of the American Chemical Society, 2001, 221, U245-U245
    58 V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, Holographic formation of electro-optical polymer-liquid crystal photonic crystals, Adv. Matt., 2002, 14, 187-191
    59 X. Wang, J. F. Xu, H. M. Su, Y. J. He, S. J. Jiang, H. Z. Wang, Z. H. Zeng, and Y. L. Chen, Microfabrication of crystalline structures by holographic lithography combined with visible light photopolymerization, Acta Physica Sinica, 2002, 51, 527-531
    60 D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Photonic crystals for the visible spectrum by holographic lithography, Optical and Quantum Electronics, 2002, 34, 3-12
    61 M. J. Escuti, J. Qi, and G. P. Crawford, Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals, Optics Letters, 2003, 28, 522-524
    62 J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, 3D manipulation of particles into crystal structures using holographic optical tweezers, Optics Express, 2004, 12, 220-226
    63 M. Maldovan, and E. L. Thomas, Diamond-structured photonic crystals, Nature Materials, 2004, 3, 593-600
    64 R. C. Rumpf, and E. G. Johnson, Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography, Journal of the Optical Society of America a-Optics lmage Science and Vision, 2004, 21, 1703-1713
    65 M. Duneau, F. Delyon, and M. Audier, Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition, J. Appl. Phys., 2004, 96, 2428-2436
    66 C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures, Appl. Phys. Lett., 2004, 84, 5434-5436
    67 L. Z. Cai, C. S. Feng, M. Z. He, X. L. Yang, X. F. Meng, G. Y. Dong, and X. Q. Yu, Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps, Optics Express, 2005, 13, 4325-4330
    68 Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, Photonic crystal with diamondlike structure fabricated by holographic lithography, Appl. Phys. Lett., 2005, 87, 061103-1-3
    69 J. Serbin, A. Ovsianikov, and B. Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties, Optics Express, 2004, 12, 5221-5228
    70 R. Guo, Z. Y. Li, Z. W. Jiang, D. J. Yuan, W. H. Huang, and A. D. Xia, Log-pile photonic crystal fabricated by two-photon photopolymerization, Journal of Optics a-Pure and Applied Optics, 2005, 7, 396-399
    71 M. Deubel, M. Wegener, A. Kaso, and S. John, Direct laser writing and characterization of"Slanted Pore" Photonic Crystals, Appl. Phys. Lett., 2004, 85, 1895-1897
    72 X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication, Thin Solid Films, 2004, 453-54, 518-521
    73 B. H. Cumpston, S. P. Ananthavel,S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon~2, J. Qin, H. RoE ckel, M. Rumi, X. -L. Wu, S. R. Marder and J. W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabirication, Nature, 1999, 398, 51-54
    74 C. C. Cheng, V. ArbetEngels, A. Scherer, and E. Yablonovitch, Nanofabricated three dimensional photonic crystals operating at optical wavelengths, Physica Scripta, 1996, T68, 17-20
    75 E. Kuramochi, M. Notomi, T. Tamamura, T. Kawashima, S. Kawakami, J. Takahashi, and C. Takahashi, Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap, Journal of Vacuum Science & Technology B, 2000, 18, 3510-3513
    76 T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J. L. Gentner, and N. Bouadma, Nanofabrication of two-dimensional photonic crystal mirrors for 1.5 mum short cavity lasers, Journal of Vacuum Science & Technology B, 2001, 19, 2775-2778
    77 S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, 3-D photonic-crystal hetero structures: Fabrication and in-line resonator, leee Photonics Technology Letters, 2003, 15, 816-818
    78 S. Kim, H. Chong, R. M. De La Rue, J. H. Marsh, and A. C. Bryce, Electron-beam writing of photonic crystal patterns using a large beam-spot diameter, Nanotechnology, 2003, 14, 1004-1008
    79 J. He, S. H. Tang, Y. Q. Qin, P. Dong, H. Z. Zhang, C. H. Kang, W. X. Sun, and Z. X. Shen, Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography, J. Appl. Phys., 2003, 93, 9943-9946
    80 G. Subramania, and S. Y. Lin, Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography, Appl. Phys. Lett., 2004, 85, 5037-5039
    81 T. Stomeo, A. Passaseo, R. Cingolani, and M. De Vittorio, Fast nanopatterning of two-dimensional photonic crystals by electron beam lithography, Superlattices and Microstructures, 2004, 36, 265-270
    82 C. Cuisin, Y. Chen, D. Decanini, A. Chelnokov, F. Carcenae, A. Madouri, J. M. Lourtioz, and H. Launois, Fabrication of three-dimensional microstructures by high resolution x-ray lithography, Journal of Vacuum Science & Technology B, 1999, 17, 3444-3448
    83 F. Romanato, R. Kumar, and E. Di Fabrizio, Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures, Nanotechnology, 2005, 16, 40-46
    84 M. Zhou, X. S. Chen, Y. Zeng, Z. Xu, and W. Lu, Fabrication of two-dimensional infrared photonic crystals by deep reactive ion etching on Si wafers and their optical properties, Solid State Communications, 2004, 132, 503-506
    85 A. Xing, M. Davanco, D. J. Blumenthal, and E. L. Hu, Fabrication of InP-based two-dimensional photonic crystal membrane, Journal of Vacuum Science & Technology B, 2004, 22, 70-73
    86 M. Mulot, S. Anand, C. F. Carlstrom, M. Swillo, and A. Taineau, Dry etching of photonic crystals in InP based materials, Physica Scripta, 2002, T101, 106-109
    87 K. Y. Lira, D. J. Ripin, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, M. Mondol, H. I. Smith, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic band-gap waveguide microcavities: Monorails and air bridges, Journal of Vacuum Science & Technology B, 1999, 17, 1171-1174
    88 A. M. Xing, M. Darvanco, D. J. Blumenthal, and E. L. Hu, InP photonic crystal membrane structures: Fabrication accuracy and optical performance, Appl. Phys. Lett., 2004, 85, 522-524
    89 S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature, 1998, 394, 251-253
    90 S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science, 2000, 289, 604-606
    91 M. H. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, A three-dimensional optical photonic crystal with designed point defects, Nature, 2004, 429, 538-542
    92 G. M. Whitesides, J. P. Mathias and C. T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science, 1991, 254, 1312-1315
    93 C. B. Murray, C. R. Kagan, and M. G. Bawendi, Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices, Science, 1995, 270, 1355-1358
    94 A. R. Parker, V. L. Welch, D. Driver and N. Martini, Stuctural colour opal analogue discovered in weevil, Nature, 2003, 426, 786-789
    95 L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. EHorvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse, and J. P. Vigneron, Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair, Phys. Rev. E, 2003, 67, 021907-1-5
    96 H. Ghiradella, Light and clour on the wing, Appllied Optics, 1991, 30, 3492-3495
    97 H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya and L. Vazquez, Evidence of FCC crystallization of SiO_2 nanospheres, Langmuir, 1997, 13, 6609-6011
    98 C. Lopez, L. Vazquez, F. Meseguer, R. Mayoral, M. Ocana, and H. Miguez, Photonic crystal made by close packing SiO2 submicron spheres, Superlattices and Microstructures, 1997, 22, 399-404
    99 B. Y. Cheng, P. G. Ni, C. J. Jin, Z. L. Li, D. Z. Zhang, P. Dong, and X. C. Guo, More direct evidence of the fcc arrangement for artificial opal, Optics Communications, 1999, 170, 41-46
    100 P. G. Ni, P. Dong, B. Y. Cheng, X. Y. Li, D. Z. Zhang, Sythetic SiO_2 opals, Adv. Matt., 2001, 13, 437-441
    101 E. G. Judith, J. Wijnhoven and V. L Willem, Preparation of photonic crystals made of air spheres in titania, Science, 1998, 281, 802-804
    102 Y. Xu, G. J. Schneider, Eo D. Wetzel, and D. W. Prather, Centrifugation and spin-coating method for fabrication of three-dimensional opal and inverse-opal structures as photonic crystal devices, Journal of Microlithography Microfabrication and Microsystems, 2004, 3, 168-173
    103 D. Kang, and N. A. Clark, Fast growth of silica colloidal crystals, Journal of the Korean Physical Society, 2002, 41, 817-819
    104 V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, Towards 3D photonic crystals, Synthetic Metals, 2001, 124, 137-139
    105 B. Gates and Y. N. Xia, Fabrication and characterization of chirped 3D photonic crystals, Adv. Matt., 2000, 12, 1329-1332
    106 A. S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, 1996, 12, 1303-1307
    107 C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, Effecet of growth condisitons on the structure of two-dimensional latex crystals: Experiment, Colloidal Polymer Scicence, 1999, 277, 914-919
    108 P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin. Single-crystal colloidal multilayers of controlled thickness, Chemistry of Materials, 1999, 11, 2132-2140;
    109 Z. Z. Gu, A. Fujishima and O. Sato, Fabrication of high-quality opal films with controllable thickness, Chemistry of Materials, 2002, 14, 760-765;
    110 M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, Electrophoretic deposition to control artificial opal growth, Langmuir, 1999, 15, 4701-4704
    111 R. C. Hayward, D. A. Saville and I. A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature, 2000, 15, 4701-4703
    112 X. L. Xu, S. A. Majetich, and S. A. Asher, Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals, J. Am. Chem. Soc, 2002, 124, 13864-13868
    113 X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals, Chemistry of Materials, 2002, 14, 1249-1256
    114 P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, V. L. Colvin, The fabrication and bandgap engineering of photonic multilayers, Adv. Matt., 2001, 13, 389-393
    115 M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, and C. S. Torres, Heterostructures of polymer photonie crystal films, Chemistry of Materials, 2003, 15, 3786-3792
    116 Y. A. Vlasov, X. Z. Bo, J. C. Sturm. And D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature, 2001, 414, 289-293
    117 C. Lopez, Materials Aspects ofphotonic crystals, Adv. Matt., 2003, 15, 1679-1703
    118 D. J. Norris and Y. A. Vlasov, The complete photonic band gap in inverted opals: How can we prove it experimentally?
    119 B. Griesebock, M. Egen, R. Zentel, Large Photonic Films by Crystallization on fluid substrate, Chemistry of Materials, 2002, 14, 4023-4025
    120 F. Garcia-Santamaria, C. Lopez, E Meseguer, E Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, Opal-like photonic crystal with diamond lattice, Appl. Phys. Lett., 2001, 79, 2309-2311
    121 F. G. Santanria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. belmonte, M. Shinya, F. Meseguer, C. Lopez, Nanorobotic manipulation of micorspheres for on-chip diamond architectures, Adv. Matt., 2002, 14, 1144-1147
    122 A. Reynolds, F. Lopez, D. Cassagne, F. J. Gareia-Vidal, C. Jouanin and J. Sanchez-Dehesa, Spectral properties of opal-based photonie crystals having a SiO_2 matrix, Phys. Rev. B, 1999, 611, 11422-114225
    123 K. Busch, and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E, 1998, 58, 3896-3908
    124 R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, Photonic band gaps in colloidal systems, Phys. Rev. B, 1998, 57, 3701-3704
    125 B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu and J. Zi, Ferroelectric inverse opals with electrically tunable photonic band gap, Appl. Phys. Lett., 2003, 83, 4704-4706
    126 B. Li, J. Zhou, R. L. Zong, and L. T. Li, Photoluminescence properties of Zn_2SiO_4: Mn~(2+) inverse opals, High-Performance Ceramics Iii, Pts 1 and2, 2005, 280-283, 541-544
    127 Q. B. Meng, Z. Z. Gu, O. Sato and A. Fujishima, Fabrication of highly ordered porous structures, Appl. Phys. Lett., 2000, 77, 4313-4315
    128 Z. Z. Gu, S. Kubo, W. P. Qian, Y. Einaga, D. A. Yryk, A. Fujishima, and O. Sato, Varying the optical stop band of a three-dimensional photonic crystal by refractive index control, Langmuir, 2001, 17, 6751-6753
    129 V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, Phase transition-governed opal-VO2 photonic crystal, Appl. Phys. Lett., 2001, 79, 2127-2129
    130 R. Torrecillas, A. Blanco, M. E. Brito, C. Lopez, M. Miguez, F. Meseguer, and J. S. Moya, Microstructural study of CdS/opal composites, Acta Materialia, 2000, 48, 4653-4657
    131 A. Blanco, C. Lopez, R. Mayoral, H. Miguez, E Meseguer, A. Mifsud, and J. Herrero, CdS photoluminescence inhibition by a photonic structure, Appl. Phys. Lett., 1998, 73, 1781-1783
    132 A. Blaneo, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, E Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature, 2000, 405, 437-440
    133 C. H. Tan, G. H. Fan, T. M. Zhou, S. T. Li, and H. Q. Sun, Preparation of InP-SiO2 3D photonic crystals, Physica B-Condensed Matter, 2005, 363, 1-6
    134 M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition, Appl. Phys. Lett., 2005, 86, 151113-151115
    135 J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, Atomic layer deposition in porous structures: 3D photonic crystals, Applied Surface Science, 2005, 244, 511-516
    136 A. Rugge, J. S. Park, R. G. Gordon, and S. H. Tolbert, Tantalum(Ⅴ) nitride inverse opals as photonic structures for visible wavelengths, J. Phys. Chem. B, 2005, 109, 3764-3771
    137 J. S. King, E. Graugnard and C. J. Summers, TiO_2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition, Adv. Matt., 2005, 17, 1010-1013
    138 J. S. King, C. W. Neff, S. Blomquist, E. Forsythe, D. Morton, and C. J. Summers, ZnS-based photonic crystal phosphors fabricated using atomic layer deposition, Physica Status Solidi B-Basic Research, 2004, 241, 763-766
    139 R. B. Wehrspohn, and J. Schilling, Electrochemically prepared pore arrays for photonic-crystal applications, Mrs Bulletin, 2001, 26, 623-626
    140 P. V. Braun and P. Wiltzius, Electrochemically grown photonic crystals, Nature, 1999, 402, 603-604
    141 P. V. Braun, P. Wiltzius, Electrochemical Fabrication of 3D Microperiodic Porous Materials, Adv. Mater., 2001, 13, 482-485
    142 K. K. Mendu, J. Shi, Y. F. Lu, L. P. Li, N. Batta, D. W. Doerr, and D. R. Alexander, Fabrication of multi-layered inverse opals using laser-assisted imprinting, Nanotechnology, 2005, 16, 1965-1968
    143 A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti and V. G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths, Science, 1998, 282, 897-890
    144 O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff, Porous silica via colloidal crystallization, Nature, 1997, 389, 447-449
    145 B. T. Holland, C. F. Blanford and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 1998, 281, 538-390
    146 G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Ordered Macroporous materials by colloidal assembly: a possible route to photonic bandgap materials, Adv. Matt., 1999, 11, 1261-1264
    147 P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids, J. Am. Chem. Soc. 1999, 121, 11630-11637
    148 B. Li, J. Zhou, L. F. Hao, W. Hu, R. L. Zong, M. M. Cai, M. Fu, Z. L. Gui, L. T. Li, and Q. Li, Photonic band gap in(Pb, La)(Zr, Ti)O_3 inverse opals, Appl. Phys. Lett., 2003, 82, 3617-3619
    149 M. Deutsch, Y. A. Vlasov and D. J. Norris, Conjugated-Polymer Photonic Crystals, Adv. Mater. 2000, 12, 1176-1180
    150 O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, A class of porous metallic nanostructures, Nature, 1999, 401, 458-460
    151 G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tétreault, S. Wong, V. Kitaev and G. A. Ozin, Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region, Appl. Phys. Lett., 2004, 84, 224-226
    152 Y. A. Vlasov, N. Yao and D. J. Norris, Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots, Adv. Mater. 1999, 11, 165-169
    153 T. Sumida, Y. Wada, T. Kitamura and S. Yanagida, Macroporous ZnO Films Electrochemically Prepared by Templateing of Opal Films, Chem. Lett., 2001, 38-39
    154 Y. N. Xia, B. Gates, Y. Yin, Y. Lu, Monodispersed Colloidal Spheres: Old Materials With New Applications, Adv. Matter., 2000, 12, 693-713
    155 A. Stein, Sphere templating methods for periodic porous solids, Microprous and Mesoporous Materials, 2001, 44-45, 227-239
    156 E. Yablonovitch and T. J. Gmitter, Donor and acceptor modes in photonic band structures, Phys. Rev. letter, 1991, 61, 3380-3383
    157 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Two-dimensional photonic band-gap defect mode laser, Science, 1999, 284, 1819-1821
    158 M. Okano, S. Kako, and S. Noda, Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal, Phys. Rev. B, 2003, 68, 235110-235114
    159 A. Chutinan, S. John, and O. Toader, Diffractionless flow of light in all optical microchips, Phys. Rev. Lett., 2003, 90, 123901-123904
    160 S. Noda, A. Chutinan, and M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature, 2000, 407, 608-610
    161 T. D. Happ, M. Kamp, A. Forchel, J. L. Gentner, and L. Goldstein, Two-dimensional photonic crystal coupled-defect laser diode, Appl. Phys. Lett., 2003, 82, 4-6
    162 S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of light emission by 3D photonic crystals, Science, 2004, 305, 227-229
    163 M. H. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, A three-dimensional optical photonic crystal with designed point defects, Nature, 2004, 429, 538-542
    164 B. Gates and Y. Xia Photonic band-gap properties of opaline lattices of spherical colloids doped with various concentrations of smaller colloids, Appl. Phys, Lett., 2001, 78, 3178-3190
    165 N. Tetreault, H. Miguez, S. M. Yang, V. Kitaev, and G. A. Ozin, Refractive index patterns in silicon inverted colloidal photonic crystals, Adv. Matt., 2003, 15, 1167-1169
    166 Q. F. Yan, Z. C. Zhou, X. S. Zhao and S. J. Chua, Line defects embedded in three-dimensional photonic crystals, Adv. Matt., 2005, 17, 1917-1920
    167 Y. H. Jun, C. A. Leatherdale and D. J. Norris, Tailoring air defects in self-assembled photonic bandgap crystals, Adv. Matt., 2005, 17, 1908-1911
    168 Q. Yan, A. Chen, S. J. Chua, X. S. Zhao, Incorporation of point defects into self-assembled three-dimensional colloidal crystals, Adv. Matt., 2005, 17, 2849-2853
    169 N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov and R. H. Baughman, Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes, Appllied Physics Letters, 2002, 80, 3491-3493
    170 S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, Suppression of spontaneous emission in incomplete opaline photonic crystal, J. Appl. Phys., 2002, 91, 9426-9428
    171 E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, Spontaneous emission of organic molecules embedded in a photonic crystal, Phys. Rev. Lett., 1998, 81, 77-80
    172 S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, Photonic band-gap effects upon the light emission from a dye-polymer-opal composite, Appl. Phys. Lett., 1999, 75, 1057-1059
    173 M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. S. Tortes, Dye-containing polymer beads as photonic crystals, Chemistry of Materials, 2000, 12, 2508-2512
    174 S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Eu~(3+) emission in an anisotropic photonic band gap environment, Appl. Phys. Lett., 2000, 76, 1656-1658
    175 L. H. Slooff, M. J. A. de Dood, v A. an Blaaderen,;A. Polman, Erbium-implanted silica colloids with 80% luminescence, Appl. Phys. Lett. 2000, 76, 3682-3684
    176 C. E Moran, G. D. Hale, N. J. Halas, Synthesis and Characterization of Lanthanide-Doped Silica Microspheres, Langmuir, 2001, 17, 8376-8379
    177 M. J. A. de Dood, B. Berkhout, C. M. van Kats, A.Polman, A.van Blaaderen, Acid-Based Synthesis of Monodisperse Rare-Earth-Doped Colloidal SiO2 Spheres, Chem. Mater. 2002, 14, 2849
    178 V. G. Solovyev, S. G. Romanov, C. M. S. Torres, M. Muller, R. Zentel, N. Gaponik, A. Eychmuller, and A. L. Rogach, Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals, J. Appl. Phys., 2003, 94, 1205-1210
    179 S. G. Romanov, T. Maka, C. M. S. Tones, M. Muller, and R. Zentel, Emission in a SnS2 inverted opaline photonic crystal, Appl. Phys. Lett., 2001, 79, 731-733
    180 S. G. Romanov, R. M. De la Rue, H. M. Yates, and M. E. Pemble, Impact of GaP layer deposition upon photonic bandgap behaviour of opal, Journal of Physics-Condensed Matter, 2000, 12, 339-348
    181 S. Y. Lin, C. Edmund, H. Vince, P. R. Villeneuve, J. D. Joannopoulous, Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal, Science, 1998, 282, 274-276
    182 R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russel, P. J. Roberts, D. C. Allan, Single-mode photonic band gap guidance of light in air, Science, 1999, 285, 1537-1539
    183 C. R. Simovski, S. L. He, Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires, Microw. Opt. Techn. Lett., 2001, 31, 214-221
    184 M. A. G. Laso, T. Lopetegi, M. Bacaicoa, J. Hernández, R. Gonzalo, M. Sorolla, Arrangements of via holes in microstrip lines as metallodielectric periodic structures, Microw. Opt. Techn. Lett., 2000, 26, 372-379
    185 M. U. Pralle, N. Moelders, M, P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady and R. Biswas, Photonic crystal enhanced narrow-band infrared emitters, Appllied Physics Letters, 2002, 81, 4685-4687
    186 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, E D. Dapkus, I. Kim, Two-dimensional Photonic Band-Gap Defect Mode Laser, Science, 1999, 284, 1819-1821
    187 D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, Electro-optic control of the superprism effect in photonic crystals, Appl. Phys. Lett., 2003, 82, 3176-3178
    188 J. Bravo-Abad, T. Ochiai and J. Sánchez-Dehesa, Anomalous refractive properties of a two-dimensional photonic band-gap prism, Phys. Rev. B, 2003, 67, 115116-115119
    189 P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov and S. Sridhar, Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals, Phys. Rev. Lett., 2004, 92, 127401
    190 E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou and C. M. Soukoulis, Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Phys. Rev. Lett., 2003, 91, 207401
    191 A. van Blaaderen, R. Ruel and P. Wiltaius, Template-directed colloidal crystallization, Nature, 1997, 385, 321-324
    192 杜学礼,潘子昂,《扫描电子显微镜分析技术》.化学工业出版社:1986
    193 A. L. Fletcher, B. L. Thiel, and A. M. Donald, Amplification measurements of alternative imaging gases in environmental SEM, Journal of Physics D-Applied Physics, 1997, 30, 2249-2257
    194 D. J. Stokes, B. L. Thiel, and A. M. Donald, Dynamic secondary electron contrast effects in liquid systems studied by environmental scanning electron microscopy, Scanning, 2000, 22, 357-365
    195 B. L. Thiel, and M. Toth, Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics, J. Appl. Phys., 2005, 97, 4479-4491
    196 V. I. Petrov, Cathodoluminescence microcopy, Physics-Uspekhi, 1996, 39, 807-818
    197 G. R. Yi and S. M. Yang, Bandgap engineering of face-centered cubic photonic crystals made of hollow spheres, J. Opt. Soc. Am. B, 2001, 18, 1156-1160
    198 H. Takeda and K. Yoshino, Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells, Appl. Phys. Lett., 2002, 17, 4495-4497
    199 W. Stober, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micro size range, Journal of Colloid and interface Science, 1968, 26, 62-69
    200 G. H. Bogush, M. A. Tracy and C. F. Zukoski IV, Preparation of monodisperse silica particles: control of size and mass fraction, Journal of Non-Crystalline Solids, 1988, 104, 95-106
    201 T. Matsoukas and E. Gulari, Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of Tetraethylorthosilicate, Journal of Colloid and interface Science, 1988, 124, 252-261
    202 A. P. Philipse and A. Vrij, preparation and properties of nanaqueous model dispersions of chemically modified, charged silica spheres, Journal of Colloid and interface Science, 1989, 128, 121-136
    203 G. H. Bogush and C. F. Zukoski Ⅳ, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silico alkoxides, Journal of Colloid and interface Science, 1990, 142, 1-18
    204 T. Matsoukas and E. Gulari, Self-sharpening distributions revisted-polydispersity in growth by monomer addition, Journal of Colloid and interface Science, 1991, 145, 557-561
    205 H. Giesche, Synthesis of Monodispersed Silica Powders Ⅰ. Paticle Properties and Reaction Kinetics, J. Eur. Cera. Soc., 1994, 14, 189-204
    206 H. Giesche, Synthesis of Monodispersed Silica Powders Ⅱ. Controlled Growth Reaction and Continus Production Process, J. Eur. Cera. Soc., 1994, 14, 205-214
    207 C. B. Murray and C. R. Kagan, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science, 1995, 270, 1335-1338
    208 L. V. Woodcock, Entropy difference between the face-centered cubic and hexagonal close-packed crystal structures, Nature, 385, 141-143
    209 J. Zhu, M. Li, R. Rofwea, W. Meyer, R. H. Ottewill, W. B. Russel and P. M. Chaikin, Crystallization of hard-sphere colloids in microgravity, Nature, 1997, 387, 883-885
    210 P. N. Pusey, W. van Megen, W. P. Bartlett and B. J. Ackerson, Structure of crystals of hard colloidal spheres, Phys, Rev. Lett., 1989, 63, 2753-2756
    211 E. Adachi, A. S. Dimitrov, K. Nagayama, Brownian Motion at Liquid-Gas Interfaces. Effect of Insoluble Surfactants-Nonstationary Diffusion, Langmuir, 1995, 15, 1057-1059
    212 V. I. Kovaalchuk, M. P. Bondarenko, E. K. Zholkovskiy, and D. Vollhardt, Mechanism of Meniscus Oscillations and Stripe Pattern Formation in Langmuir-Blodgett Films, J. Phys. Chem. B, 2003, 107, 3486-3495
    213 O. Giraldo, J. P. Durand, H. Ramanan, K. Laubernds, S. L. Suib, M. Tsapatsis, S. L. Brock and M. Marquez, Dynamic organization of inorganic nanoparticles into periodic micrometer-scale patterns, Angewandte Chemie, 2003, 42, 2905-2909
    214 M. Gleiche, L. F. Chi and H. Fuchs, Nanoscopic channel lattices with controlled anisotropic wetting, Nature, 2000, 403, 173-175
    215 J. J. Diao, J. W. Sun, J. B. Hutchison, M. E. Reeves, self-assembled nanoparticle wires by discontinuous vertical colloidal depsosition, Appl. Phys. Lett., 2005, 87, 103113-1-3
    216 R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin, and D. M. Mittleman, Colloidal photonic supedattices, Phys. Rew. B, 2001, 64, 205103-205106;
    217 E Palacios-lid6n, J. F. Galisteo-L6pez, B. H. Juárez and C. López, Engineered planar defects embedded in opals, Adv. Mater., 2004, 16, 341-345
    218 夏明哲硕士学位论文,自组装胶体(光子)晶体及其改性,2005,65
    219 W. H. Southwell, Extended-bandwidth reflector designs by using wavelets, Appl. Opt. 1997, 36, 314-318
    220 R. R. Bhave, Inorganic memberanes: Synthesis, Characteristics and applications, Van Nostrand Reinhold, New York, 1991.
    221 H. Miguez, F. Meseguer, C. Lrpez, A. Blanco, J. Moya, J. Requena, A. Mifsud and V. Fornés, Control of the photonic crystal properties of fcc-packed submicrometer SiO_2 spheres by sintering, Adv. Matt., 1998, 10, 480-483
    222 B. Gates, S. H. Park, and Y. N. Xia, Tuning the photonic bandgap properties of crystalline arrays of polystryrene beads by annealing at elevated temperature, Adv. Matt., 2000, 12, 653-656
    223 H. E. Bergna, The Colloid Chemistry of Silica(Ed:), ASC Advances in Chemistry Series, Vol. 234, ACS, Washingon, DC 1994.
    224 Y. A. Ylasov, M. A. Kaliteevski, and V. V. Nikolaev, Different regimes of light localization in a disordered photonic crystal, Phys. Rev. B, 1999, 60, 1555-1562
    225 Z. Li and Z. Zhang, Fragility of photonic band gaps in inverse-opal photonic crystals, Phys. Rev. B, 2000, 62, 1516-1519
    226 V. Babin, P. Garstecki, and R. Holyst, Multiple photonic band gaps in the structures composed of core-shell particles, J. Appl. Phys., 2003, 94, 4244-4247.
    227 K. P. Velikov, A. Moroz, A. van Blaaderen, Photonic crystals of core-shell colloidal particles, Appl. Phys. Lett., 2002, 80, 49-52
    228 R. Rengarajan, P. Jiang, V. L. Colvin, Optical properties of a photonic crystal of hollow spherical shells, Appl. Phys. Lett., 2000, 77, 3517-3520
    229 F. Caruso, Nanoengineering of Particles surfaces, Advanced Materials, 2003, 13, 11-22
    230 S. Y. Chang, L. Liu, A. A. Sanford, Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica-Cadmium Sulfide Nanocomposites, J Am Chem Soc, 1994, 116, 6739-6744
    231 M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals, Langmuir, 2001, 17, 903-907
    232 H. L. Xia, F. Q. Tang. Surface Synthesis of Zinc Oxide Nanoparticles on Silica Spheres:Preparation and Characterization, J. Phys. Chem. B, 2003, 107, 9175-9178
    233 K. P. Velikov, and A. van Blaaderen, Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica, Langmuir, 2001, 17, 4779-4786
    234 Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres, Adv. Matt., 2004, 16, 2092-2095
    235 G. A. Lawrie, B. J. Battersby, and M. Trau, Synthesis of optically complex core-shell colloidal suspensions: Pathways to multiplexed biological screening, Advanced Functional Materials, 2003, 13, 887-896
    236 A. S. Susha, F. Caruso, A. L. Rogach, G. B. Sukhorukov, A. Kornowski, H. Mohwald, M. Giersig, A. Eychmuller, and H. Weller, Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000, 163, 39-44
    237 L. M. Liz-Marzan, M. Giersig and P. Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir, 1996,12, 4329-4335
    238 T. Ung, L. M. Liz-Marzan, and P. Mulvaney, Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions, Langmuir, 1998, 14, 3740-3748
    239 V. Salgueirino-Maceira, F. Caruso and L. M. Liz-Marzan, Coated Colloids with Tailored Optical Properties, J. Phys. Chem. B, 2003,107, 10990-10994
    240 Y. Lu, Y. D. Yin, Z.Y. Li and Y. N. Xia, Synthesis and Self-Assembly of Au@SiO_2 core-Shell Colloids, NanoLetters, 2002,2, 785-788
    241 C. Graf, D. L. J. Vossen, A. Imhof and A.van Blaaderen, A General Method To Coat Colloidal Particles with Silica, Langmuir, 2003,19, 6693-6700
    242 K. Kamata, Y. Lu, and Y. N. Xia, Synthesis and Characterization of monodispersed Core-Shell Spherical Colloids with Movable Cores, J. Am. Chem. Soc, 2003,125,2384-2385
    243 G. Kumaraswamy, A. M. Dibaj, and F. Caruso, Photonic materials from self-assembly of "tolerant" core-shell coated colloids, Langmuir, 2002,18,4150-4154
    244 N. Aral Dhas and A. Gedanken, A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica, Appl. Phys. Lett., 1998,72, 2516-2516
    245 J. M. Dona, and J. Herrero, Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure, Journal of the Electrochemical Society, 1997,144,4081-4091
    246 L. O. Oladeji, L. Chow, J. R. Liu, W. K. Chu, A. N. P. Bustamante, C. Fredricksen, A. F. Schulte, Comparative study of CdS thin film deposited by single, continuous, and multiple dip chemical processes", Thin Solid Films, 2000,296, 33-36
    247 K. S. Suslick, Ultrasound: Its chemical, Physical and Biological Effects, VCH: Weinheim, 1988.
    248 K. R. Her, The Chemistry of Silica;John Wiley & Sons: New York, 1979;Chapter 6, p 622.
    249 A. K. Dutta, T. Ho, L. Zhang, P. Stroeve, Chem. Mater. 12 (2000) 1042.
    250 A. Berman, N. Belman, Y. Golan, Controlled Deposition of Oriented PbS Nanocrystals on Ultrathin Polydiacetylene Templates at the Air-Solution Interface, Langmuir, 2003, 19, 10962-10966
    251 R. D. Deegan, Pattern formation in drying drops, Phys. Rev. E 2000, 61, 475-485
    252 R. D. Deegan, O. Bakajin, T. F.Dupont, G. Huber, S. R.Nagel, T. A. Witten, Contact line deposits in an evaporating dropPhys. Rev. E, 2000,62,756-765.
    253 Z. Q. Lin, S. Granik, Patterns Formed by Droplet Evaporation from a Restricted Geometry, JACS, 2005,127,2816-2817
    254 H. Yabu, M. Shimomura, Preparation of self-orgnized mesoscale polymer patterns on a solid substrates: continuous pattern formation from a receding meniscus, Advanced Functional Materials, 2005, 15, 575-581
    255 C. Stowell and B. A. Korgel, Self-assembled honeycomb networks of gold nanocrystals, Nano letteres, 2001,1, 595-600
    256 F. Ferrand, J. Seekamp, M. egen, R. Zentel, S. G. Romanov, C. M. Sotomayor Torres, Direct electron-beam lithography on opal films for determinnistric defect fabrication in three-dimensional photonic crystals, Microelectronic Engineering, 2004, 73-74,362-366
    257 A. M. Donald, The use of environmental scanning electron microscopy for imaging wet and insulating materials, Nat. Mater. 2003, 2, 511-516
    258 J. Niitsuma, X. L. Yuan, S. Ito, T. Sekiguchi, Processing of carbon nanotubes with electron beams in gas atmospheres, Scripta Materials, 2005, 53, 703-705
    259 Dejneka, M. J.;Streltsov, A.;Pal, S.;Frutos, A. G;Powell, L. C;Yost, K.;Yuen, P. K.;Muller, U.;J. Lahiri, Rare earth-doped glass microbarcodes, PANS, 2003,100,389.
    260 M. Han, X. Gao,;J. Z Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 2001,19, 631-635
    261 X.Gao, W. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 2002, 7, 532-537.
    262 D.Wang, A. L. Rogach, F. Caruso, Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly, Nano Lett. 2002, 2, 857-861
    263 X. Gao, S. Nie, Doping mesoporous materials, with multicolour quantum dots J. Phys. Chem. 5 2003,107, 11575-11578
    264 D. Wang, A. L. Rogach, F. Caruso, Composite photonic crystals from semiconductor. nanocrystal/polyelectrolyte-coated colloidal. Spheres, Chem. Mater. 2003, 15, 2724-2729
    265 Y. Chan,;J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, M. G. Bawendi, Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres, Adv. Mater. 2004, 16, 2092
    266 M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L Vos, Light sources inside photonic crystals d. Opt. Soc. Am. B 1999, 16, 1403-1408
    267 W. L. Vos, A. Polman, Optical probes inside photonic crystals, MRS Bull. 2001, 26, 642-646.
    268 F. Meinardi and A. Paleari, Native and radiation-induced photoluminescent defects in SiO_2: Role of impurities, Phys. Rev. B., 1998, 58, 3511-3514
    269 Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, D. M. Bagnall, Fabrication and characterization of n-ZnO/p-AIGaN heterojunction light-emitting diodes on 6H-SiC substratesAppl. Phys. Lett. 2003, 83, 4719-4721.
    270 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani,;S. F.Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature. Mater. 2005, 4, 42-46
    271 D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, S. J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Appl. Phys. Lett. 2005, 86, 222101-1-3
    272 H. Zhang, D. R. Yang,;Y. J. Ji, X. Y. Ma,;J. Xu, D. L. Que, Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process J. Phys. Chem. B 2004, 108, 3955-3940
    273 M. Liu, A. H. Kitai, P. Mascher, Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese, J. Lumin. 1992, 54, 35-42
    274 N. Y. Garces, L. Wang, L. Bai,;N. C. Giles, L. E.;Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 2002, 81, 622-62.
    275 K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Viogt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors Appl. Phys. Lett. 1996, 68, 403-405
    276 G. Sengupta, H. S> Ahluwalia, S. Banerjee and S. P. Sen, J. Colloid Interface Sci. 1979, 69, 217-221
    277 H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, A. Hoffmann, Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)_2 core-shell structures, Appl. Phys. Lett. 2002, 80, 210-212
    278 L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem., Int. Ed. 2003, 42, 3031-3034
    279 D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L.Shi, S. J. Xu, W. K. Chan, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl. Phys. Lett. 2004, 85, 1601-1603
    280 D. G. Kim, T. Terrshita, I. Tanaka, M. Nakayama, Photoluminescence Properties of ZnO Thin Films Grown by Electrochemical Deposition, Jpn. J. Appl. Phys. 2003, 42, L935-937
    281 C. G. Van de Walle, Hydrogen as a shallow center in semiconductors and oxides, Phys. Status Solidi B, 2002, 235, 89-95.
    282 T. Sekiguchi, N. Ohashi, Y. Terada, Effect of Hydrogenation on ZnO Luminescence, Jpn. J. Appl. Phys. 1997, 36, L289-291
    283 N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, H. Haneda, Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO, Appl. Phys. Lett. 2002, 80, 2869-2871
    284 N. Ohashi, T. Ishigaki, N. Okada, H. Taguchi, I. Sakaguchi, S. Hishita, T. Sekiguchi, H. Haneda, Passivation of active recombination centers in ZnO by hydrogen doping, J. App. Phys. 2003, 93, 6386-6392
    285 Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki and T. Ohdaira, Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam, Physics Review B, 2005, 71, 115213-1-8
    286 L. W. Yin, Y. Bando, M. S. Li, and D. Golberg, Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction, Small, 2005,1, 1094-1099
    287 Y. D. Xia, and R. Mokaya, Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells, Journal of Materials Chemistry, 2005,15,3126-3131
    288 H. Y. Wang, R. J. Wang, X. M. Sun, R. X. Yan, and Y. D. Li, Synthesis of red-luminescent Eu~(3+)-doped lanthanides compounds hollow spheres, Materials Research Bulletin, 2005, 40, 911-919
    289 Y. Li, W. P. Cai, G. T. Duan, B. Q. Cao, and F. Q. Sun, Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films, Journal of Materials Research, 2005,20,338-343
    290 M. Fujiwara, K. Shiokawa, Y. Tanaka, and Y. Nakahara, Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction, Chemistry of Materials, 2004,16, 5420-5426
    291 Z. Q. Li, Y. Xie, Y. J. Xiong, and R. Zhang, A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant, New Journal of Chemistry, 2003,27,1518-1521
    292 Z. B. Lei, J. M. Li, Y. X. Ke, Y. G Zhang, H. C. Zhang, F. Q. Li, and J. Y. Xing, Two-step templating route to macroporous or hollow sphere oxides, Journal of Materials Chemistry, 2001,11,2930-2933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700