煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,受热面沾污结渣一直是困扰燃煤锅炉而未能得到妥善解决的国际性难题之一,极大地威胁着锅炉的安全、经济运行及设备的可靠性。矿物质是引起灰沉积的根本原因,本文主要通过对矿物元素在炉内的迁移和沉积行为的研究,来揭示沾污结渣机理。Na、Fe、Ca是导致灰沉积的重要矿物元素,因此,在燃料的选择上充分考虑了代表性,以含Na很高的新汶黑液水煤浆等五种在煤质组成和熔融温度方面都极具代表性的煤和煤浆为研究对象,因而本文的研究具有一定的普遍意义。
     本文研究的重点之一是黑液水煤浆的燃烧特性和沾污结渣特性,目的是考察其工业应用的可行性及潜在问题。热天平机理实验、试验炉中试试验及工业炉应用试验结果都表明,黑液浆粘度低,具有良好的流动、雾化性能,加上含有大量的木质素和Na基化合物等有机成分,因而容易着火,燃烧稳定、良好,烟气中NOx、SO_2含量及烟尘浓度都远低于常规浆和制浆原煤,因此,黑液水煤浆具有显著的经济效益和环保效益,应用前景广阔。
     然而,黑液浆中的Na易带来受热面的沾污结渣。烧结试验结果表明,黑液浆具有很强的烧结特性,初始烧结温度很低,仅700℃左右。在沾污结渣机理方面,通过灰污热流探针、炉内颗粒取样及电子探针等多种创新性手段和方法,对煤和黑液水煤浆的灰沉积机理及动态过程进行了深入的研究。如采用带有能谱仪的扫描电镜,分析比较了炉内空间中心颗粒、近壁颗粒、炉壁渣中颗粒及尾部烟道飞灰颗粒的形貌和元素含量,研究了灰粒中矿物质的迁徙和沉积特性。结果表明,沾污结渣与燃料自身特性有直接关系,Na是造成黑液水煤浆积灰结渣严重的根本原因,Na无论是在初始层还是整个灰渣中的含量都很高,从而引起灰渣层中Si和Al具有几乎完全相同的分布规律,绝大部分Si、Al与Na结合在一起生成了低熔点的霞石等铝硅酸钠盐,黑液浆初始层中Fe的富集不明显。Si、Al、Fe、Ca是造成煤灰结渣的主要矿物元素,在灰沉积物中Fe的富集明显,Fe、Ca对结渣可能起着协同机理作用。研究结果还表明,积灰和结渣在机理上存在很大的不同,积灰沉积物中基本上没有出现Fe的富集,其含量远低于结渣沉积物,而Na、Ca含量则比结渣沉积物中高,表明高温环境有利于Fe的沉积,而较低的受热面温度则对烟气中挥发性碱金属和碱土金属蒸气的凝结有利。
     最后,对现有的结渣评判模型进行了改进,提出了将综合指数R纳入评判因素集以此来预测和判别燃煤结渣倾向的五因素模型,以及适用于切圆燃烧锅炉结渣特性评判的七因素模型。通过可靠性校验,表明此新模型具有更高的准确性,并在VB环境下开发了程序化实现沾污结渣评判的用户界面。
For a long time, fouling and slagging is one of the international problems which puzzles boiler whereas not found adequate solution. It endangers boiler's security, economical operation and equipment reliability. Mineral substance in coal is the primary cause giving rise to ash deposition. In order to reveal mechanism of fouling and slagging, mineral elements' migration and deposition behaviour at furnace are investigated in this paper. Sodium, ferrumiron, calcium are the important mineral elements causing ash deposition, accordingly, deliberate consideration is made in selecting trial fuels, Xinwen black liquor coal water slurry which contains plenty of sodium and other four fuels are chosen investigation objects. These fuels have good representativeness both in coal quality composition and ash fusing temperature. Consequently, the investigation in this paper is possessed of some general sense.One of the investigation emphases is black liquor coal water slurry' s combustion characteristics and fouling/slagging performance, aim at surveying its industrial application feasibility and potential problems. The results of thermobalance mechanism experiment, trial furnace pilot plant and industrial furnace application test show, black liquor slurry's viscosity is low, with favorable performance of flow and sprayability. It contains some organic constituents such as lignin, sodium-group compound. As a result, black liquor slurry is easy to fire. It have good quality of flameholding, but also its nitrogen oxide, sulfur dioxide, and flue dust contents are far lower than the coal- water slurry and raw coal. Accordingly, black liquor coal water slurry is possessed of notable economic benefits, environmental benefits and amplitude potential application.Yet, the sodium included in black liquor slurry is amiable to bring about fouling and slagging in heat transfer surface. The sintering test result show black liquor slurry is in possession of very predominant sintering performance, its initial sintering temperature is very low, only about 1073K. In the aspects of foul ing and slagging mechanism, a few innovative instruments and methods are employed to investigate the ash deposition mechanism and dynamic processes in detail, such as heat flux probe, particle sampling along the flue travel and electron probe microanalyzer, et al. For example, scanning electron microscope with energy spectrometer is adopted to analyze and compare the feature and mineral element content of the center grains, near wall grains, grains in wall slags and fly ash grains in chimney. The migration and deposition performance of the mineral substance contained in ash particle are looked into. The results indicate that fouling and slagging have direct relation with fuel self- performance. Sodium is the primary cause of the severe
    
    fouling and slagging condition in the black I iquor coal water slurry-fired boiler. Its contents both the inial layer and who I ly slags are very high, as a result gave rise to silicium distribution in good agreement with aluminium in ash layer, by reacting with sodium most silicium and aluminium form aluminosiIicate, such as nepheline, whose fusing temperature is very low. The ferr urn iron enrichment is not apparent in the deposit initial layer of black liquor slurry. Silicium, aluminium, ferrumiron, calcium is the essential mineral elements causing coal ash deposition. Ferrumiron enrichment phenomenon is very evident in ash deposits. Ferrumiron and calcium plays synergism roles during the formation of slagging likelihood. The findings also show, the fouling mechanism is much different from slagging. The ferrumiron enrichment doesn't appear in the fouling deposits, thereof contents far less than in slagging deposits, whereas sodium and calcium contents higher than in slag deposits, which shows high temperature environment is in favor of ferrumiron deposition, however lower heating surface temperature is favorable to the coagulation of volati le alka I i and alka I ine earth metal vapor.In conclusion, the present slagging judgement mod
引文
[1] 岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [2] 岑可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利电力出版社,1987.
    [3] 孙亦騄.煤中矿物杂质对锅炉的危害[M].北京:水利电力出版社,1994.
    [4] 马湘勇.锅炉结渣的原因分析及防治对策[J].华北电力技术,1998,(6):1-5.
    [5] 杨卫娟.电站锅炉变负荷引起的水冷壁渣层热应力和吹灰在线模糊优化运行的基础理论研究[D].浙江大学博士学位论文,杭州:2003.6.
    [6] 撒应禄.锅炉受热面外部过程[M].北京:水利电力出版社,1994.
    [7] 兰泽全,曹欣玉,赵显桥,饶甦,周俊虎,岑可法.煤粉炉沾污结渣防治措施探讨[J].锅炉技术,2003,34(3):61-65,69.
    [8] 陈志国,华永明,盛昌栋,等.硫铁矿颗粒在炉内运动数值模拟及对结渣的影响[J].燃烧科学与技术,2001(2):132-134.
    [9] 郑楚光,王伯春,晏蓉.灰炱的形成和沉积及其模拟计算[J].华中科技大学学报,1993,A10(0):99-105.
    [10] Ritva Heikkinen, Risto S. Laitimen, Tapio Patrikainen. Slagging tendency of peat ash[J]. Fuel Processing Technology 56(1998): 69-80.
    [11] H. R Rezaei, R. P. Gupta, C. W. Bryant. Thermal conductivity of coal ash and slags and models used[J]. Fuel 79(2000):1697-1710.
    [12] Simon P. Hanson and Murray F. Abbott. Furnace water-wall slag deposition testing in a 0.5Mw combustion pilot plant[J]. Prog. Energy Combust. Sci., 1998(24):503-511.
    [13] John P. Hurley, Jan W. Nowok, Jay A. Bieber. Strength development at low temperatures in coal ash deposits[J]. Prog. Energy Combust. Sci., 1998(24):513-521.
    [14] F. wigley, J. Willianson, A. R. Jones. Slagging indices for UK coals and their relationship with mineral matter[J]. Fuel Processing Technology 24(1990):383-389.
    [15] R. P. Gupta, X. He, R.Ramaprabhu. Excluded/included mineral matter and its size distribution relative significance on slagging and fouling characteristics[C]. Proc. Of the EFC, Waterville Valley, NH, USA, July 16-22,1995.
    [16] L. E. Bool, T. W. Peterson, O. L. Wendt. The partitioning of iron during the combustion of pulverized coal[J]. Combustion Flame 100(1995):262-270.
    [17] G. Bergeles, D. Bouris, M. Yianneskis. Effects of fouling on the efficiency of heat exchangers in lignite utility boilers[J]. Applied Thermal Engineering, 1997,17(8-10):739-749.
    [18] D. Bouris and G. Bergeles. Particle-surface interactions in heat exchanger fouling[J]. Fluids Eng. 118,574-581(1996).
    
    [19] T. F. Wall, R. A. Creelman, R. P. Gupta. Coal ash fusion temperatures-new characterization techniques, and implications for slagging and fouling[J]. Prog. Energy Combust. Sci.,1998(24):345-353.
    [20] Nigel V. Russell, Fraser Wigley, Jim Willianson. The roles of lime and iron oxide on the formation of ash and deposits in PF combustionfJ]. Fuel 81(2002):673-681.
    [21] S. K. Gupta, T. F. Wall. R. A. Creelman. Ash fusion temperatures and the transformations of coal ash particles to slag[J]. Fuel Processing Technology 56(1998):33-43.
    [22] R. P. Gupta, T. F. Wall, I. Kajigaya. Computer-controlled scanning electron microscopy of minerals in coal - implication for ash deposition[J]. Prog. Energy Combust. Sci.,1998(24):523-543.
    [23] Nigel V. Russell, Lily B. Mendez, Fraser Wigley. Ash deposition of a Spanish anthracite: effects of included and excluded mineral matter[J]. Fuel 81(2002): 657-663.
    [24] L. Yan, R. P. Gupta, T. F. Wall. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverized coal combustion[J]. Fuel 80(2001): 1333-1340.
    [25] A. Valero and C. Cortes. Ash fouling in coal-fired utility boilers: Monitoring and optimization of on-load cleaniftg[J]. Prog. Energy Combust. Sci., 1996(22): 189-200.
    [26] L. Y. Huang, J. S. Norman, M. Pourkashanian and A. Williams. Prediction of ash deposition on superheater tubes from pulverized coal combustion[J]. Fuel, 1996,75(3):271-279.
    [27] L. Yan, R. P. Gupta, T. F. Wall. A mathematical model of ash formation during pulverized coal combustion[J]. Fuel 81(2002): 337-344.
    [28] T. A. Erickson, S. E. Allan, J. P. Hurley. Modelling of fouling and slagging in coal-fired utility boilers[J]. Fuel Processing Technology 44(1995):155-171.
    [29] F. Wigley and J. Williamson. Modelling fly ash generation for pulverized coal combustion[J].Prog. Energy Combust. Sci., 1998(24):337-343.
    [30] F. C. C. Lee, F. C. Lockwood. Modelling ash deposition in pulverized coal-fired application[J]. Prog. Energy Combust. Sci., 1999(25): 117-132.
    [31] N. Afgan, M. G. Carvalho, P. Coelho. Concept of expert system for boiler fouling assessment[J]. Applied Thermal Engineering 16(10),1996: 826-844.
    [32] N. Martins, M. G. Carvalho, N. Afgan, A. I. Lenotiev. A radiation and convection fluxmeter for high temperature applications[J]. Experimental Thermal and Fluid Science 22(2000):165-173.
    [33] B. Brajuskovic, M. Matovic and N. Afgan. A heat flux-meter for ash deposit monitoring systems-1. Ash deposit prevention. Int. J. Heat Mass Transfer 34(9),1991: 2291-2303.
    
    [34] B. Brajuskovic and N. Afgan. A heat flux-meter for ash deposit monitoring systems-2. "Clean" flux-meter characteristics. Int. J. Heat Mass Transfer 34(9),1991: 2303-2315.
    [35] A. Paist, A. Poobus, T. Tiikma. Probes for measuring heat transfer parameters and fouling intensity in boilers[J].Fuel 81(2002):1811-1818.
    [36] H.B. Vuthaluru. Remediation of ash problems in pulverized coal-fired boilers[J]. Fuel 78(1999):1789-1803.
    [37] H. B. Vuthaluru, T. F. Wall. Ash formation and deposition from a Victorian brown coal-modelling and prevention[J]. Fuel Processing Technology 53(1998): 215-233.
    [38] K. B. QUAST. Technical note: Counter-current ion exchange for the removal of organically bound sodium from low-rank coals[J]. Minerals Engineering 13(13), 2000:1423-1428.
    [39] H. B. Vuthaluru, G Domazetis, T. F. Wall, J. M. Vleeskens. Reducing fly ash deposition by pretreatment for brown coal: effect of alminium on ash character[J]. Fuel Processing Technology 46( 1996): 117-132.
    [40] H. B. Vuthaluru, J. M. Vleeskens, T. F. Wall. Reducing fouling from brown coals by sodium-binding additives[J].FueI Processing Technology 55(1998):161-173.
    [41] Harry M. ten Brink, Simon Eenkhoom and Gerrit Hamburg. A mechanistic study of the formation of slags from iron-rich coals[J]. Fuel 75(8),1996: 952-958.
    [42] P. N. Slater, G H. Richards, J. N. Harb. Pyrite and illite associations in two eastern US bituminous coals[J]. Fuel Processing Technology 44(1995): 55-69.
    [43] M.C. Mayoral, M. T. Izquierdo, J. M. Andrews, B. Rubio. Mechanism of interaction of pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion[J].Thermochimica Acta 390(2002): 103-111.
    [44] Karin Laursen, Flemming J. Frandsen. Iron-sulfide crystals in probe deposits[J]. Fuel Processing Technology 58(1998): 45-59.
    [45] R. W. Bryers. The physical and chemical characteristics of pyrite and their influence on fireside problems in steam generators[J]. Journal of Engineering for Power 98(1978):517-527.
    [46] S. Srinivasachar, J. J. Helble, A. A. Boni. Mineral behavior during coal combustion: 1.Pyrite transformations^]. Prog. Energy. Combust. Sci., 16(1990): 281-292.
    [47] H. M. ten Brink, J. P. Smart, J. M. Vleeskens, J. Williamson. Flame transformations and burner slagging in a 2.5 MW furnace firing pulverized coal: 1. Flame transformations[J]. Fuel 73(11), 1994:1706-1711.
    [48] H. M. ten Brink, J. P. Smart, J. M. Vleeskens, J. Williamson. Flame transformations and burner slagging in a 2.5 MW furnace firing pulverized coal: 2. Slagging[J]. Fuel 73(11), 1994:1712-1717.
    
    [49] R. W. Bryers. Fireside slagging, fouling and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Prog. Energy. Combust. Sci., 22(1996):29-120.
    [50] L. C. Ram, P. S. M. Tripathi, S. P. Mishra. Mossbauer spectroscopic studies on the transformations of iron-bearing minerals during combustion of coals:Correlation with fouling and slagging[J]. Fuel Processing Technology 42(1995):47-60.
    [51] S. Su, J. H. Pohl, D. Holcombe. Slagging propensities of blended coals[J]. Fuel 80(2001):1351-1360.
    [52] Ch. Goni, S. Helle, X. Garcis, et al. Coal blend combustion:fusibility ranking from mineral matter composition[J]. Fuel 82 (2003): 2087-2095.
    [53] Baxter, L.L.. Ash deposition during biomass and coal combustion, a mechanistic approach[J]. Biomass and Bioenergy, 1993,(4)2:85-102.
    [54] Lawrence A Ruth. Energy from municipal solid waste:a comparison with coal technology[J]. Prog Energy Combust Sci, 1998,24(2):545-564.
    [55] J.R. Fan, X.D. Zha, P. Sun et al. Simulation of ash deposit in a pulverized coal-fired boiler[J]. Fuel 80(2001):645-654
    [56] Zhou Hao, Cen Kefa, Sun Ping. Prediction of ash deposition in ash hopper when tilting burners are used[J]. Fuel Processing Technology 79(2002):181-195.
    [57] Ying Xie, Wei Xie, Wei-Ping Pan. A study of ash deposits on the heat exchange tubes using SDT/MS XRD techniques[J]. Themochimica Acta 324(1998): 123-133.
    [58] Huafeng Wang, John N. Harb. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal[J]. Prog. Energy Combust. Sci., 1997, 23: 267-282.
    [59] Stanislav V. Vassilev, Kunihiro Kitano, Shohei Takeda. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology 45(1995):27-51.
    [60] H. Kahraman, A. P. Reifenstein, C. D. A. Coin. Correlation of ash behaviour in power stations using the improved ash fusion test[J]. Fuel 78(1999):1463-1471.
    [61] T. F. Wall, S. P. Bhattacharya, L. L. Baxter. The character of ash deposits and the thermal performance of furnaces[J]. Fuel Processing Technology 44(1995):143-153.
    [62] Larry L. Baxter. Influence of ash deposit chemistry and structure on physical and transport properties[J]. Fuel Processing Technology 56(1998):81-88.
    [63] 盛昌栋,华永明,周强泰.煤中FeS_2和含铁粘土矿物在锅炉结渣过程中的作用[J].燃 烧科学与技术,1999,5(3):246-250.
    [64] 陈志国,华永明,盛昌栋.黄铁矿在炉内结渣中所起作用的数值研究.锅炉技术,1999,30(12):9-11,14.
    [65] 杨志忠.高钙劣质煤矿物的炉内特性机理研究[J].电站系统工程,1995,11(5):56-60.
    
    [66] Benson SA, Steadman EN, Zygarlicke CJ, Erickson TA. In: Baxter L, DeSollar R, editors. Application of Advanced Technology to Ash-Related Problems in Boilers, New York:Plenum Press, 1996. pp. 1.
    [67] 梁静珠.煤中矿物质及炉膛结渣的研究[J].动力工程,1989,9(3):1-10.
    [68] 熊裴,华永明,盛昌栋.燃烧条件下黄铁矿(FeS_2)颗粒的分解特性[J].燃烧科学与技术,2000,6(3):280-283.
    [69] 陈志国,华永明,盛昌栋.黄铁矿颗粒在炉内运动数值模拟及对结渣的影响[J].燃烧科学与技术,2001,7(2):132-134.
    [70] 盛昌栋,华永明,周强泰.煤中FeS_2和含铁粘土矿物在锅炉结渣过程中的作用[J].燃烧科学与技术,1999,5(3):246-250.
    [71] 盛昌栋,张军,徐益谦.煤中含铁矿物在煤粉燃烧过程中行为的研究进展[J].煤炭转化,1998,21(3):14-18.
    [72] 周英彪,王伯春,郑楚光,等.煤灰沉积及新型判定指数[J].华中理工大学学报,1995(8):23-27.
    [73] 王泉海,邱建荣,李帆,等.混煤燃烧过程中矿物质的形态变化及相变[J].化工学报,2000,51(6):840-843.
    [74] 艾静,秦裕琨,朱群益,等.国内外煤灰结渣判别指数的探讨[J].电站系统工程,1994,10(2):1-18.
    [75] R. W. BORIO, R. R. NARCISO. The Use of Gravity Fractionation Techniques For Assessing Slagging and Fouling Potential of Coal Ash. Winter Annual Meeting of The American Society of Mechanical Engineers, December, 1978:10-15.
    [76] 陈力哲,艾静,等.煤粉燃烧形态结渣特性判定法的研究[J].电站系统工程,1999(11):49-50.
    [77] 撒应禄,张军.锅炉结渣机理及其防止措施研究——第一部分:锅炉结渣过程[J].锅炉技术,1989,(4):1-8.
    [78] 撒应禄,张军.锅炉结渣机理及其防止措施研究(二)——第二部分:煤中矿物质与结渣关系[J].锅炉技术,1989,(5):1-6.
    [79] 撒应禄,张军.锅炉结渣机理及其防止措施(三)——第三部分:防止和减轻锅炉结渣的措施[J].锅炉技术,1989,(6):1-12.
    [80] 叶江明.应用重力筛分法评价煤质结渣特性[J].锅炉技术,1998.9:22-25.
    [81] 陈力哲,艾静,孙绍增,等.煤燃烧结渣特性判别法及测量设备的研究[J].哈尔滨工业大学学报,2001,33(2):197-199.
    [82] 赵利敏.电站锅炉结渣的模糊综合评判[J].热力发电,1998(5):8-10.
    [83] 郭嘉,曾汉才.电站燃煤结渣特性的模糊模式识别[J].热力发电,1994(2):4-6.
    [84] 王斌忠,吴占松,许立冬,等.用模糊神经网络方法预测煤灰的结渣特性[J].清华大 学学报(自然科学版),1999(4):104-107.
    [8
    
    [85] 刘革辉,郑楚光.电站用煤结渣预报的自适应模糊神经网络方法[J].华中理工大学学报,2000,28(3):108-11O.
    [86] 吴福保,撒应禄.煤灰结渣特性的粗集评判[J].动力工程,1999,19(16):451-454.
    [87] 张忠孝.用模糊数学方法对电厂锅炉结渣特性的研究[J].中国电机工程学报,2000,20(10):64-66.
    [88] 盛昌栋,黄永生.国外煤粉炉结渣诊断与监控技术的进展[J].锅炉技术,1997(8):28-32.
    [89] 阎维平,梁秀俊,周健,等.300MW燃煤电厂锅炉积灰结渣计算机在线监测与优化吹灰[J].中国电机工程学报,2000,20(9):84-88.
    [90] 王建国,徐志明,杨善让.空气预热器积灰在线监测模型[J].中国电机工程学报,2000,20(7):27-39.
    [91] 池作和.燃用劣质煤电站锅炉低负荷稳燃、防结渣及减轻烟温偏差研究[M].北京:高等教育出版社,2002.5.
    [92] 杨卫娟,周俊虎,刘建忠,等.电站锅炉吹灰方案的合理制定[J].热力发电,2002(4):15-19.
    [93] 徐明厚,郑楚光,HE X G,等.煤灰沉积的传热过程模型及其数值研究[J].工程热物理学报,2002,23(1):115-118.
    [94] 王伯春,郑楚光,曾羽健.煤燃烧过程中矿物质蒸发与煤灰的沉积特性[J].燃烧科学与技术,1995,1(4):305-311.
    [95] 杨新兴,金元仲,朱凤元.利用造纸黑液制备洁净水煤浆技术[J].河北煤炭,2004(4):6-8.
    [96] 雍永智,张崇华,周思毅,等.造纸工业废水[M].北京:化学工业出版社,1988.
    [97] 殷惠民,海颖,周北海.黑液水煤浆技术在造纸黑液处理中的应用[J].环境科学研究,2000,13(3):55-57.
    [98] 原鲲,陈丽芳,吴承康.水煤浆燃烧技术用于造纸黑液处理的研究[J].燃烧科学与技术,2002,8(1):13-16.
    [99] 王新慧,李显俊,许海明.水煤浆技术在处理造纸黑液中的应用[J].中国环保产业,1999(12):35-37.
    [100] 钟学才,廖斌.造纸黑液利用新技术[J].污染防治技术,1996,9(1):100-101.
    [101] 孙俊民.燃煤固体产物的矿物组成研究[J].矿物学报,2001,21(1):14-18.
    [102] Wall TE Mineral matter transformation and ash deposition in pulverized coal combustion. 24th Symposium on Combustion, July 1992,Sydney, Austrilia.
    [103] Kalmonovitch DP. Predicting ash deposition from fly ash characteristics. Proceedings of the 1991 Engineering Foundation Conference, March 1991, Palm Coast, FL, USA.
    
    [104] Srinivasachar S, Senior CL, Helble JJ. Moore JW. A fundamental approach to the prediction of coal ash deposit formation in combustion systems. 24th Symposium on Combustion, July 1992,Sydney, Austrilia.
    [105] Srinivasachar S, Helble JJ, Boni AA. An experimental study of the inertial deposition of ash under coal combustion conditions. 23rd Symposium on Combustion, July 1990,Orleans, France.
    [106] Frank M, Kalmonovitch DP. An effective model of viscosity for ash deposition phenomena. In: Bryers RW, Vorres KS, editors. Mineral matter and ash deposition from coal. United Engineering Trustees Inc. pp.85-101.
    [107] 兰泽全,曹欣玉,饶甦,等.煤灰形成及沉积模型研究进展[J].热力发电,2003,32(10):32-37.
    [108] Stanislav V. Vassilev, Christina G Vassileva. Occurrence, abundance and origin of minerals in coals and coal ashes[J]. Fuel Processing Technology 48(1996): 85-106.
    [109] Steven A. Benson, Everett A. Sondreal, John P. Hurley. Status of coal ash behavior research[J]. Fuel Processing Technology 44(1995): 1-12.
    [110] M. Y. A. Mollah, S. Promreuk, R. Schemmach. Cristobalite formation from thermal treatment of Texas lignite fly ash[J]. Fuel 78(1999): 1277-1282.
    [111] 王泉清,曾蒲君.高岭石对神木煤灰熔融性的影响[J].煤化工,1997(3):40-45.
    [112] 毛军,徐明厚,李帆.碱性矿物质对煤灰熔融特性影响的研究[J].华中科技大学学报:自然科学版,2003,31(4):59-62.
    [113] 刘迎晖,郑楚光,邱建荣,王泉海.基于五元相图计算的结渣倾向预测方法[C]中国工程热物理学会燃烧学学术会议论文集,武汉:2000,562-567.
    [114] Steven A.Benson(贾宝祥译).在用锅炉中灰的形成及其特性[J].渭化科技,2002,(1):65-70.
    [115] 王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997.20(2):32~37.
    [116] Baxter LL, Yang NC, Hardesty DR. Task 3: The fate of mineral matter during pulverized coal combustion[R],Sandia Report No.SAND91-8217.UC-113,Sandia Nmional Laboratory,1991.
    [117] Kramlich JC, Newton GH.Fuel Process Technol 1994,37:143-61.
    [118] Wilemski,G,Srinivasachar, S.and Sarofim,A.F.Modeling of mineral matter redistribution and ash formation in pulverized coal combustion,in Inorganic Transformation and Ash Deposition During Combustion[M],ed.S.A.Benson,Engineering Foundation Press,ASME, New York,pp.545-564(1992).
    [119] Wilemski,G and Srinivasachar,S., Prediction of ash formation in pulverized coal combustion with mineral distribution and char fragmentation models,in The Impact of Ash Deposition on Coal Fired Plants[M], eds J. Williamson and F Wigley, Taylor&Francis, pp.151-164(1993).
    [1
    
    [120] Beer, J. M., Sarofim, A. F. and Barta, L. E., From coal mineral matter properties to fly ash deposition tendencies:a modeling route, in Inorganic Transformation and Ash Deposition During Combustion[M], ed. S. A. Benson, Engineering Foundation Press, ASME, New York, NY, pp.71-94(1992).
    [121] Janaluddin, A. S. and Smith, P.J., Predicting particulate deposition from turbulent streams, in Mineral Matter And Ash Deposition From Coa[M]l, eds R. W. Bryers and K. S. Vorres, Engineering Foundation Press, ASME, New York, NY, pp.563-576(1992).
    [122] Gupta,R. P., Truelove, J.S., Wall, T. F., Miyamae, S. K. and Hattori, C., Ash deposition on the burner walls of coal fired furnaces, in Inorganic Transformation and Ash Deposition During Combustion[M], eds S.A. Benson, Engineering Foundation Press, ASME, New York, NY, pp.639-658(1992).
    [123] Baxter, L. L., Experimental and theoretical comparisons of the combustion and ash deposition behavior of blended coals and that of the blend components, in Coal-blending and Switching of Low-sulfur Western Coals[M], eds R. W. Bryers and N.S. Harding, The Engineering Foundation Press, ASME, New York, NY, pp.255-264(1993).
    [124] Johnson, S. A., Helble, J. J. and Srinivasachar, S., Evaluating differences, in Coal-blending and Switching of Low-sulfur Western Coals[M], eds R. W. Bryers and N. S. Harding, The Engineering Foundation Press, ASME, New York, NY, pp.265-280(1993).
    [125] Benson ,S. A., Hurley, J. P. and Zygarlicke, C.J., Energy Fuels,1993,7,746.
    [126] Lee, F. C..C., Riley, G. S. and Lockwood, F. C., Prediction of ash deposition in pulverized coal combustion systems, in Application of Advanced Technology to Ash-related Problems in Boilers[C], Engineering Foundation Conference, Waterville Valley, New Hampshire, July 16-22(1995).
    [127] Richards, G. H., Slater, P. N. and Harb, J. N., Energy Fuels, 1993,7,774.
    [128] 熊友辉,孙学信.动力用煤及燃烧特性的研究手段和方法[J].煤质技术,1998,(9):27-31.
    [129] Desroches-Ducame E, Marry E, Martin G. et al. Co-combustion of coal and municipal solid waste in circulating fluidized bed[J]. Fuel, 1998,77(12): 1311-1315.
    [130] Gullett B K, Ragbunathan K, Dunn J E. Effect of cofiring high-sulfur coal with municipal waste on formation, of polychlorinated dibenzodioxin and polychlorinated dibenzofuran[J]. Environmental Engineering Science, 1998,5(1):59-70.
    [131] 张军,汉春利,刘坤磊,等.煤中碱金属及其在燃烧中的行为[J].热能动力工程,1999,14(2):83—85.
    
    [132] 张力,崔严鹏,冉景熤.水处理固体废物用作燃煤脱硫剂的可行性研究[J].重庆环境科学。1999,21(3):47-48.
    [133] Matsudata M, Takeda K, Miyatana T, etc. Simultaneous chlorination and sulphation of calcined limestone [J]. Chemical Engineering Science, 1996,51(11):2529-2534.
    [134] Lawrence A Ruth. Energy from municipal solid waste:a comparison with coal technology[J]. Prog Energy Combust Sci., 1998,24(2):545-564.
    [135] 陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [136] 方立军,高正阳,阎维平.利用热天平对电厂混煤燃尽特性的试验研究[J].华北电力技术,2001,1:7-9,24.
    [137] 侯栋歧,冯金梅,陈春元,等.混煤煤粉着火和燃尽特性的试验研究[J].电站系统工程,1995,11(2):30-34.
    [138] 聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76.
    [139] 李彦彬,刘建宏.钠盐对焦炭燃烧反应的催化作用[J].燃料流通科技,1995,(4):26-27,30.
    [140] 吕晓泉,张佳心.大气环境中添加剂碳酸钠对碳粒燃烧规律的影响[J].哈尔滨船舶工程学院学报,1990,11(1):252—258.
    [141] 车得福,刘艳华,徐通模,等.城市垃圾与高硫煤混烧排放特性的模拟[J].燃烧科学与技术,2002,8(3):207-210.
    [142] 范浩杰,姚强,曹欣玉,等.碱金属化合物添加剂对氧化钙固硫影响的试验研究[J].燃烧科学与技术,1997(1):105-111.
    [143] 朱群益,李瑞扬,秦裕琨,等.煤粉燃烧反应动力学参数的试验研究[J].动力工程,2000,3(6):703-706.
    [144] 孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2001.
    [145] Jan W. Nowok, John P. Hurley, Steven A. Benson. The role of physical factors in mass transport during sintering of coal ashes and deposit deformation near the temperature of glass transformation[J]. Fuel Processing Technology 56(1998): 89-101.
    [146] M.C. Mayoral, M.T. Izquierdo, J. M. Andrés, B. Rubio. Aluminosilicates transformations in combustion followed by DSC[J]. Thermochimica Acta 373(2001):173-180.
    [147] 姚强.曹欣玉,陈国顺,赵翔,黄镇宇,刘建忠,任建兴,岑可法.水煤浆的火炬燃烧特性的研究[J].动力工程,1996,16(3):20-25.
    [148] 章劲文,唐海兵,赵聚英.层燃锅炉脱硫掺烧的结渣研究[J].锅炉技术,1999,30(1):18-22.
    [149] 岑可法,姚强,曹欣玉,等.煤浆的燃烧、流动、传热和气化的理论与应用技术[M].杭 州:浙江大学出版社,1997.
    [1
    
    [150] Rassk E. Mineral impurities in coal combustion. Hemisphere Publishing Company, 1985:New York.
    [151] Oakey J E, Minchener A J and Stringer J J. Inst. Energy, 1990,(3): 208.
    [152] Manzoori A R and Agarwal. Fuel, 1992,71(5):513.
    [153] Halstead W D and Raask E J. Inst. Fuel, 1969,42: 344.
    [154] Gibb W H and Angus J G J. Inst. Energy, 1983,56: 149.
    [155] Edgcombe L J. Fuel, 1956,35:38
    [156] Gluskoter H J and Ruch R R. Fuel, 1971,50:65.
    [157] Howarth O W, Ratcliffe G S and Burchill P. Fuel, 1987,66:34.
    [158] Saunders K G J. Inst. Energy, 1980,53:109.
    [159] Manxoori A R and Agarwal. Fuel, 1992,71(5):513.
    [160] Hodges N J and Richards D G Fuel, 1989,68(4):440.
    [161] Murray J B. Fuel, 1973,52:105.
    [162] Pearce W C and Hill J W F. Prog. Energy Combust. Sci. 1986,12:117.
    [163] Murray J B. Fuel, 1973,52:105.
    [164] Linder E R and Wall T F. In Proceedings of 'Australian Coal Sci. Conf'. Adelaide, 16-18 May 1988:B2 13.1~13.8.
    [165] Nevile M and Sarofim M. Fuel, 1985,64:384.
    [166] Mojtahed W and Backman R.J. Inst. Of Energy, 1989,(10):189~196.
    [167] Lind T, Kauppinen E I, Jokiniemi J K, Maenhaut W and Pakkanen T A. In proceedings of the engineering foundation conference. Solihull, England, June 20-25,1993: 77~88.
    [168] Teinberg M and Schofield K. Prog. Energy Combust. Sci. 1990, 16:311~317.
    [169] Srinivasachar S, Helble J J, Ham D O and Domazetis C. Prog. Energy Combust. Sci. 1990,16:303~309.
    [170] Manzoori A R and Agarwal. Fuel, 1992,71(5):513.
    [171] Mojtahed W Backman R. J. of Inst. of Energy, 1989,(10):189~196.
    [172] Wibberley L J and Wall T F. Fuel, 1982,61(1):87.
    [173] 毛军,徐明厚,李帆.煤中碱性矿物质对灰熔融特性影响的实验研究及相图分析[J].中国工程热物理学会燃烧学术会议,武汉:2003,49-54.
    [174] Oakey J E, Minchener A J, Stringer J. Ash deposition in atmospheric-pressure fluidizes-bed combustion systems[J]. J Inst Energy, 1990:208-219.
    [175] 张军,汉春利,颜峥,等.煤中钠在燃烧初期行为的研究[J].燃料化学学报,2001,29(2):49-53.
    [176] M. Iliea, C. Cheesemanb, C. Sollarsb, J. Knight. Mineralogy and microstructure of sintered lignite coal fly ash[J]. Fuel, 2003 (82): 331-336.
    [1
    
    [177] 杨卫娟,周俊虎,曹欣玉,等.火电站锅炉优化运行软件系统概述[J].电站系统工程,2001,17(2):67-71
    [178] S. Lalot, S. Lecoeuche. Online fouling dedection in electrical circulation heaters using neural networks. International Journal of Heat and Mass Transfer 46(2003):2445-2457.
    [179] 杨志忠.燃煤锅炉受热面沾污监控系统[J].电站系统工程,1996(1):59-62.
    [180] 李敏,丘纪华,向军,等.锅炉水冷壁高温腐蚀运行工况的防腐模拟[J].中国电机工程学报,2002,22(7):150-154.
    [181] 兰泽全。曹欣玉,赵显桥.等.一种灰污热流探针的研究及应用[J].中国电机工程学报,2004,24(5):216-220.
    [182] 周俊虎,靳彦涛,杨卫娟,等.电站锅炉吹灰优化的研究应用现状[J].热力发电:2003(4):24-27.
    [183] 赵显桥.黑液水煤浆沾污结渣机理及微观物化研究.浙江大学硕士学位论文,杭州:2004.3
    [184] 岑可法.周昊,池作和.大型电站锅炉安全及优化运行技术[M].中国电力出版社,2003.
    [185] 兰泽全,曹欣玉,周俊虎,等.模糊模式识别在水煤浆锅炉结渣特性判别上的应用[J].中国电机工程学报,2003,23(7):216-219.
    [186] 周昊,孙平,岑可法,等.燃烧器下摆时冷灰斗内结渣的试验和数值模拟[J].中国电机工程学报,2002,22(5):139-142,147.
    [187] 徐志明,杨善让,王建国,等.管式换热器积灰特性的实验研究[J].工程热物理学报,2002,23(2):203-205.
    [188] 钱诗智,陆继东,宋锦海.基于模糊神经网络的煤灰结渣预报.自然科学进展,1997(3):245-249.
    [189] 陈力哲,艾静,等.煤的结渣特性磁力分析的研究[J].热能动力工程,2000,(3):110-111.
    [190] 龚德生.一种预测煤灰结渣特性的新方法[J].中国电力,1993(2):34-37.
    [191] 何佩敖,张忠孝.我国动力用煤结渣特性的试验研究[J].动力工程,1987,38(2):1.12.
    [192] 李永兴,陈春元.动力用煤结渣特性综合判别指数的研究[J].热力发电,1994(3):36-39.
    [193] 杨圣春.基于模糊理论预测电站锅炉燃煤结渣特性的研究.上海电力学院学报,2002,18(3):47-51.
    [194] 赵利敏,路丕思.电站锅炉结渣的模糊数学预示分析[J].黑龙江电力技术,1996,6(3):129-132.
    [195] 冯宝安,撒应禄.电站锅炉用煤常规结渣指标的模糊综合评判[J].锅炉技术,1996, (5):13-16.
    [1
    
    [196] 曹欣玉,兰泽全,黄镇宇,等.辽河油田水煤浆锅炉结渣倾向性模糊综合评判[J].热力发电,2003,32(2):31-34.
    [197] 赵显桥,曹欣玉,兰泽全,等.燃煤锅炉结渣倾向性模糊预测分析[J].电站系统工程,2003,19(5):9-11.
    [198] 李洪兴等.工程模糊数学方法及应用[M].天津:天津科学技术出版社,1993.
    [199] 肖隽,吕震中,王军,宋兆龙.基于改进BP算法的煤灰结渣特性诊断模型[J].热能动力工程,2002,17(5):271-274.
    [200] 李天荣.煤灰熔融特性和锅炉结渣特性的试验研究[J].华北电力技术,1995,(7):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700