脊髓损伤后胶质瘢痕形成规律及酸敏感离子通道在脊髓损伤中的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济的发展,交通、建筑及矿难等事故中导致的脊髓损伤(spinal cordinjury,SCI)已成为威胁人们健康的重要因素,关于SCI的研究因而备受国内学者的高度关注。遗憾的是,迄今为止尚无有效治疗SCI的方法和药物,促使人们重新审视SCI的病理生理过程和致病机制。SCI后主要经历急性期和慢性期两大病理生理阶段,急性期病变主要以原发损伤启动的一系列继发损伤为主,导致损伤范围的扩大和损伤程度的加重,所以,研究SCI急性期继发损伤的机制,如何尽可能地保护原发损伤周围的正常脊髓免受继发损伤的波及,是SCI治疗的首要策略。SCI慢性期则以星形胶质细胞活化、反应性增生及胶质瘢痕(glial scar)和囊腔的形成为其主要病理特点,他们成为阻挡神经再生的重要屏障,至今尚无有效的处理方法。因此,研究胶质瘢痕形成的过程、瘢痕的厚度及其与神经纤维的关系,对深入理解胶质瘢痕的特点和重新审视它在脊髓损伤与修复中的作用,具有重要的意义和价值。
     研究发现急性期许多致病机制参与了SCI后的继发损伤过程,包括缺血、兴奋性毒性、炎症、氧化应激、代谢能量障碍等。近年来,有不少针对上述继发损伤机制药物的基础与临床研究,但迄今未见临床疗效,提示尚有其它不为人知的继发损伤机制。新近报道的酸敏感离子通道(acid-sensing ion channel,ASICs)为SCI的研究带来了新的启发,尤其是ASICs的亚基ASIC1a。因为SCI后多种因素均可导致局部组织微环境的酸化,例如缺血缺氧可致CO_2等酸性代谢物无法带走,兴奋性氨基酸和ATP的释放(均是酸性物质),代谢障碍致乳酸堆积,炎症亦可导致酸化。所以,SCI后的pH降低(组织酸化)可能较严重,它将激活ASIC1a通道,导致一系列病理过程。但脊髓中ASIC1a的表达分布及其在SCI后的变化,不甚清楚。所以,本课题将动态观察SCI后ASIC1a的变化特点,探讨其在SCI继发损伤中的作用及其可能机制。
     胶质瘢痕和囊腔的形成是SCI慢性期的重要病理变化,是导致SCI后神经再生修复失败的重要原因,研究发现即便通过神经移植桥接了囊腔坏死区,但移植物和神经纤维仍无法穿越致密的胶质瘢痕。因此,减少或去除胶质瘢痕是一项有希望的慢性期SCI治疗策略,但是有两条重要的因素决定着这一策略的效果:第一是瘢痕分布的特点如何?去除瘢痕的厚度应该是多少?囊腔周围的瘢痕厚度是否一致?如果去除瘢痕过多,会损及正常脊髓组织造成新的损伤。第二是去除胶质瘢痕的时间窗应如何选择?过早或过晚可能都存在问题。所以,本研究将动态观察胶质瘢痕形成过程、瘢痕的厚度及其与神经纤维的关系,为以上问题的回答提供实验依据。
     目的:
     1.动态观察SCI后胶质瘢痕形成规律及其与神经纤维的关系,并定量测量胶质瘢痕的厚度。
     2.观察ASIC1a在SCI后的表达变化特点,研究ASIC1a在SCI继发损伤中的作用及可能的分子机制
     方法:
     1.采用大鼠脊髓挫伤模型,应用组织病理学、行为学评分、诱发电位、免疫荧光技术及神经束路示踪等方法,观察SCI后组织病理变化过程、轴突再生与胶质瘢痕形成规律及相互关系,并测量瘢痕厚度。
     2.应用western blotting、免疫荧光及激光共聚焦显微镜、RT-PCR等方法多侧面观察SCI后ASIC1a表达变化规律,及其变化意义。
     3.利用体内、外损伤模型,使用TUNEL染色、电生理膜片钳记录、钙成像、鞘内置管给药、反义核酸等技术探讨ASIC1a在SCI继发损伤中的作用及其可能机制。
     结果:
     1.本研究首先制作了4种不同致伤级别的脊髓挫伤模型,应用组织病理学、行为功能评分、诱发电位、免疫荧光技术及神经束路示踪等方法,观察比较它们的病理学变化,神经功能恢复情况等,结果发现10g×50mm致伤组损伤很重,动物功能恢复较困难,10g×5mm致伤组则损伤太轻,动物基本可自行恢复到接近正常功能,10g×25mm致伤组功能恢复曲线显示早期与10g×50mm组类似,后肢瘫痪,后期类似10g×10mm致伤组。而10g×10mm致伤组动物自发功能恢复曲线稳定、独特,与其它3组区别明显。进一步,本研究比较了10g×25mm组和10g×10mm组在病理学、电生理学等方面的差异,结果显示这两种致伤级别,所导致的组织损伤程度与范围、运动/感觉诱发电位恢复等方面存在明显差别。
     2.本实验发现SCI后动物运动功能显著下降,以后逐渐恢复并在SCI后4w(week)左右恢复达平台。与之相应,神经电生理检查显示运动/感觉诱发电位的潜伏期在伤后明显延长,以后逐渐恢复,亦在SCI后4 w相对稳定。病理学观察表明SCI后2 w左右囊腔开始出现,到4 w时囊腔形成并较为稳定。动态观察胶质瘢痕的形成过程显示SCI后星形胶质细胞活化,胞体肥大,突起变粗并相互交联,逐渐形成胶质瘢痕,在SCI后4 w左右围绕在囊腔周围形成明显的胶质瘢痕带。以上结果提示大鼠SCI后4 w左右进入慢性期。
     3.应用神经束路示踪、免疫荧光双标等方法观察发现,SCI后神经纤维具有一定的再生能力,大部分走行于胶质瘢痕外,未见穿透瘢痕区达到囊腔边缘或穿透囊腔者,但也有部分轴突伸入到瘢痕外侧部一定的深度,提示胶质瘢痕是轴突再生之屏障。为将来瘢痕的去除提供了基础数据,本研究尚测量了SCI后4 w时胶质瘢痕的厚度,结果显示囊腔头尾侧瘢痕厚度与双侧壁厚度有一定差别,头尾侧厚度为107.00±20.12μm,双侧边瘢痕厚度为69.92±15.12μm。
     4.Western blotting和免疫荧光观察显示SCI后损伤周围区ASIC1a表达显著上调,在灰、白质均升高,并在12—24 h达高峰,然后逐渐回降,在SCI后1 w左右基本恢复到原先水平,连续观察6 w未见有变化。与此不同,SCI后损伤区ASIC1a的表达则下降,SCI后1 w左右即检测不到,应用Nissl及NeuN染色发现损伤区神经元丢失严重,可能与损伤区ASIC1a表达下降有关。免疫荧光双标显示灰质中主要为神经元表达ASIC1a,白质中则是少突胶质细胞表达ASIC1a。有趣的是,Western blotting观察发现正常脊髓ASIC2a表达水平很低,但SCI后损伤区与损伤周围区的表达均明显上升,尤其损伤周围区ASIC2a的表达升高持续到SCI后4w左右才恢复至原来水平。同样可能由于细胞的死亡,损伤区ASIC2a的表达早期升高后在24 h后迅速下降,直至检测不到。RT-PCR结果提示SCI后ASIC1a mRNA未见明显变化,而ASIC2a mRNA水平明显升高。
     5.应用TUNEL标记方法,发现TUNEL阳性细胞大多ASIC1a阳性,提示ASIC1a可能参与了SCI后延迟性细胞死亡的发生。相反,TUNEL阳性细胞则基本上未见ASIC2a阳性,一方面提示ASIC2a可能没有参与SCI后继发的细胞死亡,另一方面反过来说明ASIC1a与TUNEL的共标是特异的。进一步,利用体内、外损伤模型,结合TUNEL、PI/FDA染色等方法,发现分别给予ASIC1a的特异性阻断剂PcTx1和非特异性阻断剂Amiloride均可降低损伤后细胞死亡。ASIC1a特异的反义核酸knock downASIC1a的表达也可以达到同样的保护效果。
     6.应用电生理膜片钳记录与Ca~(2+)成像技术,发现酸(pH6.0)刺激下可诱发脊髓神经元一较大的内向电流(酸电流),亦可引起胞内Ca~(2+)浓度迅速的增加,此电流和Ca~(2+)内流可被ASIC1a通道特异性阻断剂阻断。在模拟的SCI后继发的缺血缺氧病理条件下,ASIC1a介导的酸电流和Ca~(2+)内流均出现增强效应。
     7.进一步的实验显示病理条件下ASIC1a通道功能的增强可能和其磷酸化有关,Co-IP实验确实发现SCI后ASIC1a磷酸化水平显著升高,而钙/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)可能参与了这一过程。Western blotting结果显示SCI后CaMKⅡ的表达显著升高,其表达变化的时空特点和ASIC1a具有良好的相关性,应用CaMKⅡ的特异性抑制剂KN93可显著抑制缺血缺氧诱发的ASIC1a介导的酸电流和Ca~(2+)内流的增强效应,并减轻细胞损伤。
     8.最后,为在整体水平验证ASIC1a在SCI中的作用,应用鞘内置管技术,分别给予SCI大鼠ASIC1a的特异性阻断剂PcTx1和非特异性阻断剂Amiloride,结果发现两者均可减轻组织损伤,促进动物运动功能的恢复。ASIC1a特异的反义核酸亦具有类似的保护效果。
     结论:
     1.本研究所采用的SCI模型不仅能够将不同级别损伤区分开,且与动物行为学、电生理学和组织病理学变化想吻合。故本研究采用的模型具有较好的客观性、稳定性、相关性和重复性。
     2.10g×10mm致伤组动物自发功能恢复曲线稳定、独特,与其它不同级别的损伤区别明显,可较客观地反映不同SCI治疗措施和药物的疗效,故本研究采用此致伤级别。
     3.综合行为学、电生理学、病理学及胶质瘢痕形成观察等多方面的证据提示大鼠SCI后4 w左右进入慢性期,为人们认识和研究慢性SCI提供了重要的实验依据。
     4.SCI后神经纤维具有一定的再生能力,但很少能穿透胶质瘢痕,说明胶质瘢痕是阻挡轴突延伸的重要因素,提示去除胶质瘢痕可能是治疗SCI的重要策略,本研究测量了瘢痕的厚度,为将来去除瘢痕提供了重要的时空参考数据。
     5.SCI后ASIC1a表达上调明显,且在灰、白质均升高,在12—24 h达高峰,SCI后1 w左右回降到原先水平。免疫双标鉴定白质中表达ASIC1a的细胞类型是少突胶质细胞。ASIC1a表达的上调可能与其转录水平无关,而与翻译和/或代谢有关。
     6.体内外实验均表明ASIC1a确实参与了SCI后的继发性损伤,其可能过程为:SCI后出现的组织酸化可激活ASIC1a通道,引起一、二价阳离子的内流,尤其是Ca~(2+)内流,导致胞内Ca~(2+)蓄积,导致细胞损伤,SCI后ASIC1a表达的升高加剧了这一损伤过程。
     7.在SCI后继发的缺血缺氧病理条件下ASIC1a通道功能出现增强效应,此效应可能与钙/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)介导的ASIC1a的磷酸化水平升高有关。而CaMKⅡ的激活可能与ASIC1a通道介导的Ca~(2+)内流有关。
     8.本研究显示SCI后的组织酸化及其激活的ASIC1a通道是SCI后继发损伤的新的致病机制,为将来设计以ASIC1a为干预靶点的、特异的SCI治疗新药物,提供了重要的实验依据。
     综上所述,组织酸化及ASIC1a通道在SCI的继发损伤中起了重要作用,其可能机制是:SCI后组织酸化并伴随ASIC1a表达增多,H~+激活ASIC1a通道,引起Ca~(2+)内流,组织酸化持续存在导致胞内Ca~(2+)的蓄积,激活CaMKⅡ,然后CaMKⅡ反作用于ASIC1a,增加其磷酸化,引起ASIC1a通道功能增强,通Ca~(2+)增加,胞内Ca~(2+)增加进一步激活CaMKⅡ,形成恶性循环,导致细胞Ca~(2+)超载,引起细胞损伤,SCI后ASIC1a表达的升高加剧了这一损伤过程。
     本课题首次揭示了ASIC1a介导的酸毒在SCI继发损伤中的重要作用,加深了人们对SCI继发损伤机制的认识,为将来设计以ASIC1a为干预靶点、特异性的SCI治疗新药物和新策略,提供了重要的实验依据,具有重要的理论意义和临床应用价值。
Spinal cord injury(SCI) caused by traffic,building and mine accident which become more and more with the development of economy has been a major threat to people's health. More attention was payed to SCI research by international scientists.So far,it is a pity that there is no effective method and drug for SCI treatment.It urges people to resurvey the pathophysiological process and injury mechanisms of SCI.SCI evolves two pathophysiological stages including acute and chronic phase following injury.A variety of secondary injury mechanisms induced by primary spinal cord insult are involved in SCI during acute period,resulting in extending of the lesion size and degree.Thus,study on secondary injury mechanism and on protecting normal spinal tissue around the primary injury site is a vital strategy.Activated astrocytes,reactive gliosis with the formation of glial scar and cavity is regarded as the prominent pathophysiological feature of chronic SCI, which turn to be a major barrier to nerve regeneration.But there is no effective method to deal with.Accordingly,it is signifcant and valuable to observe the characteristics of glial scar and reestimate its role in spinal cord injury and repairing.
     It has been proven that many mechanisms are involved in secondary injury after SCI including ischemia,excitotoxicity,inflammation,oxidant stress,and energy failure.Several clinical and basic studies targeting to those mechanisms have been conducted over the years, but an effective pharmacologic agent has not yet been discovered,suggesting other unknown mechanism(s) responsible for secondary injury triggered by SCI.New report regarding acid-sensing ion channels(ASICs) brings us new enlightenment for SCI research, especially ASIC1a.Because a common pathological consequence which is pH falling in local tissue microenvironment following the above secondary processes.For example, acidic metabolite such as CO_2 cannot be elimiated under ischemic condition.Exitotory amino acid and ATP releasing after SCI are acidic substance.Metabolic failure causes lactic acid accumulation.Inflammation also induces acidosis.Thus,pH falling(tissue acidosis) may be serious post SCI which will activate ASIC1a channel resulting in a series of pathogenetic processes.But the expression and distribution pattern of ASIC1a in the spinal cord is unclear.In this study,we will observe the change characteristics of ASIC1a expression following SCI,and explore its role and mechanism involved in secondary injury after SCI.
     Glial scar and cavity formation is regarded as the prominent pathophysiological feature of chronic SCI,which is a major impediment to nerve regeneration.Studies showed that the nerve fiber or graft cannot extend through the dense glial scar,despite that neuroimplantation bridges the gap of necrotic cavity.Therefore,reducing or ablating glial scar is an hoping therapeutic strategy for chronic SCI treatment.Yet,two vital factors affect the effect of this kind of therapeutic strategy.One is what the character of distribution of glial scar is.What the thickness of glial scar needs to be ablated,and whether the thickness of glial scar around cavity is equivalent.It will cause additional injury,if ablation range is larger than the thickness of glial scar.The other one is what is the appropriate time window for the glial scar ablation.It is not benefit that glial scar ablation is carried out too late or too early.Consequently,this study will observe the process of glial scar formation,the thickness of glial scar,and the relationship between glial scar and nerve fibers,which helps to providing experimental evidence to the above questions.
     Objective:
     1.To observe the process of glial scar formation with the relationshsip between glial scar and nerve fibers,as well as quantitating the thickness of glial scar.
     2.To observe the change of ASIC1a expression pattern after SCI,and explore its role and possible molecular mechanism in secondary injury following SCI.
     Methods:
     1.By employing rat spinal cord contusion injury model,histopathological observation, behavioral scale,evoked potential,immunofluorescence and axonal tract tracing,we observed the histopathological process,axon regeneration,course of glial scar formation, with the relationshsip between glial scar and nerve fibers,and quantitated the thickness of glial scar.
     2.Using western blotting,immunofluorescence,confocal laser scanning microscope and RT-PCR methods,we examined the alterations of ASIC1a expression and the significance underlying the alterations after SCI.
     3.By utilizing injury of in vivo and in vitro,TUNEL staining,electrophysiological recording,Ca~(2+) imaging,intrathecal delivery and antisense techniques,we investigated the role and underlying mechanism of ASIC1a in secondary injury of SCI.
     Results:
     1.Firstly,we made four degrees of SCI model,and compared pathological process and functional recovery among these four groups of rats by employing histopathological observation,behavioral scale,motor/sensor evoked potential,immunofluorescence and axonal tract tracing.The results showed that 10g×50mm group demonstrated difficult functional recovery due to its serious injury,but 10g×5mm group displayed good behavioral improvement due to its light injury.The recovery pattern of 10g×25mm group demonstrated faccid paralysis early after SCI like the 10g×50mm group,but it is similar to 10g×10mm late post SCI.The recovery pattern of 10g×10mm group is specific, unvariable and distinct from the other three groups.Moreover,we compared the difference in pathological and electrophysiological changes between 10g×10mm and 10g×25mm group.Results showed that the two adjacent grades of injury induced distinguishing degree and size of tissue injury,motor and sensor evoked potential.
     2.Behavioral performance of SCI rat decreased followed by gradually recovery after SCI,and reached the plateau around at 4 weeks after SCI(SCI 4 w).Correspondingly,the latency of motor/sensor evoked potential prolonged after SCI followed by gradually improvement,becoming stable at SCI 4 w.Pathological data showed cavity appeared at SCI 2 w and stabilized at SCI 4 w.Observation of the process of glial scar formation demonstrated that reactive astrocytes with hypertrophic soma and cross-linked thick processes formed glial scar gradually which emerged around the cavity at SCI 4 w.These data suggested SCI evolves into chronic stage at SCI 4 w.
     3.By employing axonal tract tracing and double immunofluorescence,we found nerve fibers remained regenerative ability after SCI.Most fibers ran outside of glial scar,no fibers could be seen to pentrate glial scar to cavity or even through cavity.However,a few axons could be seen to regrow into the outer of layer of glial scar.These observation suggests glial scar is a barrier to axonal extension.In order to provide basic data for ablating glial scar in the future,we measured the thickness of glial scar.The results showed that the difference of thickness of glial scar between the rostral/caudal region and lateral region is distinct.The thickness of glial scar in the rostral/caudal region is 107.00±20.12μm,and 69.92±15.12μm in the lateral region.
     4.Examination via western blotting and immunofluorescence showed that ASIC1a expression markedly increased at peri-injury site both in gray and white matter after SCI, reached its peak at 12-24 h,then started to turn back and recovered to original level at SCI 1 w,remaining for up to SCI 6 w.On the contrary,ASIC1a expression at the injury site decreased obviously,and arrived at its rock-bottom at SCI 1 w without recovery.Nissl and NeuN staining showed that neuronal loss was serious at injury site which may cause the decrease of ASIC1a expression at injury site.Double immunofluorescent staining displayed that cells expressed ASIC1a in the gray matter were neurons,while they were oligodendrocytes in the white matter.Intriguingly,western blotting data demonstrated that ASIC2a level is very low in the normal spinal cord.But it dramatically increased afer SCI, especially in the peri-inujury site which recovered to original level untill SCI 4 w.ASIC2a expression increased early after SCI,then dramatically decreased since SCI 24 h due to neuronal loss at injury site.Data from RT-PCR showed that no obvious change were found in ASIC1a mRNA level,but ASIC2a mRNA level increased obviously after SCI.
     5.Double immunostaining showed that most TUNEL positive cells were ASIC1a positive,suggesting that ASIC1a may involved in delayed cell death afer SCI.On the contrary,no TUNEL positive cells displayed ASIC2a positive,suggesting ASIC2a may not be related to seondary cell death after SCI,also suggesting co-immunostaining of ASIC1a and TUNEL is specific.Moreover,by employing injury model in vivo and in vitro, TUNEL and PI/FDA staining,we found both ASIC1a specific antagonist PcTx1 and nonspecific antagonist amiloride decreased cell death induced by injury.Specific antisense targeting ASIC1a also produced the same protective effect.
     6.Making use of electrophysiology and Ca~(2+) iamging,we recorded that acidic stimulation evoked large transient inward currents and rapid[Ca~(2+)]_i increase in cultured spinal neurons,which could be blocked by both ASIC1a specific antagonist PcTx1 and nonspecific antagonist amiloride.The acidic currents and[Ca~(2+)]_i increase was enhanced by the pathological condition mimicking the ischemia/anoxia following SCI.
     7.Further experiment data showed that enhancement of AISC1a channel acitvity is complicated with ASIC1a phosphorylation.Co-IP data confirmed that ASIC1a phosphorylation increased after SCI which may be catalyzed by calcium/calmodulin-dependent kinaseⅡ(CaMKⅡ).Western blotting data displayed that CaMKⅡexpression increased after SCI,sharing pertinence with the temporospatial pattern of ASIC1a expression after SCI.CaMKⅡspecific antagonist KN93 significantly inhibited enhancement of ischemia-induced ASIC1a currents and cell injury.
     8.Finally,in order to confirm the role of ASIC1a in SCI in the whole level in vivo,by using intrathecal delivery technique,we found both ASIC1a specific antagonist PcTx1 and nonspecific antagonist amiloride reduce tissue injury and promote functional recovery after SCI.Again,ASIC1a antisense had the similar protective effect.
     Conclusion:
     1.The SCI model used in this study can distinguish the graded injury,consistent with the results from behavior,motor/sensor evoked potential,histopathology.Thus,this SCI model possesses objectivity,stability,relativity and reproducibility.
     2.The spontaneous functional recovery pattern of 10g×10mm group rats is specific, unvariable and distinct from the other groups,which can objectively estimate the effect of measures and drugs used to treat SCI.Therefore,10g×10mm injury severity was employed by this study.
     3.All the data from behavior,electrophysiology,pathology and observation of glial scar formaiton suggests SCI evolves into chronic stage at 4 w post injury,which will provide important experimental evidence for people to recognize and study chronic SCI.
     4.Nerve fibers remain regenerative ability after SCI,but few of them penetrate glial scar,suggesting glial scar is an impediment for axonal extension.This also suggests glial scar ablation will be important strategy for SCI treatment.We also measured the thickness of glial scar,which offers temporospatial reference data for ablation of glial scar in the future.
     5.ASIC1a expression markedly increased both in gray and white matter after SCI, reached its peak at 12-24 h,then started to turn back and recovered to original level at SCI 1 w.Double immunofluorescent staining displayed that cells expressed ASIC1a are oligodendrocytes in the white matter.Upregulation of ASIC1a expression has no relativity with its transcription,but its translation and/or metabolism.
     6.Both data from in vivo and vitro experiments demonstrates ASIC1a is involved in the secondary injury after SCI.The process may be:tissue acidosis following SCI activates ASIC1a channel which induce mono- and bivalent cations affiux,especially Ca~(2+) intracelular flow,which leads Ca~(2+) accumulation resulting in cell injury.
     7.Under the ischemia/anoxia condition following SCI,ASIC1a channel function enhances,which may be related with phosphorylation of ASIC1a catalized by calcium/calmodulin-dependent kinaseⅡ(CaMKⅡ).CaMKⅡmay be activated by Ca~(2+) intracellular flow mediated by ASIC1a channel.
     8.This study reveals that tissue acidosis with activated ASIC1a channel by acidosis following SCI is a new pathogenic mechanism underlying sceondary injury post SCI,which provides important experimental evidenc for designing specific drugs targeting ASIC1a for SCI treatment in the future.
     In conclusion,tissue acidosis with activated ASIC1a channel play a vital role in secondary injury after SCI.The following is the possible mechanism:SCI induces tisse acidosis concomitantly activates ASIC1a channel.Then,Ca~(2+) afflux mediated by ASIC1a activates CaMKⅡwhich catalyzes phosphorylation of ASIC1a,inducing enhancement of ASIC1a channel function.This enhancement will produce more Ca~(2+) afflux which further activated CaMKⅡ.Thus,a vicious circle formed which leads to Ca~(2+) accumulation resulting in cell injury.Upregulation of ASIC1a expression after SCI exacerbates this injury process.
     This study firstly discovers the role of acidotoxicity mediated by AISC1a in secondary injury after SCI,which will deepen our understanding of scondary injury mechanism after SCI,and provide substantial experimental data for designing specific strategy and drugs targeting ASIC1a for SCI treatment in the future.This finding implies important theoretic significance and clinical value.
引文
1. Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ: Experimental strategies to promote spinal cord regeneration—an integrative perspective. Prog Neurobiol 2006, 78(2):91-116.
    2. Thuret S, Moon LD, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006, 7(8):628-643.
    3. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR: Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 2004, 4(4):451-464.
    4. Tator CH: Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995, 5(4):407-413.
    5. Tator CH, Fehlings MG: Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991, 75(1):15-26.
    6. Allen AR: Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J Nerv Ment Dis 1914, 41:141-147.
    7. Fehlings MG: Editorial: recommendations regarding the use of methylprednisolone in acute spinal cord injury: making sense out of the controversy. Spine 2001, 26(24 Suppl):S56-57.
    8. Fu ES, Tummala RP: Neuroprotection in brain and spinal cord trauma. Curr Opin Anaesthesiol 2005, 18(2): 181-187.
    9. Siesjo BK, Katsura K, Kristian T: Acidosis-related damage. Adv Neurol 1996, 71:209-233; discussion 234-206.
    10. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA: Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 1991, 260(3 Pt 2):R581-588.
    11. Simon R, Xiong Z: Acidotoxicity in brain ischaemia. Biochem Soc Trans 2006, 34(Pt 6):1356-1361.
    12. Wemmie JA, Price MP, Welsh MJ: Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 2006, 29(10):578-586.
    13. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ: Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 2003, 23(13):5496-5502.
    14. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Jr. et ah The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002, 34(3):463-477.
    15. Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ: Overexpression of acid-sensing ion channel la in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 2004, 101(10):3621-3626.
    16. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ et ah Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004,118(6):687-698.
    17. Pignataro G, Simon RP, Xiong ZG: Prolonged activation of ASICla and the time window for neuroprotection in cerebral ischaemia. Brain 2007, 130(Pt 1): 151-158.
    18. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL: Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 2005, 48(4):635-646.
    19. Yiu G, He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006, 7(8):617-627.
    20. Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci 2004, 5(2): 146-156.
    21. He F, Sun YE: Glial cells more than support cells? Int J Biochem Cell Biol 2007, 39(4):661-665.
    22. Rochkind S, Ouaknine GE: New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 1992, 14(1):2-11.
    23. Zhang SX, Geddes JW, Owens JL, Holmberg EG: X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol 2005, 20(2):519-530.
    24. Zhang S, Kluge B, Huang F, Nordstrom T, Doolen S, Gross M, Sarmiere P, Holmberg EG: Photochemical scar ablation in chronically contused spinal cord of rat. J Neurotrauma 2007, 24(2):411-420.
    25. Jin Y, Fischer I, Tessler A, Houle JD: Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002, 177(1 ):265-275.
    26. Zeman RJ, Feng Y, Peng H, Visintainer PF, Moorthy CR, Couldwell WT, Etlinger JD: X-irradiation of the contusion site improves locomotor and histological outcomes in spinal cord-injured rats. Exp Neurol 2001, 172(1):228-234.
    27. Hu R, Cai WQ, Wu XG, Yang Z: Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. Neuroscience 2007, 144(4): 1229-1240.
    28. Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV: Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006, 129(Pt 10):2761-2772.
    29. Sofroniew MV: Reactive astrocytes in neural repair and protection. Neuroscientist 2005, 11(5):400-407.
    30. Houle JD, Tessler A: Repair of chronic spinal cord injury. Exp Neurol 2003, 182(2):247-260.
    31. Basso DM, Beattie MS, Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995, 12(1): 1-21.
    32. Basso DM, Beattie MS, Bresnahan JC: Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 1996, 139(2):244-256.
    33. Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL: Upregulation of acid-sensing ion channel ASICla in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 2007, 27(41): 11139-11148.
    34. Allen AR: Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column:A preliminary report. J Am Med Assoc 1911,57:878-880.
    35.Sekhon LH,Fehlings MG:Epidemiology,demographics,and pathophysiology of acute spinal cord injury.Spine 2001,26(24 Suppl):S2-12.
    36.DeVivo MJ:Causes and costs of spinal cord injury in the United States.Spinal Cord 1997,35(12):809-813.
    37.李建军 周,洪毅,季京平,刘根林,粟绍强,赵超男,董云英,方玉美,谭鹏,周天健,张爱民,郑樱.:2002年北京市脊髓损伤发病率调查.中国康复理论与实践 2004,10(7):412-413.
    38.Rosenzweig ES,McDonald JW:Rodent models for treatment of spinal cord injury:research trends and progress toward useful repair.Curr Opin Neurol 2004,17(2):121-131.
    39.Kwon BK,Oxland TR,Tetzlaff W:Animal models used in spinal cord regeneration research.Spine 2002,27(14):1504-1510.
    40.Metz GA,Curt A,van de Meent H,Klusman I,Schwab ME,Dietz V:Validation of the weight-drop contusion model in rats:a comparative study of human spinal cord injury.J Neurotraurna 2000,17(1):1-17.
    41.Weaver LC,Verghese P,Bruce JC,Fehlings MG,Krenz NR,Marsh DR:Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord.J Neurotrauma 2001,18(10):1107-1119.
    42.Bruce JC,Oatway MA,Weaver LC:Chronic pain after clip-compression injury of the rat spinal cord.Exp Neurol 2002,178(1):33-48.
    43.Oro JJ,Gibbs SR,Haghighi SS:Balloon device for experimental graded spinal cord compression in the rat.J Spinal Disord 1999,12(3):257-261.
    44.Martin D,Schoenen J,Delree P,Gilson V,Rogister B,Leprince P,Stevenaert A,Moonen G:Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon:methodology,behavioral analysis,and histopathology.J Neurosci Res 1992,32(4):539-550.
    45.Vanicky I,Urdzikova L,Saganova K,Cizkova D,Galik J:A simple and reproducible model of spinal cord injury induced by epidurai balloon inflation in the rat.J Neurotrauma 2001,18(12):1399-1407.
    46.Borgens RB,Shi R:Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol.Faseb J 2000, 14(1):27-35.
    47.Talac R,Friedman JA,Moore MJ,Lu L,Jabbari E,Windebank AJ,Currier BL,Yaszemski MJ:Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies.Biomaterials 2004,25(9):1505-1510.
    48.Gruner JA:A monitored contusion model of spinal cord injury in the rat.J Neurotrauma 1992,9(2):123-126;discussion 126-128.
    49.Zingale A:An experimental model to study axonal regeneration of the rat spinal cord*.J Neurosurg Sci 1989,33(4):329-331.
    50.Xu XM,Guenard V,Kleitman N,Bunge MB:Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.J Comp Neurol 1995,351(1):145-160.
    51.Xu XM,Zhang SX,Li H,Aebischer P,Bunge MB:Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord.Eur J Neurosci 1999,11(5):1723-1740.
    52.Fawcett JW:Overcoming inhibition in the damaged spinal cord.J Neurotrauma 2006,23(3-4):371-383.
    53.Anderson TE,Stokes BT:Experimental models for spinal cord injury research:physical and physiological considerations.J Neurotrauma 1992,9 Suppl 1:S135-142.
    54.周建军 胡,冯华,吴国材,张弦,林江凯,李明荣,卞修武,陈鹏:犬实验性脊髓损伤后病理学改变与MRI对比研究.中国临床神经外科杂志 2006,11(8):493-496.
    55.Fawcett JW,Curt A,Steeves JD,Coleman WP,Tuszynski MH,Lammertse D,Bartlett PF,Blight AR,Dietz V,Ditunno J et al:Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel:spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials.Spinal Cord 2007,45(3):190-205.
    56.Hill CE,Beattie MS,Bresnahan JC:Degeneration and sprouting of identified descending supraspinal axons after eontusive spinal cord injury in the rat.Exp Neurol 2001,171(1):153-169.
    57.Li Y,Raisman G:Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 1995, 134(1): 102-111.
    58. Lemons ML, Howland DR, Anderson DK: Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 1999,160(1):51-65.
    59. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M: A proton-gated cation channel involved in acid-sensing. Nature 1997, 386(6621): 173-177.
    60. Waldmann R, Lazdunski M: H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 1998, 8(3):418-424.
    61. Krishtal O: The ASICs: signaling molecules? Modulators? Trends Neurosci 2003, 26(9):477-483.
    62. Bianchi L, Driscoll M: Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 2002, 34(3):337-340.
    63. Reeh PW, Kress M: Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 2001, 1(1):45-51.
    64. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA et ah The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 2000, 407(6807): 1007-1011.
    65. Price MP, Mcllwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001, 32(6): 1071-1083.
    66. Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A: A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 2002, 99(13):8992-8997.
    67. Shimada S, Ueda T, Ishida Y, Yamamoto T, Ugawa S: Acid-sensing ion channels in taste buds. Arch Histol Cytol 2006, 69(4):227-231.
    68. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM: Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A 2002, 99(4):2326-2331.
    69. Yiangou Y, Facer P, Smith JA, Sangameswaran L, Eglen R, Birch R, Knowles C, Williams N, Anand P: Increased acid-sensing ion channel ASIC-3 in inflamed human intestine. Eur J Gastroenterol Hepatol 2001, 13(8):891 -896.
    70. Chen CC, England S, Akopian AN, Wood JN: A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 1998, 95(17): 10240-10245.
    71. Ugawa S, Ueda T, Takahashi E, Hirabayashi Y, Yoneda T, Komai S, Shimada S: Cloning and functional expression of ASIC-beta2, a splice variant of ASIC-beta. Neuroreport 2001, 12(13):2865-2869.
    72. Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M: The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem 1996, 271(18):10433-10436.
    73. Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M: A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 1997, 272(47):29778-29783.
    74. Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A: Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 2006, 143(1):175-187.
    75. Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M: Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 1997, 272(34):20975-20978.
    76. Hruska-Hageman AM, Benson CJ, Leonard AS, Price MP, Welsh MJ: PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H+- gated current. J Biol Chem 2004, 279(45):46962-46968.
    77. Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT: Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 2002, 283(1):C 126-134.
    78. Lilley S, LeTissier P, Robbins J: The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci 2004, 24(5):1013-1022.
    79. Grunder S, Geissler HS, Bassler EL, Ruppersberg JP: A new member of acid-sensing ion channels from pituitary gland. Neuroreport 2000,11(8):1607-1611.
    80. Akopian AN, Chen CC, Ding Y, Cesare P, Wood JN: A new member of the acid-sensing ion channel family. Neuroreport 2000, 11(10):2217-2222.
    81. Ishibashi K, Marumo F: Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun 1998, 245(2):589-593.
    82. Babinski K, Le KT, Seguela P: Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 1999, 72(1):51-57.
    83. Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP: Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 2005, 337(1):349-354.
    84. Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M, Xu TL: Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 2004, 279(42):43716-43724.
    85. Sutherland SP, Benson CJ, Adelman JP, McCleskey EW: Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A 2001, 98(2): 711-716.
    86. Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, Wemmie JA, Blackshaw LA: Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 2005, 54(10): 1408-1415.
    87. Hughes PA, Brierley SM, Young RL, Blackshaw LA: Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol 2007, 500(5):863-875.
    88. Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S: Receptor that leaves a sour taste in the mouth. Nature 1998, 395(6702):555-556.
    89. Lin W, Ogura T, Kinnamon SC: Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 2002, 88(1): 133-141.
    90. Barnes S, Merchant V, Mahmud F: Modulation of transmission gain by protons at the Photoreceptor output synapse. Proc Natl Acad Sci U S A 1993, 90(21): 10081-10085.
    91. Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R: Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 2004, 24(5): 1005-1012.
    92. Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X: Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 2004, 24(45): 10167-10175.
    93. Xu TL, Xiong ZG: Dynamic regulation of acid-sensing ion channels by extracellular and intracellular modulators. Curr Med Chem 2007, 14(16):1753-1763.
    94. Xiong ZQ, Stringer JL: Extracellular pH responses in CA1 and the dentate gyrus during electrical stimulation, seizure discharges, and spreading depression. J Neurophysiol 2000, 83(6):3519-3524.
    95. Rehncrona S: Brain acidosis. Ann Emerg Med 1985, 14(8):770-776.
    96. kaila K, Ransom BR: pH and Brain Function. 1998.
    97. Sykova E, Svoboda J: Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Brain Res 1990, 512(2): 181-189.
    98. Jendelova P, Sykova E: Role of glia in K+ and pH homeostasis in the neonatal rat spinal cord. Glia 1991, 4(1):56-63.
    99. Svoboda J, Motin V, Hajek I, Sykova E: Increase in extracellular potassium level in rat spinal dorsal horn induced by noxious stimulation and peripheral injury. Brain Res 1988, 458(1):97-105.
    100. Sykova E: Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol 1983, 42(2-3): 135-189.
    101. Sykova E, Svoboda J, Polak J, Chvatal A: Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J Cereb Blood Flow Metab 1994, 14(2):301-311.
    102. Tator CH, Koyanagi I: Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 1997, 86(3):483-492.
    103. Jones TB, McDaniel EE, Popovich PG: Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 2005, 11(10):1223-1236.
    104. Baron A, Voilley N, Lazdunski M, Lingueglia E: Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 2008, 28(6): 1498-1508.
    105. Sandkuhler J: Understanding LTP in pain pathways. Mol Pain 2007, 3:9.
    106. Furue H, Katafuchi T, Yoshimura M: Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res 2004, 48(4):361-368.
    107. Vandenberghe W, Robberecht W, Brorson JR: AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J Neurosci 2000, 20(1): 123-132.
    108. Sugawara T, Lewen A, Gasche Y, Yu F, Chan PH: Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. Faseb J 2002, 16(14): 1997-1999.
    109. Regan RF: The vulnerability of spinal cord neurons to excitotoxic injury: comparison with cortical neurons. Neurosci Lett 1996, 213(1):9-12.
    110. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L: Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007, 13(12): 1483-1489.
    111. Xiong ZG, Pignataro G, Li M, Chang SY, Simon RP: Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 2008, 8(1):25-32.
    112. Grossman SD, Rosenberg LJ, Wrathall JR: Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 2001, 168(2):273-282.
    113. Coleman MP, Perry VH: Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 2002, 25(10):532-537.
    114. Povlishock JT: Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1992, 2(1): 1-12.
    115. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R et ah. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 2006, 439(7079):988-992.
    116. Karadottir R, Cavelier P, Bergersen LH, Attwell D: NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 2005, 438(7071): 1162-1166.
    117. Salter MG, Fern R: NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005, 438(7071):1167-1171.
    118. Micu I, Ridsdale A, Zhang L, Woulfe J, McClintock J, Brantner CA, Andrews SB, Stys PK: Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat Med 2007, 13(7):874-879.
    119. Champigny G, Voilley N, Waldmann R, Lazdunski M: Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem 1998, 273(25): 15418-15422.
    120. Baron A, Waldmann R, Lazdunski M: ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 2002, 539(Pt 2):485-494.
    121. Adams CM, Snyder PM, Price MP, Welsh MJ: Protons activate brain Na+ channel 1 by inducing a conformational change that exposes a residue associated with neurodegeneration. J Biol Chem 1998, 273(46):30204-30207.
    122. Johnson MB, Jin K, Minami M, Chen D, Simon RP: Global ischemia induces expression of acid-sensing ion channel 2a in rat brain. J Cereb Blood Flow Metab 2001, 21(6):734-740.
    123. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y: Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 2004, 43(1):43-55.
    124. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV: Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A 2005, 102(34): 12230-12235.
    125. Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El-Hayek YH, Gomez E, Zukin RS, Fehlings MG et ai. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 2006, 26(20):5309-5319.
    126. Mautes AE, Weinzierl MR, Donovan F, Noble LJ: Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 2000, 80(7):673-687.
    127. Paoletti P, Neyton J: NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007, 7(1):39-47.
    128. Park E, Velumian AA, Fehlings MG: The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 2004, 21(6):754-774.
    129. Klusman I, Schwab ME: Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997, 762(1-2): 173-184.
    130. Rossignol S, Schwab M, Schwartz M, Fehlings MG: Spinal Cord Injury: Time to Move? J Neurosci 2007, 22(44): 11782-11792.
    131. Xiong Y, Rabchevsky AG, Hall ED: Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 2007, 100(3):639-649.
    132. Zhang Y, Hou S, Wu Y: Changes of intracellular calcium and the correlation with functional damage of the spinal cord after spinal cord injury. Chin J Traumatol 2002, 5(1):40-42.
    133. Nehrt A, Rodgers R, Shapiro S, Borgens R, Shi R: The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience 2007, 146(4): 1504-1512.
    134. Amar AP, Levy ML: Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 1999, 44(5): 1027-1039; discussion 1039-1040.
    135. Morrison SJ, Spradling AC: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132(4):598-611.
    136. Miesenbock G, De Angelis DA, Rothman JE: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998, 394(6689): 192-195.
    137. Chesler M: Regulation and modulation of pH in the brain. Physiol Rev 2003, 83(4):1183-1221.
    138. Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG: Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 2006, 281(39):29369-29378.
    139. Choi DW: Excitotoxic cell death. J Neuwbiol 1992, 23(9): 1261-1276.
    140. Vila-Carriles WH, Kovacs GG, Jovov B, Zhou ZH, Pahwa AK, Colby G, Esimai O, Gillespie GY, Mapstone TB, Markert JM et ah. Surface expression of ASIC2 inhibits the amiloride-sensitive current and migration of glioma cells. J Biol Chem 2006, 281(28): 19220-19232.
    141. Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL et ah Acid-sensing ion channels in malignant gliomas. J Biol Chem 2003, 278(17): 15023-15034.
    142. Banke TG, Dravid SM, Traynelis SF: Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J Neumsci 2005, 25(1):42-51.
    143. Tang CM, Dichter M, Morad M: Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A 1990, 87(16):6445-6449.
    144. Traynelis SF, Cull-Candy SG: Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 1990, 345(6273):347-350.
    145. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, Traynelis SF, Dingledine R: Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1998, l(8):659-667.
    146. Farooque M, Hillered L, Holtz A, Olsson Y: Effects of methylprednisolone on extracellular lactic acidosis and amino acids after severe compression injury of rat spinal cord. J Neurochem 1996, 66(3): 1125-1130.
    147. Farooque M, Olsson Y, Hillered L: Pretreatment with alpha-phenyl-N-tert-butyl-nitrone (PBN) improves energy metabolism after spinal cord injury in rats. J Neurotrauma 1997, 14(7):469-476.
    148. Braun AP, Schulman H: The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Anna Rev Physiol 1995, 57:417-445.
    149. Fang L, Wu J, Lin Q, Willis WD: Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci 2002, 22(10):4196-4204.
    150. Dai Y, Wang H, Ogawa A, Yamanaka H, Obata K, Tokunaga A, Noguchi K: Ca2+/calmodulin-dependent protein kinase II in the spinal cord contributes to neuropathic pain in a rat model of mononeuropathy. Eur J Neurosci 2005, 21(9):2467-2474.
    151. Larsson M, Broman J: Pathway-specific bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II at spinal nociceptive synapses after acute noxious stimulation. J Neurosci 2006, 26(16):4198-4205.
    152. Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR: Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab 2006, 26(12): 1507-1518.
    153. Zha XM, Wemmie JA, Green SH, Welsh MJ: Acid-sensing ion channel la is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A 2006, 103(44): 16556-16561.
    154. Liu Y, Templeton DM: Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 2007, 581(7):1481-1486.
    155. Koyanagi I, Tator CH, Lea PJ: Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 1: Normal spinal cord. Neurosurgery 1993, 33(2):277-283; discussion 283-274.
    156. Tator CH: Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 1991, 37(5):291-302.
    157. Greenamyre JT, Porter RH: Anatomy and physiology of glutamate in the CNS. Neurology 1994, 44(11 Suppl 8):S7-13.
    158. Wrathall JR, Teng YD, Choiniere D: Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol 1996, 137(1): 119-126.
    159. Mody I, MacDonald JF: NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 1995, 16(10):356-359.
    160. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS: Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 1997, 3(1):73-76.
    161. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF et al: Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 1997, 17(14):5395-5406.
    162. Springer JE, Azbill RD, Knapp PE: Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 1999, 5(8):943-946.
    163. Agrawal SK, Fehlings MG: Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 1997, 17(3): 1055-1063.
    164. Li S, Stys PK: Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 2000, 20(3):1190-1198.
    165. Matute C: Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med 2006, 12(7):289-292.
    166. Stys PK, Lipton SA: White matter NMDA receptors: an unexpected new therapeutic target? Trends Pharmacol Sci 2007, 28(11):561-566.
    167. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC: The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129(Pt 12):3249-3269.
    168. Popovich PG, Wei P, Stokes BT: Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 1997, 377(3):443-464.
    169. Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG: Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 2003, 462(2):223-240.
    170. Bartholdi D, Schwab ME: Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 1997, 9(7): 1422-1438.
    171. Schwartz M, Yoles E: Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 2006, 23(3-4):360-370.
    172. Turrin NP, Rivest S: Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 2006, 34(3):221-242.
    173. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI: Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 2003, 23(6):2284-2293.
    174. Hashimoto M, Sun D, Rittling SR, Denhardt DT, Young W: Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls. J Neurosci 2007,27(13):3603-3611.
    175. Schwartz M, Butovsky O, Bruck W, Hanisch UK: Microglial phenotype: is the commitment reversible? Trends Neurosci 2006, 29(2):68-74.
    176. Kriz J: Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 2006, 18(1-2): 145-157.
    177. Beattie MS: Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 2004, 10(12):580-583.
    178. Bethea JR: Spinal cord injury-induced inflammation: a dual-edged sword. Prog Brain Res 2000, 128:33-42.
    179. Casha S, Yu WR, Fehlings MG: Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001, 103(1):203-218.
    180. Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M et al: Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 2004, 10(4):389-395.
    181. Casha S, Yu WR, Fehlings MG: FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 2005, 196(2):390-400.
    182. Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, Oh YJ, Markelonis GJ, Oh TH: Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007, 27(29):7751-7761.
    183. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 2004, 24(9):2182-2190.
    184. Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ: Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci 2004, 1035:147-164.
    185. Murakami M, Kudo I: Phospholipase A2. J Biochem 2002, 131(3):285-292.
    186. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM: A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 2006, 59(4):606-619.
    187. Kurihara M: Role of monoamines in experimental spinal cord injury in rats. Relationship between Na+-K+-ATPase and lipid peroxidation. J Neurosurg 1985, 62(5):743-749.
    188. Ildan F, Oner A, Polat S, Isbir T, Gocer AI, Kaya M, Karadayi A: Correlation of alterations on Na(+)-K+/Mg+2 ATPase activity, lipid peroxidation and ultrastructural findings following experimental spinal cord injury with and without intravenous methylprednisolone treatment. Neurosurg Rev 1995, 18(1):35-44.
    189. Wada S, Yone K, Ishidou Y, Nagamine T, Nakahara S, Niiyama T, Sakou T: Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-D-aspartate receptor antagonist. J Neurosurg 1999, 91(1 Suppl):98-104.
    190. North RA, Verkhratsky A: Purinergic transmission in the central nervous system. Pflugers Arch 2006, 452(5):479-485.
    191. Sperlagh B, Vizi ES, Wirkner K, Illes P: P2X7 receptors in the nervous system. Prog Neurobiol 2006, 78(6):327-346.
    192. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA et ah P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004, 10(8):821-827.
    193. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S: Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007, 9(8):945-953.
    194. Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM: Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 2008.
    195. Fam SR, Gallagher CJ, Salter MW: P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci 2000, 20(8):2800-2808.
    196. Chen M, Simard JM: Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 2001, 21(17):6512-6521.
    197. Chen M, Dong Y, Simard JM: Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 2003, 23(24):8568-8577.
    198. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V: Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 2006, 12(4):433-440.
    199. Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, Weih M, Dirnagl U: Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007, 38(9):2526-2530.
    200. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK, Gerzanich V: Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 2007, 117(8):2105-2113.
    201. Sherr CJ: Mammalian G1 cyclins. Cell 1993, 73(6): 1059-1065.
    202. Nishitani H, Lygerou Z: Control of DNA replication licensing in a cell cycle. Genes Cells 2002, 7(6):523-534.
    203. Obaya AJ, Sedivy JM: Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 2002, 59(1): 126-142.
    204. Kang SK, So HH, Moon YS, Kim CH: Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics 2006, 6(9):2797-2812.
    205. Velardo MJ, Burger C, Williams PR, Baker HV, Lopez MC, Mareci TH, White TE, Muzyczka N, Reier PJ: Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord. J Neurosci 2004, 24(39):8562-8576.
    206. Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M: Cytoplasmic p21(Cipl/WAFl) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 2004, 127(1): 155-164.
    207. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI: Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005, 102(23):8333-8338.
    208. Byrnes KR, Faden AI: Role of cell cycle proteins in CNS injury. Neurochem Res 2007, 32(10): 1799-1807.
    209. Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI: Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 2007, 130(Pt 11):2977-2992.
    210. Schanne FA, Kane AB, Young EE, Farber JL: Calcium dependence of toxic cell death: a final common pathway. Science 1979, 206(4419):700-702.
    211. Kim SR, Chung YC, Chung ES, Park KW, Won SY, Bok E, Park ES, Jin BK: Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: neuroprotection versus neurotoxicity. Mol Neurobiol 2007, 35(3):245-254.
    212. Venkatachalam K, Montell C: TRP channels. Annu Rev Biochem 2007, 76:387-417.
    213. Flamm ES, Young W, Collins WF, Piepmeier J, Clifton GL, Fischer B: A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg 1985, 63(3):390-397.
    214. Hook MA, Liu GT, Washburn SN, Ferguson AR, Bopp AC, Huie JR, Grau JW: The impact of morphine after a spinal cord injury. Behav Brain Res 2007, 179(2):281-293.
    215. Marsala J, Orendacova J, Lukacova N, Vanicky I: Traumatic injury of the spinal cord and nitric oxide. Prog Brain Res 2007, 161:171-183.
    216. Chester M, Young W, Hassan AZ, Sakatani K, Moriya T: Elevation and clearance of extracellular K+ following graded contusion of the rat spinal cord. Exp Neurol 1994, 125(1):93-98.
    217. Young B, Ott L, Kasarskis E, Rapp R, Moles K, Dempsey RJ, Tibbs PA, Kryscio R, McClain C: Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma 1996, 13(1):25-34.
    218. Fisher CG, Noonan VK, Smith DE, Wing PC, Dvorak MF, Kwon BK: Motor recovery, functional status, and health-related quality of life in patients with complete spinal cord injuries. Spine 2005, 30(19):2200-2207.
    219. Fehlings MG, Tator CH: The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 1992, 579(1):32-42.
    220. Baptiste DC, Fehlings MG: Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 2006, 23(3-4):318-334.
    221. Tator CH: Phase 1 trial of oscillating field stimulation for complete spinal cord injury in humans. J Neurosurg Spine 2005, 2(1): 1; discussion 1-2.
    222. Gunnarsson T, Fehlings MG: Acute neurosurgical management of traumatic brain injury and spinal cord injury. Curr Opin Neurol 2003, 16(6):717-723.
    223. Fehlings MG, Baptiste DC: Current status of clinical trials for acute spinal cord injury. Injury 2005, 36 Suppl 2:B113-122.
    224. Fehlings MG: Summary statement: the use of methylprednisolone in acute spinal cord injury. Spine 2001, 26(24 Suppl):S55.
    225. Tator CH, Fehlings MG: Review of clinical trials of neuroprotection in acute spinal cord injury. Neurosurg Focus 1999, 6(1):e8.
    226. Dolbeare D, Houle JD: Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF). J Neurotrauma 2003, 20(11):1251-1261.
    227. Storer PD, Dolbeare D, Houle JD: Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 2003, 74(4): 502-511.
    228. Guizar-Sahagun G, Grijalva I, Madrazo I, Franco-Bourland R, Salgado H, Ibarra A, Oliva E, Zepeda A: Development of post-traumatic cysts in the spinal cord of rats-subjected to severe spinal cord contusion. Surg Neurol 1994, 41(3):241-249.
    229. Fawcett JW, Asher RA: The glial scar and central nervous system repair. Brain Res Bull 1999, 49(6):377-391.
    230. Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates.4th ed. San Diego: Academic Press; 1998.
    231. Thompson FJ, Reier PJ, Lucas CC, Parmer R: Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J Neurophysiol 1992, 68(5): 1473-1486.
    232. Guth L, Barrett CP, Donati EJ, Anderson FD, Smith MV, Lifson M: Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion. Exp Neurol 1985, 88(1): 1-12.
    233. Guth L, Zhang Z, Roberts E: Key role for pregnenolone in combination therapy that promotes recovery after spinal cord injury. Proc Natl Acad Sci U S A 1994, 91(25):12308-12312.
    234. Deumens R, Koopmans GC, Joosten EA: Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 2005, 77(1-2):57-89.
    235. Nashmi R, Imamura H, Tator CH, Fehlings MG: Serial recording of somatosensory and myoelectric motor evoked potentials: role in assessing functional recovery after graded spinal cord injury in the rat. J Neurotrauma 1997, 14(3):151-159.
    236. Fehlings MG, Tator CH, Linden RD, Piper IR: Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol 1988, 69(1):65-78.
    237. Fehlings MG, Tator CH: The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 1995, 132(2):220-228.
    238. Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P: Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem 1994, 269(17): 12981-12986.
    239. Pettigrew DB, Crutcher KA: Myelin contributes to the parallel orientation of axonal growth on white matter in vitro. BMC Neurosci 2001, 2:9.
    240. Lu P, Jones LL, Tuszynski MH: Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol 2007, 203(1):8-21.
    241. Jones LL, Tuszynski MH: Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci 2002, 22(11):4611-4624.
    242. Houle JD: Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts. Exp Neurol 1991,113(1):1-9.
    243. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV: Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999, 23(2):297-308.
    244. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV: Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004, 24(9):2143-2155.
    245. Sofroniew MV, Howe CL, Mobley WC: Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001, 24:1217-1281.
    246. Purdy PD, White CL, 3rd, Baer DL, Frawley WH, Reichard RR, Pride GL, Jr., Adams C, Miller S, Hladik CL, Yetkin Z: Percutaneous translumbar spinal cord compression injury in dogs from an angioplasty balloon: MR and histopathologic changes with balloon sizes and compression times. AJNR Am J Neuroradiol 2004, 25(8): 1435-1442.
    247. Fukuda S, Nakamura T, Kishigami Y, Endo K, Azuma T, Fujikawa T, Tsutsumi S, Shimizu Y: New canine spinal cord injury model free from laminectomy. Brain Res Brain Res Protoc 2005, 14(3): 171 -180.
    248. Jeffery ND, Smith PM, Lakatos A, Ibanez C, Ito D, Franklin RJ: Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord 2006, 44(10):584-593.
    249. Bernards CM, Akers T: Effect of postinjury intravenous or intrathecal methylprednisolone on spinal cord excitatory amino-acid release, nitric oxide generation, PGE2 synthesis, and myeloperoxidase content in a pig model of acute spinal cord injury. Spinal Cord 2006, 44(10):594-604.
    250. Hultborn H, Nielsen JB: Spinal control of locomotion—from cat to man. Acta Physiol (Oxf) 2007, 189(2): 111-121.
    251. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S, Ishii H, Tanioka Y, Tamaoki N, Nomura T, Toyama Y et ah Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. J Neurosci Res 2005, 80(2): 172-181.
    252. Flanders AE, Schaefer DM, Doan HT, Mishkin MM, Gonzalez CF, Northrup BE: Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology 1990, 177(1):25-33.
    253. Selden NR, Quint DJ, Patel N, d'Arcy HS, Papadopoulos SM: Emergency magnetic resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery 1999, 44(4):785-792; discussion 792-783.
    254. Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG: Acute Cervical Traumatic Spinal Cord Injury: MR Imaging Findings Correlated with Neurologic Outcome-Prospective Study with 100 Consecutive Patients. Radiology 2007, 243(3):820-827.
    255. Bilgen M, Abbe R, Liu SJ, Narayana PA: Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: in vivo magnetic resonance imaging. Magn Reson Med 2000, 43(4): 594-600.
    256. Weirich SD, Cotler HB, Narayana PA, Hazle JD, Jackson EF, Coupe KJ, McDonald CL, Langford LA, Harris JH, Jr.: Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model. Spine 1990, 15(7):630-638.
    257. Berens SA, Colvin DC, Yu CG, Yezierski RP, Mareci TH: Evaluation of the pathologic characteristics of excitotoxic spinal cord injury with MR imaging. AJNR Am J Neuwradiol 2005, 26(7): 1612-1622.
    258. Bilgen M, Dogan B, Narayana PA: In vivo assessment of blood-spinal cord barrier permeability: serial dynamic contrast enhanced MRI of spinal cord injury. Magn Reson Imaging 2002, 20(4):337-341.
    259. Falconer JC, Narayana PA, Bhattacharjee MB, Liu SJ: Quantitative MRI of spinal cord injury in a rat model. Magn Reson Med 1994, 32(4):484-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700