生物质灰特性及其结渣机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能作为世界一次能源消费中的第四大能源资源,在历史长河中与人类生活密切相关,是唯一可存储和运输的可再生能源,在人类未来的能源系统中也将占有重要地位。然而,在实际的生物质燃烧、气化利用过程中,结渣现象已经频繁地发生,成为重大的运行问题之一。而结渣的问题,通常是与燃料灰的特性密切相关。因此,为了高效地利用生物质能,需要充分掌握生物质灰的各种性质,而且从试验和理论的层面探讨其相应的结渣机理。
     本文选取木屑、花生壳、谷壳和稻秸四种常见的生物质,分别在高温和低温下进行灰化,探讨了灰分量随灰化温度和灰化时间变化的关系,并利用带有X射线能谱仪的扫描电镜(EDX-SEM)对不同生物质灰中的主要氧化物成分、无机元素组成以及灰的微观形态进行了研究,还测试分析了每种生物质的熔融性。结果表明:硅和钙在生物质的无机元素总构成中占有最大的比例,其中K2O、Na2O的含量也较高,由此导致其熔融温度低。
     在灰特性研究的基础上,为了深入理解生物质利用过程中内在的结渣机理,以采取有效的预防措施,从与结渣现象密切相关的影响因素以及床结渣的物理化学特性两个方面,对生物质流化床燃烧的结渣问题进行了理论分析。并初步探讨了SiO2和Al2O3对生物质灰熔融性的影响,二者配比的增加降低了混合物的熔融性,且温度水平对Al2O3混合物熔融影响较小。进一步,根据对实验数据的处理,求解了生物质的各种常规结渣指标,并采用模糊评判的方法判别出不同生物质的结渣倾向。
     通过本文对生物质灰特性及其结渣机理的分析研究,为形成生物质基本性质分析的系统理论提供了一定的参考,加深了对生物质灰多方面特性的认识,也有助于今后关于生物质结渣的综合研究。
The amount of biomass resource is the fourth in the once energy consumption globally. Biomass plays critical role to human life. It is the only storable and transportable reproducing energy and is an important alternative to energy consumption in the future. However, agglomeration is displayed frequently during the practical biomass combustion and gasification, and disturbs the normal operation. The agglomeration is affected by the characteristics of biomass ash. Hence, it is quite necessary to understand the characteristics of biomass ash, and explore corresponding agglomeration mechanism from the experimental and theoretical respects, so that it can be utilized efficiently.
     In this study, four typical biomass resources: wood dust, peanut shell, rice shell and rice stem, were selected to make ash in high and low temperature, respectively, to explore the relationship of ash weight with combustion temperature and time. And then the main oxide component, inorganic element composition and microscopic morphologies were analyzed via a scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX). In addition, the melt point of every biomass ash was measured and analyzed. The results showed that the proportion of silicon and calcium was the most, and the content of K2O and Na2O was also quite high, resulting in the melt point low.
     To understand the inherent agglomeration mechanism during biomass application and approach preventive measures effectively, the agglomeration problem was analyzed from two aspects of influencing factors related to agglomeration phenomenon and physical and chemical characteristics of bed agglomeration during biomass fluidized-bed combustion. Then the effects of SiO2 and Al2O3 on biomass ash melting characteristic was explored, the melt degree of compound decreased with amount of addition rising, and the influence of temperature was weak for Al2O3. Finally, with the help of dealing with experiment data, the common agglomeration quotient was calculated to determine the agglomeration degree of different biomass through fuzzy mathematics.
     This thesis supplies essential reference for the forming of biomass characteristics theory, and important aspects of biomass ash characteristics are understood profoundly. It is beneficial for the synthetic researches of biomass agglomeration in the future.
引文
[1]廖翠萍,吴创之,颜涌捷.生物质及热解气化过程中碱金属和重金属元素的分布规律和迁移行为的研究. 2002年中国生物质能技术研讨会.中国新能源网
    [2] Jacob N. Knudsen, Peter A. Jensen, and Kim Dam-Johansen. Transformation and Release to the Gas Phase of Cl, K, and S during Combustion of Annual Biomass.Energy & Fuels 2004, 18, 1385-1399
    [3]许明磊,严建华,马增益,王勤. CFB垃圾焚烧炉烟道沿程烧结积灰的特性.动力工程. 2006;26(4):550-553
    [4]靳长顺,梁勇,王爱君.沸腾锅炉和煤粉锅炉的结渣及防治.河北建筑科技学院学报. 2002;19(2):26-27
    [5]李文彦,宋之平,孙保民,康志忠.煤粉炉结渣的机理及诊断技术的发展.现代电力. 2002;19(5):20-24
    [6]顾志恩,柳美瑛.锅炉结渣机理及煤潜在结渣特性.电力勘测设计. 2006;(2):39-42
    [7]别如山,杨励丹,陆慧林,李炳熙.糠醛渣在流化床中燃烧特性的试验研究.太阳能学报. 2001;22(3):291-295
    [8]马孝琴,李保谦,崔岩,张百良.稻秆燃烧过程动力学特性试验.太阳能学报. 2003;24(2):213-217
    [9] Marcus Ohman, Linda Pommer, and Anders Nordin. Bed Agglomeration Characteristics and Mechanisms during Gasification and Combustion of Biomass Fuels. Energy & Fuels 2005;19:1742-1748
    [10] Laura H. Nuutinen, Minna S. Tiainen. Coating Layers on Bed Particles during Biomass Fuel Combustion in Fluidized-Bed Boilers. Energy & Fuels 2004;18:127-139
    [11]原晓华,马隆龙,吴创之,阴秀丽.生物质内循环流化床气化炉结焦特性.太阳能学报.2006;27(7):635-638
    [12] Shrinivas S. Lokare, J. David Dunaway, David Moulton, Douglas Rogers, Dale R. Tree, and Larry L. Baxter. Investigation of Ash Deposition Rates for a Suite of Biomass Fuels and Fuel Blends. Energy & Fuels 2006, 20, 1008-1014
    [13] Goran Olofsson ,Zhicheng Ye ,Ingemar Bjerle ,Bed Agglomeration Problems in Fluidized-Bed Biomass Combustion .Ind. Eng .Chem .Res. 2002;41:2888-2894
    [14] Elisabet Brus, Marcus Ohman, and Anders Nordin. Mechanisms of Bed Agglomeration during Fluidized-Bed Combustion of Biomass Fuels. Energy & Fuels 2005; 19:825-832
    [15]范志林,张军,林晓芬,徐益谦.关于生物质基本性质分析的问题.东南大学学报. 2004;34(3):352-355
    [16]张军,范志林,林晓芬,徐益谦.灰化温度对生物质灰特征的影响.燃料化学学报. 2004;32(5):547-551
    [17]宋新艳.煤中灰分测定影响因素的探讨.山东冶金.2004;26(3):51-53
    [18]赵立清.采用550℃灼烧法测定灰分的影响因素.面粉通讯.2006;(1):37
    [19]范莉梅.食品灰分测定中应注意的环节.监督与选择. 2005;
    [20]王淑春,马福长,刘绵芝.如何提高灰分测定的准确度.煤质技术.2001;(1):28
    [21]薛志勇.粮食灰分测定中应注意的问题.粮食流通技术.2003;(1):21
    [22]武晓娟.浅析影响缓慢灰化法的几个因素.煤. 2005:70
    [23]唐艳玲,余春江,方梦祥,骆仲泱.秸秆中碱金属相关无机元素的测定和分布.农机化研究. 2005;1:190-193
    [24]张堃,黄镇宇,修洪雨,杨卫娟.煤灰中化学成分对熔融和结渣特性影响的探讨.热力发电. 2005(12):27-43
    [25]焦发存,李慧,邓蜀平,黄众兵.配煤对煤灰熔融特性影响的实验研究.煤炭转化. 2006;29(1):11-18
    [26]马孝琴,骆仲泱,方梦祥,余春江.添加剂对秸秆燃烧过程中碱金属行为的影响.浙江大学学报(工学版). 2006;40(4):599-604
    [27]乐园,李龙生.秸秆类生物质燃烧特性的研究.能源工程. 2006;4:30-33
    [28]余春江,唐艳玲,方梦祥,骆仲泱.稻秸热解过程中碱金属转化析出过程试验研究.浙江大学学报. 2005;39(9):1435-1444
    [29] John G. Olsson, Ulf Ja¨glid, and Jan B. C. Pettersson. Alkali Metal Emission during Pyrolysis of Biomass. Energy & Fuels 1997, 11, 779-784
    [30]米铁,陈汉平,吴正舜,刘德昌.生物质灰化学特性的研究.太阳能学报.2004;2:236-241
    [31] John G. Olsson and Jan B. C. Pettersson. Alkali Metal Emission from Filter Ash and Fluidized Bed Material from PFB Gasification of Biomass. Energy & Fuels 1998, 12, 626-630
    [32] T. Valmari, T. M. Lind, and E. I. Kauppinen. 1. Field Study on Ash Behavior during Circulating Fluidized-Bed Combustion of Biomass. 2. Ash Deposition and Alkali Vapor Condensation. Energy & Fuels 1999, 13, 390-395
    [33] K. O. Davidsson, B. J. Stojkova, and J. B. C. Pettersson. Alkali Emission from Birchwood Particles during Rapid Pyrolysis. Energy & Fuels 2002, 16, 1033-1039
    [34] Robert R. Baker, Bryan M. Jenkins, and Robert B. Williams. Fluidized Bed Combustion of Leached Rice Straw. Energy & Fuels 2002, 16, 356-365
    [35]孙巍,马增益,严建华,许明磊,王勤.垃圾焚烧炉尾部受热面积灰及其抑制方法分析.能源工程. 2006;1:46-49
    [36] Quang K. Tran, Britt-Marie Steenari, Kristiina Iisa, and Oliver Lindqvis. Capture of Potassium and Cadmium by Kaolin in Oxidizing and Reducing Atmospheres. Energy & Fuels 2004, 18, 1870-1876
    [37] Marcus Ohman and Anders Nordin. The Role of Kaolin in Prevention of Bed Agglomeration during Fluidized Bed Combustion of Biomass Fuels. Energy & Fuels 2000, 14, 618-624
    [38]丁宏刚,熊友辉.基于图像识别技术的自动灰熔点测试仪研制.实验技术与管理. 2005;(1):69-76
    [39]江吉惠,洪灶熬.煤灰熔融性国家标准测定方法的探讨.烧结球团. 2005;30(5):14-16
    [40]李润东,聂永丰,李爱民,王雷.垃圾焚烧飞灰理化特性研究.燃料化学学报. 2004;32(2):175-179
    [41]张军,盛昌栋,汉春利,徐益谦.两种产自云南的生物质燃烧性质研究.燃烧科学与技术. 2000;6(4):331-334
    [42] Beng-Johan Skrifvars, Patrik Yrjas, Jouni Kinni, Peter Siefen, and Mikko Hupa. The Fouling Behavior of Rice Husk Ash in Fluidized-Bed Combustion. Energy & Fuels 2005, 19, 1503-1511
    [43]兰泽全,曹欣玉,周俊虎,赵显桥.炉内灰渣沉积物中矿物元素分布的电子探针分析.中国电机工程学报. 2005;25(2):114-119
    [44] AnaZy bogar, Peter Arendt Jensen, Flemming J. Frandsen, Jorn Hansen, and Peter Glarborg. Experimental Investigation of Ash Deposit Shedding in a Straw-Fired Boiler. Energy & Fuels 2006, 20, 512-519
    [45] Elisabet Brus, Marcus Ohman, Anders Nordin, and Dan Bostrom. Bed Agglomeration Characteristics of Biomass Fuels Using Blast-Furnace Slag as Bed Material. Energy & Fuels 2004;18:1187-1193
    [46] Minna Tiainen, Jouni Daavitsainen, and Risto S. Laitinen. The Role of Amorphous Material in Ash on the Agglomeration Problems in FB Boilers. A Powder XRD and SEM-EDS Study. Energy & Fuels 2002, 16, 871-877
    [47] Marcus Ohman and Anders Nordin. A New Method for Quantification of Fluidized Bed Agglomeration Tendencies : A Sensitivity Analysis. Energy & Fuels 1998;12:90-94
    [48] Maria Zevenhoven-Onderwater, Marcus Ohman, Bengt-Johan Skrifvars. Bed Agglomeration Characteristics of Wood-Derived Fuels in FBC. Energy & Fuels 2006;20:818-824
    [49]宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性.节能与环保. 2003;9:29-31
    [50]周良虹,陈锡明.国外可再生能源文献信息.可再生能源. 2005;4:90-91
    [51] Marcus Ohman and Anders Nordin. Bed Agglomeration Characteristics during Fluidized Bed Combustion of BiomassFuels. Energy & Fuels 2000;14:169-178
    [52] Fabrizio Scala and Riccardo Chirone. Characterization and Early Detection of Bed Agglomeration during the Fluidized Bed Combustion of Olive Husk. Energy & Fuels 2006;20:120-132
    [53] Bapat D W, Kulkarni S V, Bhandarkar V P. Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash [A]. In: Preto FDS. Proceedings of the 14th International Conference on Fluidized Bed Combustion. Vancouver,NewYork[C],1997,165~174
    [54]段菁春,肖军,五杰林,庄新国.生物质与煤共燃研究.电站系统工程. 2004;20:1-4
    [55]姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社,2005,95-96
    [56]肖军,段菁春,王华,庄新国.低温热解生物质与煤共燃的结渣、积灰和磨损特性分析.能源工程. 2003;(3):9-13
    [57]陈春华,施发承,陈俊丽.电站锅炉结渣倾向性模糊综合评判.锅炉技术. 2005;36(3):28-31
    [58]陈立军,文孝强,王强,王恭.火力发电机组锅炉结渣预测方法的新进展.东北电力学院学报. 2005;25(4):5-10
    [59] B.J.skrifvars,M.Ohman,A.Nordin,and M.Hupa.Predicting Bed Agglomeration Tendencies for Biomass Fuels Fired in FBC Boilers: A Comparison of Three Different Prediction Methods. Energy & Fuels 1999, 13, 359-363
    [60]雷俊智,马其良,潘卫国.电厂燃煤结渣性能预测方法研究.锅炉技术. 2001;32(11):7-11
    [61]兰泽全,曹欣玉,周俊虎,黄镇宇.模糊模式识别在水煤浆锅炉结渣特性判别上的应用.中国电机工程学报.2003;23(7):216-219
    [62]郭嘉,曾汉才.电站燃煤结渣特性的模糊模式识别.热力发电. 1994;2:4-6
    [63]钱诗智,陆继东,宋锦海.基于模糊神经网络的煤灰结渣预报.自然科学进展.1997;7(2):245-249
    [64]兰泽全,曹欣玉,周俊虎,黄镇宇.两种模糊数学方法在锅炉结渣特性判别上的应用.电站系统工程. 2003;19(2):7-10
    [65]何方,王华,李玄武.生物质蜂窝煤燃烧过程SO2排放及灰渣特性研究.煤炭转化. 2004;27(4):51-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700