四嗪类高氮化合物结构与性能关系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容如下:
     1.在总结分析大量文献的基础上对高氮化合物的组成单元进行了分类,主要分为结构单元、连接单元和取代基;对高氮化合物的实验和理论最新研究进展进行了综述,提出了以1,2,4,5-四嗪类化合物作为本论文的主要研究内容。
     2.为了更清楚的了解结构单元之间的相互影响,设计了六元氮杂环和五元氮杂环取代1,2,4,5-四嗪得到了一系列化合物,采用量子化学计算方法对它们进行了详细的理论研究,讨论了各种氮杂环的改变对四嗪类化合物性能(包括生成热、密度以及爆速和爆压等)的影响,并找出爆轰性能较好的结构单元组合。
     3.设计了连接桥(-N=N-)和取代基(-NH_2、-N_3)与1,2,4,5-四嗪环直接相连得到9种化合物,分析和讨论了它们的电子结构以及不同基团对生成热、爆速和爆压的贡献。
     4.根据实验中已经合成且性能较好的高氮含能化合物BTATz和DAAT的结构特点和结构与性能关系的理论分析结果,初步设计了8种含能性质较好的目标化合物。采用不同理论方法对其生成热、密度和爆轰性能进行了预测,为高氮含能化合物的试验合成提供了素材和理论参考。
     5.根据Hiskey等人对高氮含能化合物3,6-双(叠氮基)-1,2,4,5-四嗪中的叠氮基环化处理,采用密度泛函理论对叠氮基的环化机理进行了初步的理论分析,给出了实验中只生成一种产物的可能原因。
     6.理论计算中采用密度泛函理论对研究对象进行结构优化和频率计算,运用自然键轨道(NBO)理论和分子中的原子(AIM)理论进行电子结构分析,采用原子化方案(atomic scheme)、Monte-Carlo方法和VLW状态方程分别计算了标准气态生成热、分子密度及爆速和爆压。
The main work of this dissertation is as follows:
     1. The constituent units of high-nitrogen compounds have been classified as structural units, connecting units and substitutional radicals at base of many references. And the current experimental and theoretical studies for high-nitrogen compounds are reviewed. At last, we take tetrzine compounds as main work of this dissertation.
     2. For distinctly understanding the mutual influence between the structural units, a series of compounds from five and six-membered C-N heterocycle substituting the tetrazine ring are designed. These several types of compounds are studied by means of the quantum chemistry calcualtions and discussed the influence of the structural units upon the main performance (heat of formation, density, velocity and pressure of detonation) and found out the best combination of performance.
     3. Nine kinds of compounds from the connecting units (-N=N-) and substitutional radicals (-NH_2、-N_3) substituting the tetrazine are designed and analysed their electronic structures, different radicals' contribution to heat of formation, velocity and pressure of detonation.
     4. At last, we design 8 kinds of energetic compounds with good properties on the basis of preferable high-nitrogen materials (BTATz and DAAT) and the results of above analysis. Then heat of formation, density, velocity and pressure of detonation were calculated by means of different theoretical methods. And the results can offer the theoretical reference for synthesize of high-nitrogen compounds.
     5. At the base of experimental results for cyclization of the azide group 3, 6-bis(azide) -s-tetrazine, we primaryily studied the cyclization process by means of theoretical methods, gave the possible reason for only one product.
     6. The optimization and the vibrational frequencies were calculated by the density functional theory for all the molucules. The electronic structures were analyzed by means of natural bond orbital (NBO) and atom in the molecule (AIM). The calculations about the standard gaseous heat of formation, molecular density, velocity and pressure of detonation were respectively used by the atomic scheme, the method of Monte-Carlo and VLW state equations.
引文
1 舒远杰,龙新平.含能材料辉煌的21世纪[C].四川省中青年专家大会,2002,10.四川成都.
    2 Hiskey M, Chavez D, et al. Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics A. Proc. 27th International Pyrotechnics Seminar[C], July 16~21, USA: Colorado, 2000: 3~14.
    3 Huynh M. H. V, Hiskey M, Pollard C.J., et al. 4,4',6,6'-Tetra-Substituted Hydrazo- and Azoo-1, 3, 5-Triazines J. Energ. Mater. 2004, 22, 217~229.
    4 Huynh M. H.V, Hiskey M, Ernest L, et al. Polyazido High-Nitrogen Compounds: Hydrazoand Azo-1,3,5-triazine[J]. Angew. Chem. Int. Ed. 2004, 43: 4924~4928
    5 Neutz J, Grosshardt O, Schaufele S, et al. Synthesis, characterization and thermal behaviour of guanidinium-5-aminotetrazolate (GA)-A new nitrogen-rich compound[J]. Propellants, Explosives, Pyrotechnics. 2003, 28: 181~188.
    6 Churakov A.M, Smimov O.Y, Ioffe S.L, et al.Benzo-1,2,3,4-tetrazine 1,3-Dioxides: Synthesis and NMR Study [J]. Eur. J. Org. Chem. 2002: 2342~2349.
    7 Hiskey M, Chavez D. Insensitive high-nitrogen compounds[R]. NTIS No: DE220012776133, 2001.
    8 Son S. F., Berghout, H. L., Bolme, C. A., Chavez D.E, et. Al. Bum rate measurements of HMX, TATB, DHT, DAAF, and BTATz. [J]. Proceedings of the Combustion Institute, Edinburgh, 2000, 28: 919~924.
    9 Ali A. N, Son S. F, Hiskey M, et al. Novel High-Nitrogen Propellant Use In Solid Fuel Micropropulsion[J]. J. Propulsion and Power, 2004, 20: 120.
    10 Chavez D, Hiskey M, Naud D.L. High-nitrogen fuels for low-smoke pyrotechnics[J]. J. Pyrotech. 1999, 10: 17~36.
    11 Hiskey M, Chavez D, et al. Low smoke pyrotechnic compositions[P]. US 6312537, 2001.
    12 Khandhadia P S, Burns S P, Williams G K. High gas yield nonazide gas generants[P]. US, 6201505,2001.
    13 Khandhadia P S, Bums S P. Thermally stable nonazide auto motive airbag propellants[P] . US, 6306232, 2001.
    14 Bennett G, Kolleck M.L, Bennett J.M. Fire in the Air[J]. Military Aerospace Technology, Dec 31, 2003.
    15 Fallis S, Reed R, Lu Y.-C.F, et al. Advanced Propellant Additive Development for Fire Suppressing Gas Generators [A]. Proceedings of Halon Options Technical Working Conference, [C]. 2000, 361-370.
    16 Jochen Kerth, Stefan LObbecke. Synthesis and Characterization of 3,3'-Azobis(6-Amino-l,2,4,5-Tetrazine)DAAT: A New Promising Nitrogen-Rich Compound[J]. Propellants, Explosives, Pyrotechnics 2002, 27: 111~118.
    17 肖鹤鸣,陈兆旭.四唑化学的现代理论[M].北京:科学出版社,2000.
    18 王欣.氮原子簇合物及蓝移氢键的量子化学研究[D].博士论文.成都:四川大学,2002.
    19 Zheng W. X., Wong N. B., Tian A. M.et al. Theoretical study of tri-s-triazine and some of its derivatives[J]. New. J. Chem. 2004, 28: 275~283.
    20 Zheng W. X., Wong N. B., Tian A. M., et al. Tri-s-triazine and Its Nitrogen Isoelectronic Equivalents: An ab Initio Study[J]. J. Phys. Chem. A 2004,108: 11721~11727.
    21 Zheng W. X., Wong N. B., Tian A. M., et al. Theoretical Study of 1,3,4,6,7,9, 9b-Heptaazaphenalene and Its Ten Derivatives[J]. J. Phys. Chem. A 2004: 108, 97~106.
    22 Zheng W. X., Wong N. B., Tian A. M. , et al. Theoretical Prediction of Properties of Triazidotri-s-triazine and Its Azido-Tetrazole Isomerism[J]. J. Phys. Chem. A 2004, 108: 840~847.
    23 Chavez D, Hiskey M, et al. The utility of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) in indoor pyrotechnics[A]. Proc. 24th International Pyrotechnics Seminar [C], July 27-31, USA: Monterey California, 1998: 161~177.
    24 Versatile Explosive[R]. Los Alamos Research Quarterly, Summer 2003.
    25 Talawar M.B., Sivabalana R., Senthilkumar N.,et al. Synthesis, characterization and thermal studies on furazan-and tetrazine-based high energy materials[J]. Journal of Hazardous Materials A113: 2004; 11~25.
    26 T. Curtius, A. Darapsky, E. Miiller, Chem. Ber. 1915, 48: 1614~1634.
    27 Jurgen Sauer, Gunther R. Pabst, Uwe Holland, et al. 3,6-Bis(2H-tetrazol-5-yl)-1,2,4,5-tetrazine: A Versatile Bifunctional Building Block for the Synthesis of Linear Oligoheterocycles[J]. Eur. J. Org. Chem. 2001: 6972706.
    28 Chavez D, Hiskey M, Naud D. Tetrazine Explosives[J]. Propellants, Explosives, Pyrotechnics, 2004, 29: 209~215.
    29 Chavez D, Hiskey M, Gilardi R. 3,3'-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High- Nitrogen Energetic Material[J]. Angew. Chem. Int. Ed. 2000, 39: 1791~1793
    30 阳世清,岳守体.国外四嗪四唑类高氮含能材料研究进展[J].含能材料,2003年,第11卷,第4期,231.
    31 董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989.
    32 Philip F. P, Gregory S. L, Alexander R. M, et al. A review of energetic materials synthesis[J]. Thermochimica Acta. 2002, 384: 187~204.
    33 Anton Hammerl, Thomas M. Klapotke, Peter Mayer,et al. Synthesis, Structure, Molecular Orbital Calculations and Decomposition Mechanism for Tetrazolylazide CHN_7, its Phenyl Derivative PhCN_7 and Tetrazolylpentazole CHN_9[J]. Propellants, Explosives, Pyrotechnics 2005, 30: 17~26.
    34 Dale R. Miller, Dale C. Swenson, and Edward G. Gillan.Synthesis and Structure of 2,5,8-Triazido-s-Heptazine: An Energetic and Luminescent Precursor to Nitrogen-Rich Carbon Nitrides[J]. J. Am. Chem. Soc. 2004, 126: 5372~5373.
    35 My Hang V. Huynh, Michael A. Hiskey, David E. Chavez, et al. Synthesis, Characterization, and Energetic Properties of Diazido Heteroaromatic High-Nitrogen C-N Compound[J]. J. Am. Chem. Soc. 2005, 127: 12537~12543.
    36 Juan Carlos Ga'lvez-Ruiz, Gerhard Holl, Konstantin Karaghiosoff, et al. Derivatives of 1,5-Diamino-1H-tetrazole: A New Family of Energetic Heterocyclic-Based Salts[J]. Inorg. Chem. 2005, 44: 4237~4253.
    37 Anton Hammerl, Thomas M. KlapOtke, Heinrich NOth, et al. [N_2H_5]_2~+[N_4C-N=N-CN_4]~2: A New High-Nitrogen High-Energetic Material[J]. Inorg. Chem. 2001, 40: 3570~3575,
    38 Thomas M. KlapOtke, Peter Mayer, Axel Schulz, et al. 1,4-Bis-[1-Methyltetrazol-5-yl]-1,4-Dimethyl-2-Tetrazene: A Stable,Highly Energetic Hexamer of Diazomethane (CH_2N_2)_6[J]. Propellants, Explosives, Pyrotechnics 2004, 29: 325~332.
    39 Parr, R. G.; Yong, W. Density-functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
    40 Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136: B864.
    41 Thomas, H. Proc. Camb. Phil. Soc. 1927, 23, 542.
    42 Fermi, E. Accad. Naz. Lincei 1927, 6, 602.
    43 Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140:A1133.
    44 Koch, W.; Holthausen, M. C. A Chemistry's Guide to Density Functional Theory. 2nd Edition. Wiley: New York, 2001.
    45 Bichelhaupt, F. M.; Baerends, E. J. In Reviews in Computational Chemistry. Vol. 15. Eds: Lipkowitz K. B.; Boyd, D. B. Wiley: New York, 2000.
    46 Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    47 Bartolotti, L. J.; Flurehiek, K. In Reviews in Computational Chemistry. Vol. 7. Eds:Lipkowitz K. B.; Boyd, D. B. Wiley: New York, 1995.
    48 Lowdin, P.O., Phys.Rev., 1955, 97, 1474.
    49 Reed, A. E., Larry A.Curtiss and Frank Weinhold, Chem.Rev., 1988,88,899.
    50 F. Jensen, Introduction to Computational Chemistry, JOHN WILEY & SONS, 1999,161.
    51 Almlof, J. and Taylor, P.R. Adv. Quantum Chem.,1991,22,301.
    52 Jensen, F. Introduction to Computational Chemistry, JOHN WILEY & SONS, 1999,229.
    53 Reed, A. E. & Weinhold, F. J. Chem. Phys.,1983,78(6),4061.
    54 Reed, A. E., Weinstock, R. B., Weinhold, F. J. Chem. Phys. 1985, 83(2), 735.
    55 Carpenter, J. E., Weinhold, F. J. Mol. Struct.(Theochem), 1988, 169, 41.
    56 Cramer, C. J. Essentials of Computational Chemistry: Theories and Models. Willy: West Sussex, England, 2002.
    57 Bader, R. F. W. Atoms in Molecules A Quantum Theory. Oxford University Press, Oxford, 1990.
    58 Bader, R.F.W.. Chem. Rev. 1991.91. 893-928
    59 万俊华,刘顺隆,杨曜根,夏允庆.流体的分子理论及性质[M],哈尔滨工程大学出版社,哈尔滨,1994年,第7章.
    60 Dixon, D. A.; Smart, B. E. Chem. Eng. Commun. 1990, 98, 173.
    61 Bingham, R. C., Dewar, M. J. S., Lo, D. H., J. Am. Chem. Soc., 1975, 97, 1285, 1294, 1302, 1307, 1311.
    62 Dewar, M. J. S., Thiel, W., J. Am. Chem. Soc., 1977, 99, 4899, 4907.
    63 Dewar, M. J. S., Zoebisch, E., Healy, E. F., Stewart, J. J. P. J. Am. Chem. Soc., 1985, 107, 3902.
    64 Stewart, J. J. P. J. Comput. Chem., 1989, 10: 209, 221.
    65 Repasky, M. P., Chandrasekhar, J., Jorgensen, W. L., J. Comput. Chem., 2002, 23: 1601.
    66 Naomi L. Haworth, Michael H. Smith, George B. Bacskay, et al. Heats of Formation of Hydrofluorocarbons Obtained by Gaussian-3 and Related Quantum Chemical Computations. J. Phys. Chem. A 2000, 104, 7600-7611.
    67 Mei-Fun Cheng, Ho-On Ho, Chow-Shing Lam, et al. Heats of formation for the boron hydrides: a Gaussian-3 study. Chemical Physics Letters 356 (2002), 109-119.
    68 Steen Hammerum. Heats of formation and proton affinities by the G3 method. Chemical Physics Letters 300 (1999), 529-532.
    69 Xue-Mei Duan, Guo-Liang Song, Zhen-Hua Li, et al. Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach. Journal of Chem. Phys., 2004, 121: 7086-7095.
    70 Hu, L. H.,wang, X.J.,Wong, L.H.,Chen, G. H.,J. Chem. Phys., 2003, 119: 11501.
    71 Politzer, P., Murray, J. S., Grice, M. E., Desalvo, M., Miller, E., Calculation of heats of sublimation and solid phase heats of formation, Mol. Phys., 1997,91 (5), 923~928.
    72 Pople, J. A.; Luke, B. T.; Frisch, M. J. and Binkley, J. S. J. Phys. Chem. 1985, 89, 2189.
    73 Curtiss, L. A.; Raghavachari, K.; Redferm, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.
    74 张宝(钅平),张庆明,黄风雷.爆轰物理学.兵器工业出版社.2001.8,156
    75 吴雄,龙新平,何碧等.VLW状态方程的回顾与展望.高压物理学报,1999,Vol.13,No.1,55-58
    76 Wu X. Detonation Performance. of Condensed Explosives Computed with the VLW EOS [A]. Proc 8th Symposium (Int) on Detonation [C]. Albuquerque, 1985.796-804.
    77 Wu X. Detonation Parameters of New Powerful Explosives Compounds Predicted with a Revised VLW EOS [A]. Proc 9th Symposium (Int) on Detonation [C]. Portland, 1989. 190-197.
    78 Hirschfelder J O, Curtiss C F, Bird R B. Molecular Theory of Gases and Liquids [M]. New York: Wiley, 1964. 157.
    79 吴雄.新型爆轰产物物态方程[J].高压物理学报,1991,Vol.5,No.2,98-103.
    80 龙新平.VLW爆轰产物状态方程及纳米级铝粉含铝炸药爆轰特性研究[D].北京:北京理工大学,1999.
    81 刘福生,陈先猛,陈攀森等.液态CO_2高温高密度状态方程研究[J].高压物理学报,1998,Vol.12,No.1,28-33.
    82 龙新平,何碧,蒋小华等.论VLW状态方程[J].高压物理学报,2003.Vol.17,No.4,247-254.
    83 邱玲,肖鹤鸣.由量子化学计算快速预测含能材料晶体密度的简易新方法-HEDM的定量分子设计[J].含能材料.2006.Vol.14,No.2,158.
    84 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    85 Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B. 1988, 37, 785.
    86 Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (THEOCHEM) 1988, 169, 41.
    87 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
    88 Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.
    89 Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    90 Nicolaides, A.; Radom, L. Mol. Phys. 1996, 88, 759.
    91 Fukui, K. Theory of Orientation and Stereoselection, Reactivity and Structure, Concepts in Organic Chemistry, Springer: Berlin, 1975; vol. 2.
    92 Salzner, U. Synth. Met. 1999, 101,482.
    93 Szabo, A.; Ostlund, N.S. Modem Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; McGrawHill: New York, 1982.
    94 Anton Hammerl, Thomas M. Klapotke, Heinrich Noth, et al. Synthesis, Structure, Molecular Orbital and Valence Bond Calculations for Tetrazole Azide, CHN_7. Propellants, Explosives, Pyrotechnics 28 (2003), No. 4,165-173.
    95 ZhouYang, Shu Yuan-Jie, Wang Xin, et al. Theoretical study of the tetrazine's C-N heterocyclic derivatives [A]. Proceeding of New Trends in Research of Energetic Materials, Pardubice, Czech Republic, April 19-21, 2006, 356-367.
    96 J.S.Murray, P.Lane, P.Politzer. Effects of Strongly Electron-Attracting Components on Molecular Surface Electrostatic Potentials: Application to Predicting Impact Sensitivities of Energetic Molecules. Mol. Phys. 1998, 93, 187.
    97 Biegler-Konig, F., Schonbohm, J., Derdau, R., Bayles, D., Bader, R. F. W. AIM2000, Version2.0, McMaster University:2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700