拟除虫菊酯类农药降解基因estA的可溶性原核表达及3-苯氧基苯甲酸的降解初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟除虫菊酯类农药是目前使用广泛的有机农药之一。3-苯氧基苯甲酸是拟除虫菊酯类农药降解的中间产物,其生物学毒性和迁移率较菊酯类农药大。我国农业生产对拟除虫菊酯农药的依赖程度与日俱增,其直接结果是导致由该农药残留及其降解产物所产生的环境问题日益严重,因此,拟除虫菊酯类农药及其降解产物的生物降解已成为环境生物技术领域的研究热点。
     本研究以课题组前期克隆得到的拟除虫菊酯类农药降解基因estA(genbank: DQ906143)为出发基因,构建诱导表达系统,获得可溶性蛋白,并通过优化发酵条件,获得具有实际应用价值相关应用参数。对于探索本实验室前期筛选所得的拟除虫菊酯降解菌4-D对该农药降解产物3-苯氧基苯甲酸降解性能的研究,为后期获得3-PBA降解相关基因及构建多降解酶基因表达载体及工程菌提供可行性论证。研究结果表明:
     成功构建重组表达载体pMAL-c2X-estA质粒并转化至宿主菌BL21(DE3),获得酯酶estA基因诱导表达系统;通过SDS-PAGE凝胶电泳、以α-乙酸萘酯为底物的酶活性检测及Western blot方法,确认外源蛋白EstA在大肠杆菌宿主菌中成功表达并具有酯酶活性;在无Ca2+参与诱导的情况下可溶性表达也能进行;菌体细胞液中含有可溶性EstA蛋白及部分不可溶的包涵体蛋白,后者为诱导表达条件的优化,奠定了基础;
     含pMAL-c2X-estA质粒的重组基因工程菌可溶性原核表达诱导条件的优化实验表明,其最佳诱导条件是:Ca2+浓度1mM,诱导初始OD600为0.7,诱导剂IPTG浓度0.1mM,诱导时pH为7,最佳诱导温度为26℃,诱导时间17.5h。优化后的酯酶酶活较未优化前可提高近2倍;
     3-苯氧基苯甲酸的降解实验表明:在使用高效液相色谱进行3-PBA检测的过程中,直接采用乙腈作为提取液,与样品以1:1比例混合均匀,经过滤处理直接上机检测,所得结果符合线性关系,且重复性好;实验室前期分离得到的一株可降解拟除虫菊酯农药的4-D菌株在12d内对250mg/L的3-苯氧基苯甲酸的降解率可达到50%。
Pyrethroid pesticide is one of the organic pesticides which are widely used at present. However, as an intermediate product in hydrolysis of the ester linkage of pyrethroid pesticide, the3-phenoxybenzoic Acid (3-PBA) has a higher biological toxicity and removal rate than the pyrethroid pesticides themselves. Along with an increasing dependence on the pyrethroid pesticides in agricultural pest control in China, the pyrethroid pesticides and its metabolite3-phenoxybenzoic acid (PBA) have exerted critical biological impacts on the environment. The biodegradation of pyrethroids and3-PBA, therefore, is becoming a hotspot in the research of environment biotechnology.
     In this paper, we construct an expression system by ligating the esterase gene estA (genbank:DQ906143) for pyrethroid pesticides degradation to obtain the soluble protein. In addition, the correlation application parameters are achieved by optimizing the expression conditions. Moreover, the research of the capacity of4-D strain being capable of degrading pyrethroids pesticides degrading3-PBA provides a feasibility argumentation for obtaining3-PBA degradation gene and constructing expression vectors as well as genetic engineering bacteria with multiple degradation enzyme gene. The main results of the work in this paper are as followed:
     The recombinant expression vector pMAL-c2X-estA plasmid is constructed and transformed into the host strain BL21(DE3) successfully, which leads to the acquirement of esterase estA gene inducible expression system. Via the SDS-PAGE gel electrophoresis, the enzyme activity assay using the a-naphthyl acetate as substrate and Western blot method, it is confirmed that the target protein EstA in Escherichia coli host strains expressed successful and has a esterase activity as same as in the absence of Ca2+. Besides, the cell liquid contains soluble EstA protein and some insoluble inclusion body protein, which provides the possibility for the optimization of induction and expression condition.
     The optimization of the soluble prokaryotic expression conditions for genetic engineering strain indicates the optional expression condition:the incubation temperature is26℃; the initial OD value of cell concentration is0.7; the concentration of IPTG is0.1mM; the induction time is17.5h. As a result, double expressed protein can be obtained under the optimal condition.
     The3-PBA degradation experiment shows that in the process of testing the content of3-PBA by high performance liquid chromatography(HPLC), the results conform to be linear and have a good repeatability by using acetonitrile as the extraction reagent while the ratio of acetonitrile and sample being1:1. Moreover, strain4-D is able to degrade50%of250mg/L3-PBA within12d.
引文
[1]余慧群,廖艳芳,周海等.拟除虫菊酯杀虫剂研究进展.企业科技与发展.2010,20,46-49.
    [2]李海屏.虫剂新品种开发进展及特点[J].苏化工,2004,32(1):6-11.
    [3]王兆守,李顺鹏.虫菊酯类农药微生物降解研究进展[J].土壤,2005,37(6):577-580.
    [4]刘延凤,杨敏娜,刘亚子等.菊酯类农药酶联免疫吸附测定研究进展[J].环境科学与技术,2006,29(4):100-102.
    [5]Fei J, Qua J H, Ding X L, et al.Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles [J].Toxicology,2010,267:1-6.
    [6]Shukla Y, Yadav A, Arora A. Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin [J].Cancer Letters,2002,182:33-41.
    [7]杨健,陈高红,彭颖等.拟除虫菊酯类农药中毒的诊疗现状.检验医学与临床,2011,8(16),2000-2001
    [8]H.P.M. Vijveberg, J.M.van der Zalm and J.Van der Berchen:Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves[J]. Nature,1982,295: 601-603.
    [9]D.E. Ray and J.R.Fry:A reassessment of the neurotoxicity of pyrethroid insesticides[J]. Pharmacol. Ther.2006,111:174-193.
    [10]Halden RU, Tepp SM, Halden BG, et al. Degradation of 3-PhenoXybenzoic acid in soil by Pseudom onas Pseudoalcaligenes POB310(POB) and two modified Pseudomonas strains[J]. Applied and Environmental Microbiology,1999,65(8):3354-3359.
    [11]许育新,李晓慧,秦华,等.3-苯氧基苯甲酸降解菌的分离及降解特性研究[J].微生物学通报,2005,32(5):62-67.
    [12]Sun H, Xu XL, Xu LC, et al. Antiandrogenic activity of Pyrethroid pesticides and their metabolite in reportergene assay[J].ChemosPhere.2007,66:474-479.
    [13]谢文军,周健民,王火焰,等HPLC法测定土壤中3-苯氧基苯甲酸[J].农业环境科学学报,2007,26(2):608-611.
    [14]赵楠,刘书亮,赖文,袁怀瑜HPLC-UV法测定微生物降解体系中3-苯氧基苯甲酸含量.食品科学,2011,14(32),181-184.
    [15]ANGERER J, RITTER A. Determination of metabolites of pyrethroids in human urine using solid-phase extraction and gas chromatography-mass spectrometry[J].J Chromatogr B:Biomed Sci Appl,1997,695(2):217-226.
    [16]LENG G, KUHN K H, LENG A, et al. Determination of trace levels of pyrethroid metabolites in human urine by capillary gas chromatography-high resolution mass spectrometry with negative chemical ionization[J].Chromatographia,1997,46(5):265-274.
    [17]LENG G,GRIES W.Simultaneous determination of pyrethroid and pyrethrin metabolites in human urine by gas chromatography-high resolution mass spectrometry[J].J Chromatogr B,2005,814(2):285-294.
    [18]OLSSON A O, BAKER S E, NGUYEN J V, et al. Liquid chromatogra-phy-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides,synthetic pyrethroids, selected herbicides,and DEET in human urine[J].Anal Chem,2004,76(9):2453-2461.
    [19]BAKER S E, OLSSON A O, BARR D B, et al.Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides [J]. Arch Environ Con Tox,2004,46(3):281-288.
    [21]虞云龙,陈鹤鑫,樊德方,盛国英,傅家谟.拟除虫菊酯类杀虫剂的酶促降解.环境科学,1998,19(3):66-69.
    [22]洪永聪,辛伟,崔德杰,胡方平.蜡状芽孢杆菌菌株TR2的氯氰菊酯降解酶特性.青岛农业大学学报(自然科学版),2007,24(3):185-188.
    [23]徐莲,张丽萍,刘怡辰,等.功夫菊酯降解菌GF-3的筛选鉴定及其降解特性研究[J].农业环境科学学报,2009,28(7).
    [24]Peng Guo, Baozhan Wang, BaoJian Hang, et al. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation 63 (2009) 1107-1112.
    [25]Yi Zhai, Kang Li, Jinlong Song, et al. Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. Journal of Hazardous Materials 221-222 (2012) 206-212.
    [26]Paingankar M, Jain M, Deobagkar D. Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp.. Biotechnology Letters,2005,27(23/24):1909-1913
    [20]Maloney S E, Maule A, Smith A R W.Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J].Applied and Environmental Microbiology,1993,59:2007-2013.
    [27]haohua Chen, Qiongbo Hu, Meiying Hu, et al. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology,2011,102, 8110-8116.
    [28]段晓芹,郑金伟,张隽等.3-PBA降解菌BA3的降解特性及基因工程菌构建.环境科学,2011,32(1),240-242.
    [29]haohua Chen, Meiying Hu, Jingjing Liu, Guohua Zhong, Liu Yang, et al. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials,2011,187:433-440.
    [30]许育新,李晓慧,秦华,等.3-苯氧基苯甲酸降解菌的分离及降解特性研究[J].微生物学通报,2005,32(5):62-67.
    [31]EngesserKH, Fietz W, Fischer P, et al.2-dihydroxy-4-earboxybenzophenone as evidence for initial 1,2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation[J]. FEMS Mierobiology Letters,1990,69(3):317-321.
    [32]夏闻,姚开,贾冬英,刘书亮.3-苯氧基苯甲酸降解酶产生条件的优化.食品工业科技,2009,30(10),181-183.
    [33]Nuc P, Nuc K. Recombinant protein production in Escherichia coli [J]. Postepy Biochem,2006,52 (4):448-456.
    [34]Baneyx F:Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 1999,10:411-421.
    [35]Goulding CW, Perry LJ:Protein production in Escherichia coli for structural studies by X-ray crystallography. J Struct Biol 2003,142:133-143.
    [36]Koehn J, Hunt I. High-throughput protein production (HTPP):a review of enabling technologies to expedite protein production. Methods Mol Biol 2009;498:1-18.
    [37]Gordon E, Horsefield R, Swarts HGP, De Pont JJHHM, Neutze R, Snijder A. Effective high throughput overproduction of membrane proteins in Escherichia coli. Protein Expr Purif 2008;62:1-8.
    [38]戎晶晶等.大肠杆菌表达系统的研究进展[J].药物生物技术2005,12(6):416-420.
    [39]谢磊,孙建波,张世清,黄俊生.大肠杆菌表达系统及其研究进展[J].华南热带农业大学学报,2004,10(2):16-19.
    [40]Makride S C. Strategies for achieving high-level expression of genes in E scherich ia coli. Microbiological Reviews,1996,60(3):512-538.
    [41]Kapust RB, Waugh DS:Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 1999, 8:1668-1674.
    [42]Nygren PA, Stahl S, Uhlen M:Engineering proteins to facilitate bioprocessing. Trends Biotechnol,1994,12:184-188.
    [43]Hammarstrom M, Hellgren N, van Den Berg S, Berglund H, Hard T:Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 2002,11:313-321.
    [44]Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J:Production of soluble mammalian proteins in Escherichia coli:identification of protein features that correlate with successful expression. BMC Biotechnol 2004,4:32.
    [45]Kataeva I, Chang J,Xu H, Luan CH,Zhou J, Uversky VN,Lin D, Horanyi P, Liu ZJ, Ljungdahl LG et al. Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Escherichia coli. J Proteome Res 2005,4:1942-1951.
    [46]Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. Production of soluble mammalian proteins in Escherichia coli:identification of protein features that correlate with successful expression. BMC Biotechnol,2004,4:32.
    [47]Busso D, Delagoutte-Busso B, Moras D. Construction of a set gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem,2005,343:313-321.
    [48]Braud S, Moutiez M, Belin P, Abello N,Drevet P, Zinn-Justin S, Courcon M,Masson C,Dassa J, Charbonnier JB et al. Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins. J Proteome Res,2005,4:
    [49]Dummler A, Lawrence AM, de Marco A:Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 2005,4:34.
    [50]Schrodel A, Volz J, de Marco A:Fusion tags and chaperone co-expression modulate both the solubility and the inclusion body features of the recombinant CLIPB14 serine protease. J Biotechnol 2005,120:2-10.
    [51]Nallamsetty S, Waugh DS:Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 2006,45:175-182.
    [52]Fox JD, Waugh DS:Maltose-binding protein as a solubility enhancer. Methods Mol Biol 2003,205:99-117.
    [53]Nygren PA, Stahl S, Uhlen M:Engineering proteins to facilitate bioprocessing. Trends Biotechnol 1994,12:184-188
    [54]LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM:A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (NY) 1993,11:187-193.
    [55]Davis GD, Elisee C, Newham DM, Harrison RG:New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 1999,65:382-388.
    [56]Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR:Comparison of SUMO fusion technology with traditional gene fusion systems:enhanced expression and solubility with SUMO. Protein Sci 2006,15:182-189.
    [57]Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P:Protein aggregation during overexpression limited by peptide extensions with large net negative charge.Protein Expr Purif 2004,36:207-216.
    [58]Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL: Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 2002,26:218-228.
    [59]Chatterjee DK, Esposito D:Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 2006,46:122-129.
    [60]Bao WJ, Gao YG, Chang YG, Zhang TY, Lin XJ, Yan XZ, Hu HY:Highly efficient expression and purification system of smallsize protein domains in Escherichia coli for biochemical characterization. Protein Expr Purif 2006,47:599-606.
    [61]Cheng Y, Patel DJ:An efficient system for small protein expression and refolding. Biochem Biophys Res Commun 2004,317:401-405.
    [62]Zhao Y, Benita Y, Lok M, Kuipers B, van der Ley P, Jiskoot W, Hennink WE, Crommelin DJ, Oosting RS:Multi-antigen immunization using IgG binding domain ZZ as carrier. Vaccine 2005,23:5082-5090.
    [63]Stader J A, Silhavy T J. Engineering Escherichia coli to secret heterologous gene products. Methods in Enzymol,1990,185:166-187.
    [64]Deuerling E, Patzelt H, Vorderwulbecke S et al (2003) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317-1328
    [65]Nishihara K, Kanemori M, Yanagi H et al (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884-889.
    [66]Ehrnsperger M, Graber S, Gaestel M et al (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221-229
    [67]Veinger L, Diamant S, Buchner J et al (1998) The small heatshock protein IbpB from Escherichia coli stabilize stress-denatured proteins for subsequent refolding by a multi-chaperone network. J Biol Chem 273:11032-11037
    [68]Hu X, O'Hara L, White S et al (2007) Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support. Protein Expr Purif 52:194-201
    [69]Kondo A, Kohda J, Endo Y et al (2000) Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J Biosci Bioeng 90:600-606
    [70]Xu Y, Hsieh MY, Narayanan N et al (2005) Cytoplasmic overexpression, folding, and processing of penicillin acylase precursor in Escherichia coli. Biotechnol Prog 21:1357-1365
    [71]Kitagawa M, Miyakawa M, Matsumura Y et al (2002) Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem 269:2907-2917
    [72]Kuczynska-Wisnik D, Kedzierska S, Matuszewska E et al (2002) The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology 148:1757-1765
    [73]Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083-28086
    [74]Thomas JG, Baneyx F (2000) ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol Microbiol 36:1360-1370
    [75]Zavilgelsky GB, Kotova VY, Mazhul MM et al (2002) Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Biochemistry (Mosc) 67:986-992
    [76]Mona Alibolandi, Hasan Mirzahoseini, Farzaneh Moshtaghi Nehi, Golnaz Tabatabaian, Hossein Amini and Soroush Sardari. Improving recombinant protein solubility in Escherichia coli:Identification of best chaperone combination which assists folding of human basic fibroblast growth factor. African Journal of Biotechnology.2010.;9(48); 8230-8239.
    [77]Andersen CL, Matthey-Dupraz A, Missiakas D et al (1997) A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol 26:121-132
    [78]Liu X, Wang CC (2001) Disulfide-dependent folding and export of Escherichia coli DsbC. J Biol Chem 276:1146-1151
    [79]Kurokawa Y, Yanagi H, Yura T (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfidebonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol 66:3960-3965
    [80]Kurokawa Y, Yanagi H, Yura T (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of humannerve growth factor in Escherichia coli. J Biol Chem 276:14393-14399
    [81]Nguyen VDHF, Salo KE, Enlund E, Zhang C, Ruddock LW:Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli.Microb Cell Fact 2011,10(1):1.
    [82]Hatahet FNV, Salo KE, Ruddock LW:Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb Cell Fact 2010, 13(9):67.
    [83]Picaud S, Olsson ME, Brodelius PE (2007) Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Protein Expr Purif 51:71-79.
    [84]Neubauer A, Soini J, Bollok M et al (2007) Fermentation process for tetrameric human collagen prolyl 4-hydroxylase in Escherichia coli:improvement by gene optimisation of the PDI/beta subunit and repeated addition of the inducer anhydrotetracycline. J Biotechnol 128:308-321
    [85]Saejung W, Puttikhunt C, Prommool T et al (2006) Enhancement of recombinant soluble dengue virus 2 envelope domain III protein production in Escherichia coli trxB and gor double mutant. J Biosci Bioeng 102:333-339.
    [86]Ferrer, M, Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. and Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures.(2003) Nat Biotechnol. 21(11):1266-7.
    [87]Koehn J, Hunt I. High-Throughput Protein Production (HTPP):A Review of Enabling Technologies to Expedite Protein Production. Methods Mol Biol.2009;498:1-18.
    [88]Vera A, Gonzalez-Montalban N, Aris A et al (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101-1106
    [89]Chesshyre JA, Hipkiss AR (1989) Low temperatures stabilize interferon a-2 against proteolysis in Methylophilus methylotrophus and Escherichia coli. Appl Microbiol Biotechnol 31:158-162
    [90]Niiranen L, Espelid S, Karlsen CR et al (2007) Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli. Protein Expr Purif 52:210-218.
    [91]Ferrer M, Chernikova TN, Yakimov MM (2003) Chaperons govern growth of Escherichia coli at low temperature. Nat Biotechnol 21:1266-1267
    [92]Hunke S, Betton JM. Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli.Mol Microbiol.2003,50:1579-1589
    [93]Spiess C,Beil A,Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 1999,97:339-347.
    [94]Bruser T, Yano T, Brune DC et al (2003) Membrane targeting of a folded and cofactor-containing protein. Eur J Biochem 270:1211-1221
    [95]Apiyo D, Wittung-Stafshede P (2002) Presence of the cofactor speeds up folding of Desulfovibrio desulfuricans flavodoxin. Protein Sci 11:1129-1135
    [96]李会成.基因工程菌的发酵研究[J].生物工程进展.1997,17:40-43.
    [97]pET System Manual,8th ed.,1999 (Novagen).
    [98]LI Gang, WANG Kui, LIU Yuhuan, Molecular cloning and characterization of a novel pyrethroid-hydrolying esterase originating from the metagenome [J]. Microb. Cell Fact. 2008,7(38).
    [99]余波,程安春,汪铭书.大肠杆菌中重组蛋白可溶性表达的研究进展及展望[J].黑龙江畜牧兽医,2008,10:19-21.
    [100]谢磊,孙建波,张世清,黄俊生.大肠杆菌表达系统及其研究进展[J].华南热带农业大学学报,2004,10(2):16-19.
    [101]K.Kuwahara, C.Angkawidjaja, H.Matsumura, et al.Importance of the Ca-binding sites in the N-catalytic domain of a family 1.3 lipase for activity and stability.Protein Engineering, Design&Selection,2008,21(12):737-744.
    [102]许玮.拟除虫菊酯农药降解基因的表达,纯化及活性分析[D].北京:中国农业科学院.
    [103]Jesu Arockiaraj, Sarasvathi Easwvaran, Puganeshwaran Vanaraja, et al. Effect of infectious hypodermal and haematopoietic necrosis virus(IHHNV) infection on caspase 3c expression and activity in freshwater prawn Macrobrachium rosenbergii[J]. Fish&Shell fish Immunology,2012:32:161-169.
    [104]Celina de Pieri, Leila M.Beltramini, Heloisa S, et al. Overexpression,purification,and biochemical characterization of GumC,an enzyme involved in the biosynthesis of exopolysaccharide by Xylella fastidiosa. Protein Expression and Purification, 2004:34:223-228.
    [105]Joao Renato C.Muniz, Claudia A.Alves, Celina de Pieri, et al. Overexpression, purification, biochemical characterization, and molecular modeling of recombinant GDP-mannosyltransferase(GumH) from Xylella fastidiosa. Biochemical and Biophysical Research Communications,2004:315:485-492.
    [106]FANG Fu-gui, YANG Ya-ping, LIU Ya, et al. Immunization of Male Mice with a New Recombinant GnRH Fusion Protein Reduces the Testicular Function. Agricultural Sciences in China,2009,8(3):380-385.
    [107]Vasina JA, Baneyx F. Expression of aggregation prone recombinant proteins at low temperatures:a comparative study of the Escherichia coli cspA and tac promoter systems.Protein Expr Purif 1997,9:211-218.
    [108]Weickert MJ, Doherty DH, Best EA,OIins PO. Optimization of heterologous protein production in Escherichia coli.Curr Opin Biotechnol 1996,7:494-499.
    [109]Hunke S, Betton JM. Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli.Mol Microbiol.2003,50:1579-1589.
    [110]Spiess C,Beil A,Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 1999,97:339-347.
    [111]Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. and Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures.(2003) Nat Biotechnol. 21(11):1266-7.
    [112]pET System Manual,8th ed.,1999 (Novagen).
    [113]许崇利,杨梅,许崇波.大肠杆菌表达系统的影响因素[J].中国动物检疫,2010,27(8):66-67.
    [114]Edward ToPP, Aklltar MH. Identifieation and charaeterization of a Pseudomonas strain capable of metabolizing Phenoxybenzoates[J]. Applied and Environmental Microbiology, 1991,57(5):1294-1300.
    [115]Dehmel U, Engesser k H, Timmis K N, et al. Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Arch of Microbiol, 1995,163:35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700