大功率永磁无刷直流电机及其系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率永磁无刷直流电机驱动系统由于运行效率高、调速性能好、可靠性高等优
    点,在国外已成功应用于对系统效率、可靠性有特殊要求的推进领域中。然而,国际
    上关于大功率永磁无刷电机及其驱动系统的成套技术一直对我实行封锁;在国内,永
    磁无刷电机的研究主要集中在中小功率方面,大功率永磁无刷直流电机及其驱动系统
    的研究尚处在起步阶段,在大功率永磁无刷电机的设计和驱动系统的研制方面都存在
    大量值得研究的问题。
    本课题为研究大功率永磁无刷直流电机及其驱动系统而设计了一台 50kW多相永
    磁无刷直流电机,该电机的设计最大限度地模拟了某大功率多相永磁无刷直流电机的
    基本结构,驱动系统也基本采用了某大功率永磁无刷直流电机的主电路结构。本文以
    该电机为分析和研究对象,对大功率永磁无刷直流电机及其驱动系统的工作原理、参
    数选取和电机工作情况进行了分析、总结和预测,为大功率永磁无刷直流电机及其驱
    动系统的研制提供了宝贵的经验。全文内容如下:
    首先,介绍了一种以晶闸管为主要功率元件的大功率永磁无刷直流电机驱动系
    统。该系统采用电容强迫换流技术,与普通无刷直流电机的换流原理和控制逻辑不同。
    本文通过对电机各运行的状态的分类分析,总结了这种驱动系统的触发逻辑控制规
    律,优化了逻辑控制程序,为永磁无刷直流电机驱动系统的仿真和实际系统的开发提
    供了依据。
    其次,本文通过对驱动系统换流过程的详细分析,总结了有关参数如电机电感、
    换相电容等对电机换流过程的影响程度、趋势和规律。给出了驱动系统主要参数选取
    的依据和选择方法,并通过样机进行了实验验证,为大功率永磁无刷直流电机驱动系
    统的主电路设计提供理论支持。
    为准确预测大功率永磁无刷直流电机驱动系统的运行性能,建立了永磁无刷直流
    电机的电路模型和 S 函数模型,并阐述了其在 Matlab/Simulink 平台下的建模原理和实
    现方法。本文提出的两种电机模型,相互补充,准确预知了永磁无刷电机驱动系统的
    运行特性,大大加速驱动系统研制过程。其中,电路模型具有仿真效率高,便于研究
    驱动系统主电路参数对系统性能的影响,从而对主电路参数进行优化;S 函数模型便
     I
    
    
    于对电机内部细节进行分析,为揭示电机内部变量的变化规律提供了有力的手段。
    以样机为主要研究对象,对切向磁化结构永磁无刷直流电机的电枢反应情况进行
    了实测、分析和总结。分析结果表明等效磁路法在计算永磁无刷电机的空载工作点是
    准确的、可行的;但对负载情况的电枢反应计算则存在较大误差,应采用磁场分析进
    行补充。结合其它两台同结构电机的比较分析,对永磁无刷直流电机的设计要点进行
    了总结,指出切向磁化结构的永磁无刷直流电机的定子轭和定子齿的磁路不宜设计得
    过高,否则电枢反应较严重,影响电机出力。
    本文最后对由电压型逆变器驱动的无刷直流电机的运行特性进行了分析,推导了
    电机机械特性的计算公式,为无刷直流电机的设计提供了计算依据,指出电压型无刷
    直流电机的机械特性不能直接套用有刷直流电机的公式进行计算。
    通过对这台 50kW 多相永磁无刷直流电机样机的研究,我们基本掌握了大功率永
    磁无刷电机本体设计的要点和驱动系统主电路参数选取的依据,为大功率永磁无刷直
    流电机驱动系统设计积累了宝贵的经验。
Due to high efficiency, excellent speed-adjustability, and high feasibility, the
    high-power Permanent Magnet Brushless DC Motor(PMBDCM)drive system has applied
    in the domains as ships, aircrafts and so on, where the attention is firstly paid to the running
    efficiency and feasibility of drive system. The equipments for high-power PMBDCM drive
    have been developed in foreign countries. However, the technique concerned is kept to
    themselves. In domestic, the research work is mainly focused on the fractional power
    PMBDCM at present, and the work for high-power PMBDCM drive is just kicked on, so
    many problems exist in the design of high-power PMBDCM proper and the development of
    PMBDCM drive system.
     In order to investigate the performance of one kind of high-power PMBDCM drive
    system, a 50kW multi-phase permanent magnet brushless DC sample motor is developed in
    this dissertation. The sample motor is strictly referred to one high-power PMBDCM, and
    the structure of drive system is also accorded to the high-power PMBDCM drive system.
    By dint of the sample motor drive system, this dissertation has expounded the operation
    principle, discussed the parameter choice and analyzed experimental data, and then some
    valuable conclusions were drawn for the high-power PMBDCM drive system. The
    dissertation is deployed as follows:
     Firstly, the operation principle of the high-power PMBDCM drive is introduced. The
    PMBDCM drive system presented in this dissertation adopts thyristors as the operation
    power electronics, and employs capacitor for commutation, so the drive system has a
    special operation manner and control scheme. By sorting out the running status, the trigger
    control rules is formulated and the trigger control scheme is optimized, which lay a
    foundation for the simulation of the PMBDCM drive, and so do with the development of
    practical drive system.
     Then, the commutation process of the PMBDCM drive is investigated, and the effect
    of relational parameters upon the commutation characteristics is sum up, thereafter the
    criterion of the parameter choice for drive system is brought out. The criterion has been
    verified by the sample drive system. The commutation investigation provides a theoretic
    support for the design of high-power PMBDCM drive.
     III
    
    
    In order to predict the running characteristics of PMBDCM drive, two mathematical
    model, electric circuit model and S-function model, for PMBDCM are presented in this
    dissertation, the modeling principles and realization of each model under Matlab/Simulink
    platform are detail stated. The circuit model has high simulation efficiency, and is good at
    optimizing the main circuit of the motor drive system, whereas the S-function model brings
    a feasible approach to investigate the details characteristics of the PMBDCM proper. The
    two models promote the research of high-power PMBDCM drive.
     The armature reaction of the sample motor is also discussed in this dissertation. The
    analysis shows that the equivalent magnet circuit is a feasible method to calculate the
    non-load operation status, but fail to compute the load operation status. Further research
    shows the stator yoke and stator tooth have serious affected the performance of PMBDCM,
    and high magnet stature is not suitable for the PMBDCM whose magnets are mounted in
    tangent direction.
     The dissertation has also pay attention to the mechanical characteristics of PMBDCM
    fed by voltage inverter. The expressions deduced in last chapter dictate the mechanical
    characteristics PMBDCM fed by voltage inverter is much softer than that calculated
    directly according to the resistor of stator windings. This conclusion gives a valuable
    reference to PMBDCM design.
     To sum up, through the research of the multi-phase permanent magnet brushless DC
    sample motor, we have accumulated the design experience for PMBDCM, and acquired the
    knowledge of such drive system, which conduces to the development and realization of the
    equipment for high-pow
引文
1. 许大中. 晶闸管无换向器电机. 北京:科学出版社,1984 年.11~13
    2. 周绍英,储方杰. 交流调速系统. 北京:机械工业出版社,1996 年.68~88
    3. 胡崇岳. 现代交流调速技术. 北京机械工业出版社,1999 年.362~368
    4. Bolton H R, Liu Y D, Mallison N M. Ivestigation Into a class of Brushless DC
     Motor With Quasisquare Voltages and Currents. IEE Proceedings-Electric Power
     Applications 1986,133(2):103~111
    5. Vadher V V,Kettleborough J G.,Smith I R. Generalized Model of Brushless DC
     Generator. IEEE Transaction on Aerospace and Electronic Systems,1996,25(4):
     508~519
    6. 周波,窦森,穆新华. 基于 C-dump 双向变换器的新型无刷直流起动/发电机工作
     特性的理论分析和仿真研究. 中国电机工程学报,2000,20(12):33~37
    7. 李华德. 交流调速控制系统.北京:电子工业出版社,2003 年.246~248
    8. 周波,傅颖,穆新华等. 无刷直流电机储能型变换器的参数设计. 中国电机工程学
     报,2000,20(4):72~76
    9. Krishnan R,Lee S,Monajemy R. Modeling Dynamic Simulation and Analysis of a
     C-dump Brushless DC Motor Drive. IEEE Transaction on Industry Applications 1996:
     745~750
    10. Akmese R,Eastham J F. Dynamic performance of a brushless DC tubular drive system.
     IEEE Transaction on Magnetics,1989,25 (5):3269 ~ 3271
    11. 刘晓林.潜艇永磁无刷直流电机:[硕士论文]。哈尔滨:哈尔滨工程大学,2002
    12. Chan T F,Yan L T,Fang S Y. In-wheel permanent magnet brushless DC motor drive
     for an electric bicycle. IEEE Transaction on Energy Conversion,2002,17 (2):229~233
    13. Simoes M G,Vieira P J. A high-torque low-speed multiphase brushless machine-a
     perspective application for electric vehicles. IEEE Transaction on Industry Electronics,
     2002,49 (5):1154~1164
    14. Gan Jinyun,Chau K T,Chan C C,et al A new surface-inset,permanent magnet,
     140
    
    
    brushless DC motor drive for electric vehicles. IEEE Transaction on Magnetics,
     2000,36 (5):3810~3818
    15. 贾正春,许锦兴. 电力电子学. 武汉:华中科技大学出版社,1993 年.6~8
    16. 王兆安,黄俊. 电力电子技术. 北京:机械工业出版社,2001 年.15~21
    17. 蔡宣三,钱照明,王正元.电力电子学的发展战略调查研究报告.电工技术学报,1999,
     14(3):1~5
    18. Thomas M Jahns, Wen L Soong. Pulsating Torque Minimization Techniques for
     Permanent Magnet AC Motor Drives-A Review. IEEE Transaction on Industry.
     Electronics, 1996, 46(2):321~330
    19. Huy H Le,Penet R,Feuillet R. Minimization of Torque Ripple in Brushless DC Motor
     Drive. IEEE Transaction on Industry Appllications,1986,22(4):748~755
    20. Sung Jun Park,Han Woong Park,Man Hyung Lee,et al. A New Approach for
     Minimum-Torque-Ripple Maximum-Efficiency Control of BLDCM Motor. IEEE
     Transaction on Industry. Electronics,2000,47(1):109~114
    21. 胡鸿祥. 美国无刷直流电动机市场和技术发展动向. 微电机,1991(4):34~36
    22. 胡文静. 永磁无刷电动机的发展及展望. 微电机,2003(4):37~38
    23. Sergey Edward Lyshevski. Control of high performance induction motor: theory and
     practice. Energy Conversion and Management,2001(42):877~898
    24. 李华德. 现代交流电机变频调速系统. 北京:石油工业出版社,2003 年.254~263
    25. 李钟明,刘卫国. 稀土永磁电机. 北京:机械工业出版社, 1999 年.105~179
    26. 任伯胜. 稀土永磁材料的开发与应用. 南京:东南大学出版社,1989 年. 5~8
    27. 唐任远. 现代永磁电机理论与设计. 北京:机械工业出版社,1997 年.161~249
    28. 赵凯华,陈熙谋. 电磁学. 北京:高等教育出版社,2003 年.246~250
    29. 王季轶. 无刷电机的现在和将来. 微特电机.1998(5):22~24
    30. 耿连发,吴延忠. 现代永磁电机发展趋势. 沈阳工业大学学报,1995,17(1):25~28
    31. Ki-Jin Han, Han-Sam Cho, Dong-Hyeok Cho,et al Optimal core shape design for
     cogging torque reduction of brushless DC motor using genetic algorithm. IEEE
     Transactions on Magnetics,2000,36( 4 ) :1927~1931
    32. Chapman P L,Sudhoff S D,Whitcomb C A. Multiple reference frame analysis of
     141
    
    
    non-sinusoidal brushless DC drives. IEEE Transaction on Energy Conversion, 1999,
     14 (3):440~446
    33. Gan Jinyun,Chau K T,Wang Yong,et al. Design and analysis of a new permanent
     magnet brushless DC machine. IEEE Transaction on Magnetics, 2000,36 (5):
     3353~3356
    34. Rubaai A,Yalamanchili R C. Dynamic study of an electronically brushless DC
     machine via computer simulations. IEEE Transaction on Energy Conversion, 1992,7
     (1):132~138
    35. Hemati N,Leu M C. A complete model characterization of brushless DC motors. IEEE
     Transaction on Industry Applications,1992,28 (1):172~180
    36. Huy H Le,Penet R,Feuillet R. Minimization of Torque Ripple in Brushless DC Motor
     Drive. IEEE Transaction on Industry Appllications,1986,22(4):748~755
    37. Franceschetti N N,Sim?es M G.. A New Approach Analysis Modeling and Simulation
     of Brushless Multiphase Machines. The 27th Annual Conference of the IEEE Industry
     Electronics Society:1423~1427
    38. Yong Wang, Chau, K.T, Jinyun Gan, et al. Design and analysis of a new multiphase
     polygonal winding permanent-magnet brushless DC machine. IEEE Transactions on
     Magnetics, 2002, 38 (5) :3258~3260
    39. Simoes,M G.; Vieira P. A high-torque low-speed multiphase brushless machine-a
     perspective application for electric vehicles , IEEE Transactions on Industrial
     Electronics,2002,49( 5):1154~1164
    40. Waikar S; Gopalarathnam T; Toliyat H A. Evaluation of multiphase brushless
     permanent magnet (BPM) motors using finite element method (FEM) and experiments.
     Fourteenth Annual Applied Power Electronics Conference and Exposition,1999,1(1):
     396~402
    41. Toliyat H A, Sultana N,Shet D S,et al. Brushless permanent magnet (BPM) motor
     drive system using load-commutated inverter , IEEE Transactions on Power
     Electronics,1999,14 ( 5):831~837
    42. Fang Deng. Commutation-caused eddy-current losses in permanent magnet brushless
     DC motors IEEE Transactions on Magnetics,1997,33(5):4310~4318
     142
    
    
    43. BerendsenC S,Champenois G.,Bolopion A. Commutation strategies for brushless DC
     motors:influence on instant torque. IEEE Transactions on Power Electronics,1993,
     8 (2 ):231~236
    44. Zhi Yang Pan,Fang Lin Luo. Novel soft-switching inverter for brushless DC motor
     variable speed drive system. IEEE Transactions on Power Electronics, 2004,19( 2):
     280~288
    45. Zouaghi T,Maguiraga M,Poloujadoff M. Brushless exciter dynamic model including
     saturation and multiple commutation overlapping effects. Proceedings of the Fifth
     International Conference on Electrical Machines and Systems,2001,1(1):444~447
    46. 程福秀,林金铭. 现代电机设计. 北京:机械工业出版社,1993 年.141~155
    47. Chun Y D,Wakao S,Kim T H,et al. Multiobjective Design Optimization of Brushless
     Permanent Magnet Motor Using 3D Equivalent Magnetic Circuit Network Method.
     IEEE Transactions on Applied Superconductivity,2004,14 ( 2 ):1635~1642
    48. ChenY S,Zhu Z Q,Howe D. Slotless brushless permanent magnet machines:
     influence of design parameters. IEEE Transactions on Energy Conversion, 1999,14
     ( 3 ):686~691
    49. Gyu-Hong Kang; Jung-Pyo Hong; Gyu-Tak Kim. A novel design of an air-core type
     permanent magnet linear brushless motor by space harmonics field analysis. IEEE
     Transactions on Magnetics,2001,37 (5 ):3732~3736
    50. Tae Kyung Chung; Suk Ki Kim; Song-Yop Hahn. Optimal pole shape design for the
     reduction of cogging torque of brushless DC motor using evolution strategy. IEEE
     Transactions on Magnetics,1997,33 ( 2):1908~1911
    51. Jewell G.W,Howe D. Computer-aided design of magnetizing fixtures for the
     post-assembly magnetization of rare-earth permanent magnet brushless DC motors.
     IEEE Transactions on Magnetics,1992,28(5):3036~3038
    52. Hijazi T M,Demerdash N A. Computer-aided modeling and experimental verification
     of the performance of power conditioner operated permanent magnet brushless DC
     motors including rotor damping effects. IEEE Transaction on Energy Conversion,
     1988,3 (3):714~721
    53. Asafi S K,Acarmley P P,Jack A G.. Analysis and simulation of the high speed torque
     143
    
    
    performance of brushless DC motor drive. IEE Proceedings-Electric Power
     Applications,1995,142 (3):191~200
    54. Demerdash N A,Hijazi T M,Arkadan A A. Computation of winding inductances of
     permanent magnet brushless DC motors with damper windings by energy perturbation.
     IEEE Transaction on Energy Conversion,1988,3 (3):705~713
    55. Gangla V,Dela Ree J. Electromechanical forces and torque in brushless permanent
     magnetic machines. IEEE Transaction on Energy Conversion,1991,6 (3):546~552
    56. Pillay P,Krishnan R. Modeling,simulation,and analysis of permanent~magnet motor
     drives. II. The brushless DC motor drive. IEEE Transaction on Industry Applications,
     1989,25 (2):274~279
    57. Hla Nu Phyu,Jabbar M A,Liu Zhejie,et al. Modeling and simulation of brushless
     permanent magnet DC motor in dynamic conditions by time stepping technique. IEEE
     International Electric Machines and Drives Conference,2003,1(1):376~381
    58. 贺益康,严岚. 永磁无刷直流电机稳态特性的状态空间分析. 电工技术学报,2002,
     17(1):17~22
    59. 苏开才,刘勇,何鸿肃. 永磁无刷直流电机驱动系统的动态模型. 华南理工大学学
     报(自然科学版),1998,26(5):77~81
    60. Alhamadi M A, Demerdash N A. Modeling of effects of skewing of rotor mounted
     permanent magnets on the performance of brushless DC motors. IEEE Transaction on
     Energy Conversion, 1991, 6 (4):721~729
    61. Inerfield M A,Garverick S L,Newman W S. A SPICE Model for a Novel Brushless
     Adjustable Speed Drive. IEEE Transaction on Industry Electronics, 2000,61(l47):
     1307~1318
    62. Vadher V,Gregory K,Kettleborough G.,et al. Modeling of brushless DC generating
     systems using diakoptics. IEEE Transaction on Aerospace and Electronic Systems,
     1993,29 (1):100~110
    63. 林宪枢.同步电机与直流电机电枢反应的比较.电力系统及其自动化学报.1998,
     10(3):62~64
    64. 辜承林,熊永前. 电机学. 武汉:华中科技大学出版社,2001 年.62~66
    65. 周元芳. 稀土永磁无刷直流电动机反电动势及电磁转矩的计算. 微特电机 1996,
     144
    
    
    (2):14~17
    66. 刘明基,姚郁,邹继斌. 无刷电机中电枢反应对换向电动势的影响. 微电机,2001,
     34(3):3~5
    67. Atallah K,Zhu Z Q,Howe D. Armature reaction field and winding inductances of
     slotless permanent~magnet brushless machines. IEEE Transaction on Magnetics,
     1998,34 (5):3737 ~3744
    68. Zhu Z Q,Howe D. Instantaneous magnetic field distribution in brushless permanent
     magnet DC motors. II. Armature reaction field. IEEE Transaction on Magnetics,1993,
     29 (1):136~142
    69. Casadei D,Serra G.,Tani A. Finite~element analysis of a brushless PM DC linear
     motor taking the saturation effects into account. IEEE Transaction on Magnetics,
     1997,33 (5):4197~ 4199
    70. Upadhyay P R.; Rajagopal K R.,Singh B P. Effect of armature reaction on the
     performance of an axial-field permanent-magnet brushless DC motor using FE method.
     IEEE Transactions on Magnetics,2004,40(4):2023~2025
    71. Sitapati K,Krishnan R. Performance comparisons of radial and axial field,permanent
     magnet brushless machines. IEEE Transaction on Industry Applications,2001,37 (5):
     1219~1226
    72. Zhu Z Q,Xia Z P,Shi Y F,et al. Performance of Halbach magnetized brushless ac
     motors. IEEE Transaction on Magnetics,2003,39 (5):2992~2994
    73. Wang Xinghua,Li Qingfu,Wang Shuhong. Analytical calculation of air gap magnetic
     field distribution and instantaneous characteristics of brushless DC motors. IEEE
     Transaction on Energy Conversion,2003,18 (3):424~432
    74. Gillon F,Brochet P. Optimisation of a brushless permanent~magnet motor with the
     experimental design method. IEEE Transaction on Magnetics,1998,34 (5):3648~3651
    75. 饶运涛,邹继军,郑勇芸. 现场总线 CAN 原理与应用技术. 北京:北京航空航天
     大学出版社,2003 年.14~18
    76. 邬宽明. CAN 总线原理与应用系统设计. 北京:北京航空航天大学出版社,1996
     年.4~18
     145
    
    
    77. 邱关源. 电路. 北京:高等教育出版社,1999 年.158~166
    78. 陈伯时. 电力拖动自动控制系统. 北京:机械工业出版社,1996 年.6~8
    79. 高景德,王祥衍,李发海. 交流电机及其系统分析. 北京:清华大学出版社,1993
     年.125~131
    80. 姚俊,马松辉. 基于 Matlab/simulink 建模与仿真. 西安:西安电子科技大学出版
     社,2002 年.10~12
    81. Cathey J J. A MATLAB-based graphical technique for amortization study of adjustable
     speed drives,IEEE Transactions on Education,2002,45 ( 2):177~181
    82. Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on
     Matlab/Simulink environment IEEE Transactions on Aerospace and Electronic
     Systems,2001,37( 3):989~1009
    83. Butler K L,Ehsani M,Kamath P A. Matlab-based modeling and simulation package
     for electric and hybrid electric vehicle design,IEEE Transactions on Vehicular
     Technology,1999,48(6 ):1770~1778
    84. 辜承林. 机电动力系统分析. 武汉:华中科技大学出版社,1998 年.145~153
    85. 马志云. 电机瞬态分析. 北京:中国电力出版社,1998 年.3~9
    86. 汤蕴璆. 电机学机电能量转换. 北京:机械工业出版社,1986 年.63~83
    87. 刘志俭. Matlab 应用程序接口用户指南. 北京:科学出版社,2000 年.278~294
    88. 李开泰,黄艾香,黄庆怀. 有限元方法及其应用. 西安:西安交通大学出版社,1992
     年. 57~63
    89. 张鸿庆,王鸣. 有限元的数学理论. 北京:科学出版社,1991 年.159~181
    90. 陈世元. 交流电机磁场的有限元分析. 哈尔滨:工程大学出版社:1998 年.44~87
    91. 金建铭. 电磁场有限元方法. 王建国译. 西安:西安电子科技大学出版社,1998
     年.51~93
    92. 汤蕴缪. 电机内的电磁场. 北京:科学出版社,1981 年.164~173
    93. Tan Hui. Controllability analysis of torque ripple due to phase commutation in
     brushless DC motors 2001. Proceedings of the Fifth International Conference on
     Electrical Machines and Systems,2001,2(2):1317~1322
    94. Berendsen C S,Champenois G.,Davoine J. Commutation strategies for brushless DC
     146
    
    
    motors:influence on instant torque. Proceedings of the Fifth Annual Applied Power
     Electronics Conference and Exposition,1990,1(1):394~400
    95. Safi S K,Acarnley P P,Jack A G.. Analysis and simulation of the high-speed torque
     performance of brushless DC motor drives; IEE Proceedings-Electric Power
     Applications,1995,142 (3):191~200
    96. Spee R,Wallace A K. Performance characteristics of brushless DC drives. IEEE
     Transactions on Industry Applications,1988,24 (4):568~573
    97. Wallace A.K,Spee R. The effects of motor parameters on the performance of brushless
     DC drives. IEEE Transactions on Power Electronics,1990,5 (1):2~8
    98. 韩光鲜,谢占明,王宗培. 无刷直流电机电枢等效电阻的实例研究. 微电机,2002,
     35(1):3~5
    99. 韩光鲜,谢占明,王宗培. 无刷直流电机电枢等效电阻的研究. 微电机,2002,
     35(2):3~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700