生物丁酸的萃取分离及生物催化合成丁酸乙酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁酸是一种重要的有机酸,在化工、食品、农业、医药等领域有着广泛的用途。丁酸可通过化学合成法或微生物发酵法生产。发酵法存在产物浓度低、后处理量大等问题,实现工业化生产的成本较高。然而,发酵法生产丁酸条件温和,能耗低,污染小,原料来源广泛,生物源制品也更容易满足食品和医药级产品的要求。因此,近年来发酵法受到广泛的关注,其中,建立从发酵液高效提取丁酸的工艺已成为实现其工业化生产的关键。本文采用萃取和生物催化酯化等技术对丁酸分离的条件和策略进行了研究。
     在萃取法分离丁酸的研究中,经过筛选,选择三辛胺(TOA)为萃取剂,正辛醇为稀释剂。考察了TOA浓度、丁酸溶液pH、相比、温度等参数对水溶液中丁酸萃取分配系数的影响。获得的最佳萃取条件为:TOA浓度40%(v/v)、丁酸pH 2-3、相比0.8、温度25℃。发酵液中丁酸萃取和反萃研究结果表明,发酵液pH值为2-3,萃取相比为0.3时,能获得较高的分配系数(13.91),且可大量减少萃取剂的使用;经过两次萃取,发酵液中丁酸萃取率可达96.4%;以0.8 M NaOH为反萃剂,相比为1时,丁酸收率达到86.4%;研究表明,该萃取剂具有很好的再生性能。
     为探索固定化脂肪酶在酯化法分离丁酸中的应用,建立了脂肪酶固定化的新方法。以纤维织物(棉布)为载体,对Candida rugosa脂肪酶进行固定化。建立了聚乙烯亚胺(PEI)活化棉布、酶与PEI-棉布吸附、戊二醛交联的三步脂肪酶固定化方法。考察了PEI加入量、PEI溶液pH、载体及酶的加入量、戊二醛及稳定剂PEG2000的浓度对固定化的影响,获得最佳条件为:对0.1 g脂肪酶进行固定化,PEI加入量为10-20 mg,PEI溶液pH为8-10,载体/酶加入质量比为12-15,戊二醛浓度为0.1~0.5%,PEG 2000浓度为15 mg/mL。
     对固定化Candida rugosa脂肪酶催化丁酸乙酯的合成进行了研究。考察了底物浓度为0.5 M和0.8 M时,酶催化酯化反应过程。考察了反应溶剂、反应体系水活度、温度、酶用量、底物浓度和醇酸摩尔比等参数对反应的影响,获得的最佳反应条件为:环己烷为反应溶剂,高反应体系水活度(0.8-1.0),反应温度为25℃,酶加入量为0.6 g,丁酸和乙醇浓度分别为0.6 M和0.25 M。动力学研究表明,该反应符合双底物抑制Ping Pong Bi-Bi模型,且乙醇是比丁酸更强的抑制剂。该固定化酶具有较好的操作稳定性和储存稳定性。建立了固定化酶循环批次反应器并将其用于丁酸乙酯的合成反应,终产物浓度、产率和酯化率分别为0.85 M、1.45 mmol-h-1·g-1和70.6%。
Butyric acid is an important organic acid which has various applications It can be produced with chemical synthesis or microbial fermentation. Fermentation method has some disadvantages such as low product concentration, complexity of post-processing and high cost for potential industrial application. However, fermentation method offers a production process with mild conditions, low energy consumption, low pollution and wide source of raw materials. Besides, the commercial price of butyric acid from microbial fermentation is high due to a strong preference by consumers and manufacturers for using bio-based natural ingredients in foods and pharmaceuticals. Therefore, much attention has been paid on fermentation method in recent years, and as a key step of this method, separation of butyric acid from fermentation broth with high efficiency is strongly demanded. In this study, extraction and esterification was adopted to isolate butyric acid, and several conditions involved in the separation process were investigated.
     In order to separate butyric acid with extraction method efficiently, trioctylamine (TOA) and n-octanol were adopted as extractant and diluent respectively. Effects of TO A concentration, pH of butyric acid solution, phase ratio and temperature on distribution coefficient were studied. The optimal conditions were:TOA concentration 40% (v/v), butyric acid solution pH 2-3, phase ratio 0.8, temperature 25℃. According to researches on extraction and back-extraction of butyric acid from fermentation broth, high distribution coefficient (13.91) was obtained with much less use of extractant at fermentation broth pH 2-3 and phase ratio 0.3; Extraction yield could be improved to 96.39% by adopting a two-stage extraction process. Further study showed that 0.8 mol/L NaOH was suitable as the stripping solution with a high recovery ratio (86.4%). The selected extractant can be regenerated well under the optimal conditions.
     To explore the performance of immobilized lipase in esterification method for butyric acid separation, a novel method for lipase immobilization was developed. Candida rugosa lipase was immobilized on fibrous material (cotton cloth) following a three-step procedure involving polyethylenimine (PEI) pretreating cotton cloth, adsorption of enzyme to PEI coated cotton cloth and glutaraldehyde cross-linking. Effects of amounts of PEI, support and enzyme, pH of PEI aqueous solution, concentrations of glutaraldehyde and stabilizing agent PEG 2000 on immobilization were investigated. The obtained optimal conditions were:0.1 g enzyme,10-20 mg PEI, PEI aqueous solution pH 8-10, mass ratio of support to enzyme 12-15, glutaraldehyde concentration 0.1-0.5%, PEG 2000 concentration 15 mg/mL.
     Catalytic performance of immobilized lipase in ethyl butyrate synthesis from butyric acid was evaluated. The time-course curves of esterification reaction were determined at various substrate concentrations (0.5 M or 0.8 M). Effects of reaction medium, water activity of reaction system, temperature, amount of immobilized lipase, substrate concentration and molar ratio of alcohol to acid on initial reaction rate and conversion yield were studied intensively. The optimal reaction conditions were:reaction medium cyclohexane, high reaction water activity (0.8-1.0), temperature 25℃, lipase amount 0.6 g, butyric acid concentration 0.6 M and ethanol concentration 0.25 M. A kinetic model of Ping Pong Bi-Bi mode with inhibition of both substrates was proposed and validated by experimental data. Furthermore, ethanol was a stronger inhibitor than butyric acid according to the fitting data of the model. Good operational and storage stability of the immobilized lipase were observed. Finally, a recycle batch reactor using immobilized lipase was developed for ethyl butyrate production. The achieved ethyl butyrat production revealed the promising potential of this immobilized lipase in practical applications.
引文
[1]Playne MJ. Propionic and butyric acids. In:Moo-Young M. Comprehensive biotechnology[M]. Oxford, UK: Pergamon Press.1987,731-759.
    [2]高飞,刘继泉.正丁酸的生产技术及应用状况[J].天津化工,2006,20(6):42-44.
    [3]吴英华,向开祥,侯小娟,等.国内丁酸丁酯的催化合成研究进展[J].日用化学工业,2007,37(3):193-196.
    [4]邓名荣,郭俊,朱红惠.微生物催化生产丁酸研究进展[J].中国生物工程杂志,2009,29(3):117-122.
    [5]朱瑞鸿.合成食用香料手册[M].北京:中国轻工业出版社.1986.
    [6]日本制纸化学株式会社,米雅利桑制药株式会社.饮食用组合物:CN,101415342A[P].20090422.
    [7]Hijova E, Chmelarova A. Short chain fatty acids and colonic health[J]. Bratislava Medical Journal-Bratislavske Lekarske Listy,2007,108(8):354-358.
    [8]Davie JR. Inhibition of histone deacetylase activity by butyrate[J]. Journal of Nutrition,2003,133(7): 2485-2493.
    [9]Watkins SM, Carter LC, Mak J, et al. Butyric acid and tributyrin induce apoptosis in human hepatic tumour cells[J]. Journal of Dairy Research,1999,66(4):559-567.
    [10]Smith JG, Yokoyama WH, German JB. Butyric acid from the diet:Actions at the level of gene expression[J]. Critical Reviews in Food Science and Nutrition,1998,38(4):259-297.
    [11]Van Immerseel F, Boyen F, Gantois I, et al. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry[J]. Poultry Science,2005,84(12):1851-1856.
    [12]陈小兵,许毅,陶正国.丁酸钠的研究进展[J].饲料与畜牧,2007,3):33-34.
    [13]李兴存,陈兴权,赵天生.正丁醛氧化制备正丁酸工艺过程研究[J].化学反应工程与工艺,2002,18(2):144-147.
    [14]吕志果,郭传森,郭振美.正丁醛氧化制高纯度正丁酸的工艺研究[J].香料香精化妆品,2002,(6):3-5,8.
    [15]Zigova J, Sturdik E. Advances in biotechnological production of butyric acid[J]. Journal of Industrial Microbiology & Biotechnology,2000,24(3):153-160.
    [16]Vandak D, Telgarsky M, Sturdik E. Influence of growth factor supplements on butyric acid production from sucrose by Clostridium butyricum[J]. Folia Microbiologica,1995,40(6):669-672.
    [17]Zigova J, Sturdik E, Vandak D, et al. Butyric acid production by Clostridium butyricum with integrated extraction and pertraction[J]. Process Biochemistry,1999,34(8):835-843.
    [18]Saint-Amans S, Girbal L, Andrade J, et al. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures[J]. Journal of Bacteriology,2001,183(5):1748-1754.
    [19]Kong Q, He GQ, Chen F, et al. Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricum[J]. Letters in Applied Microbiology,2006,43(1):71-77.
    [20]Patel GB, Agnew BJ. Growth and Butyric-Acid Production by Clostridium-Populeti[J]. Archives of Microbiology,1988,150(3):267-271.
    [21]Fayolle F, Marchal R, Ballerini D. Effect of Controlled Substrate Feeding on Butyric-Acid Production by Clostridium-Tyrobutyricum[J]. Journal of Industrial Microbiology,1990,6(3):179-183.
    [22]Huang YL, Wu ZT, Zhang LK, et al. Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor[J]. Bioresource Technology,2002,82(1):51-59.
    [23]Huchet V, Thuault D, Bourgeois CM. Modelling of the growth of Clostridium tyrobutyricum in semi-hard cheese[J]. Cost 914-Predictive Microbiology Applied to Chilled Food Preservation,1999,224-228,333.
    [24]Jiang L, Wang JF, Liang SZ, et al. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses[J]. Bioresource Technology,2009,100(13):3403-3409.
    [25]Jo JH, Lee DS, Park JM. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1[J]. Bioresource Technology,2008,99(17):8485-8491.
    [26]Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production[J]. Biotechnology Progress,2006,22(5): 1265-1275.
    [27]Michelsavin D, Marchal R, Vandecasteele JP. Butyric Fermentation-Metabolic Behavior and Production Performance of Clostridium-Tyrobutyricum in a Continuous Culture with Cell Recycle[J]. Applied Microbiology and Biotechnology,1990,34(2):172-177.
    [28]Wu ZT, Yang ST. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum[J]. Biotechnology and Bioengineering,2003,82(1):93-102.
    [29]Zhu Y, Wu ZT, Yang ST. Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor[J]. Process Biochemistry,2002,38(5):657-666.
    [30]Zhu Y, Yang ST. Process development of butyric acid fermentation by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor.[J]. Abstracts of Papers of the American Chemical Society,2002, (224):U218-U218.
    [31]Zhu Y, Yang ST. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor[J]. Biotechnology Progress,2003,19(2):365-372.
    [32]Zhang CH, Ma YJ, Yang FX, et al. Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology[J]. Bioresource Technology,2009, 100(18):4284-4288.
    [33]Canganella F, Kuk SU, Morgan H, et al. Clostridium thermobutyricum:growth studies and stimulation of butyrate formation by acetate supplementation[J]. Microbiological Research,2002,157(2):149-156.
    [34]Canganella F, Wiegel J. Continuous cultivation of Clostridium thermobutyricum in a rotary fermentor system[J]. Journal of Industrial Microbiology & Biotechnology,2000,24(1):7-13.
    [35]Liu XG, Zhu Y, Yang ST. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants[J]. Enzyme and Microbial Technology,2006,38(3-4):521-528.
    [36]Zhu Y, Liu XG, Yang ST. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation[J]. Biotechnology and Bioengineering,2005,90(2): 154-166.
    [37]Zhu Y, Yang ST. Enhancing butyric acid production with mutants of Clostridium tyrobutyricum obtained from metabolic engineering and adaptation in a fibrous-bed bioreactor[J]. Fermentation Biotechnology, 2003,862(52-66.
    [38]Zhu Y. Enhanced butyric acid fermentation by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor[D]. Ohio:The Ohio State University,2003.
    [39]Gabelman A. Start-up of continuous butyric acid fermentor:Google Patents; 1992.
    [40]广东省微生物研究所.一种微生物催化生产正丁酸的方法和装置:CN,101487029A[P].20090722.
    [41]Blahusiak M, Schlosser S, Martak J. Simulation of a hybrid fermentation-separation process for production of butyric acid[J]. Chemical Papers,2010,64(2):213-222.
    [42]Liu XG, Yang ST. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant[J]. Process Biochemistry,2006,41(4):801-808.
    [43]Huang J, Cai J, Wang J, et al. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor[J]. Bioresource Technology,2011,102(4): 3923-3926.
    [44]Jiang L, Wang JF, Liang SZ, et al. CELL 89-Production of butyric acid from acid hydrolysate of wastepaper by Clostridium tyrobutyricum[J]. Abstracts of Papers of the American Chemical Society,2008, 235(89-CELL.
    [45]Vandak D, Tomaska M, Zigova J, et al. Effect of Growth Supplements and Whey Pretreatment on Butyric-Acid Production by Clostridium-Butyricum[J]. World Journal of Microbiology & Biotechnology, 1995,11(3):363-363.
    [46]Michelsavin D, Marchal R, Vandecasteele JP. Control of the Selectivity of Butyric-Acid Production and Improvement of Fermentation Performance with Clostridium-Tyrobutyricum[J]. Applied Microbiology and Biotechnology,1990,32(4):387-392.
    [47]He GQ, Kong Q, Chen QH, et al. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB[J]. J Zhejiang Univ Sci B,2005,6(11):1076-1080.
    [48]Jiang L, Wang JF, Liang SZ, et al. Production of Butyric Acid from Glucose and Xylose with Immobilized Cells of Clostridium tyrobutyricum in a Fibrous-bed Bioreactor[J]. Applied Biochemistry and Biotechnology,2010,160(2):350-359.
    [49]彭跃莲,姚仕仲,纪树兰,等.从柠檬酸发酵液中提取柠檬酸的方法[J].北京工业大学学报,2002,28(1):46-51.
    [50]吕九琢,徐亚贤,袁光,等.乳酸精制新工艺——刮膜蒸发和短程蒸馏联用法[J].现代化工,2001,2 1(1):44-46.
    [51]王甲卫,郭小雷,李政,等.分子蒸馏法分离发酵液中的乳酸[J].化工进展,2007,26(11):1619-1621.
    [52]King CJ. Separation process based upon reversible chemical complexation. In:Rousseau R W, ed. Handbook of Separation Process Technology[M]. New York:John Wiley & Sons,1987:760-774.
    [53]张瑾,戴猷元.络合萃取的”摆动效应”及应用[J].现代化工,1999,19(3):8-11.
    [54]伍时华,路敏,童张法.从发酵液中提取柠檬酸的研究进展[J].广西工学院学报,2005,16(3):9-14.
    [55]赵文军.酯化法从有机垃圾发酵液中提取乳酸的研究[D].哈尔滨:哈尔滨工业大学,2003.
    [56]许彬.酯化法精制乳酸工艺研究[D].合肥:合肥工业大学,2006.
    [57]卢金照,高年发,杨枫,等.乳酸的发酵与提取耦合工艺[J].广州食品工业科技,2004,20(2):17-19.
    [58]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2007.
    [59]McDermott FA, Glasgow R. Manufacture of butyric acid.US,1405055[P].19220131.
    [60]Edmonds W, Krchma I. Method of separating and recovering acetic and butyric acids:US,1835700[P]. 19311208.
    [61]Urbas B. Recovery of organic acids from a fermentation broth:US,4444881[P].19840424.
    [62]Verser D, Eggeman T. Recovery of organic acids:WO,2005073161A1[P].20051108.
    [63]Datta R, M SH, Martin E. Processs for production and purification of fermentation derived organic acids:US, 20050272135A1[P].20051208.
    [64]史文玉,路福平,李涛,等.离子交换法解除丁酸梭状芽孢杆菌发酵液中丁酸抑制的研究[J].食品与发酵工业,2007,33(6):13-15.
    [65]Wu D, Chen H, Jiang L, et al. Efficient Separation of Butyric Acid by an Aqueous Two-phase System with Calcium Chloride[J]. Chinese Journal of Chemical Engineering,2010,18(4):533-537.
    [66]Vasquez C, Ruiz C, Arango D, et al. Production of anhydrous ethanol by extractive distillation with salt effect[J]. Dyna-Colombia,2007,74(151):53-59.
    [67]齐江,戴猷元.醇类稀溶液溶剂萃取的盐效应[J].清华大学学报(自然科学版),2000,40(6):6-8.
    [68]徐红彬,张懿,尤海侠.盐析结晶法分离铬酸钾[J].化工学报,2007,58(4):930-937.
    [69]Krupatkin Ⅰ, Rozhentsova E. Salting-out in systems with cryptoimmiscibility[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya,1971,14(8):1196-1199.
    [70]Krupatkin I, Rozhentsova E. Behavior of binary cryptoexfoliated systems in ternary systems[J]. Zhurnal Fizicheskoi Khimii,1970,44(4):1036-1039.
    [71]Cherkasov DG, Il'in KK. Salting out of butyric acid from aqueous solutions with potassium chloride[J]. Russian Journal of Applied Chemistry,2009,82(5):920-924.
    [72]吴丹.微生物厌氧发酵液中丁酸的高效分离方法[D].杭州:浙江大学,2010.
    [73]Evans PJ, Wang HY. Effects of Extractive Fermentation on Butyric-Acid Production by Clostridium-Acetobutylicum[J]. Applied Microbiology and Biotechnology,1990,32(4):393-397.
    [74]Yang ST, White SA, Hsu ST. Extraction of Carboxylic-Acids with Tertiary and Quaternary Amines-Effect of Ph[J]. Industrial & Engineering Chemistry Research,1991,30(6):1335-1342.
    [75]柴金岭,王大庆,尚树川.TBP-正辛烷溶液萃取正丁酸的研究[J].山东科学,1997,03):30-33.
    [76]Vandak D, Zigova J, Sturdik E, et al. Evaluation of solvent and pH for extractive fermentation of butyric acid[J]. Process Biochemistry,1997,32(3):245-251.
    [77]李文华,柴金岭,鲁建军,等.伯胺N1923萃取正丁酸的研究[J].山东科学,1998,02):31-31,42,52.
    [78]文梅,杨义燕,戴猷元,et al.三辛胺萃取有机羧酸的机理(Ⅱ)——有机羧酸的pK_a值和亲油性的影响[J].化工学报,1998,03):310-315.
    [79]管国锋,马晓龙,姚虎卿.磷酸三丁酯络合萃取丁酸的研究[J].南京工业大学学报(自然科学版),2000,22(6):18-22.
    [80]Sabolova E, Schlosser S, Martak J. Liquid-liquid equilibria of butyric acid in water plus solvent systems with trioctylamine as extractant[J]. Journal of Chemical and Engineering Data,2001,46(3):735-745.
    [81]Wang YD, Li YX, Li Y, et al. Extraction equilibria of monocarboxylic acids with trialkylphosphine oxide[J]. Journal of Chemical and Engineering Data,2001,46(4):831-837.
    [82]Morales AF, Albet J, Kyuchoukov G, et al. Influence of extractant (TBP and TOA), diluent, and modifier on extraction equilibrium of monocarboxylic acids[J]. Journal of Chemical and Engineering Data,2003,48(4): 874-886.
    [83]Qin W, Li ZY, Dai YY. Extraction of monocarboxylic acids with trioctylamine:Equilibria and correlation of apparent reactive equilibrium constant[J]. Industrial & Engineering Chemistry Research,2003,42(24): 6196-6204.
    [84]李振宇,秦炜,戴猷元.三辛胺萃取一元羧酸的平衡规律(Ⅰ)萃取平衡特性[J].化工学报,2004,55(1):54-58.
    [85]管国锋,万辉,畅伟贤.基于神经网络的磷酸三丁酯络合萃取丁酸的研究[J].计算机与应用化学,2004,21(6):823-827.
    [86]Bilgin M, Kirbaslar SI, Ozcan O, et al. Distribution of butyric acid between water and several solvents[J]. Journal of Chemical and Engineering Data,2006,51(5):1546-1550.
    [87]管国锋,徐晨,万辉,等.络合萃取法分离一元有机羧酸盐析效应的研究[J].高校化学工程学报,2006,20(4):657-660.
    [88]Bilgin M, Arisoy C, Kirbaslar SI. Extraction Equilibria of Propionic and Butyric Acids with Tri-n-octylphosphine Oxide/Diluent Systems[J]. Journal of Chemical and Engineering Data,2009,54(11): 3008-3013.
    [89]Keshav A, Wasewar KL, Chand S. Extraction of Acrylic, Propionic, and Butyric Acid Using Aliquat 336 in Oleyl Alcohol:Equilibria and Effect of Temperature[J]. Industrial & Engineering Chemistry Research,2009, 48(2):888-893.
    [90]Martin J, Krchma I. Method of separating and recovering acetic and butyric acids:US,1917660[P]. 19330711.
    [91]Fayolle F, Marchal R, Monot F, et al. Method of extracting normal butyric acid obtained by fermentation: EP,0385826[P].19900905.
    [92]徐顶旺,金思毅,杨小刚,等.对甲苯磺酸催化合成丁酸乙酯动力学研究[J].青岛科技大学学报(自然科学版),2005,26(1):26-30.
    [93]植中强.微波辐射常压合成丁酸乙酯[J].食品工业科技,2005,1):151-152.
    [94]彭荣,李淑琴.分子筛催化合成正丁酸乙酯的研究[J].天津化工,2007,21(1):26-28.
    [95]李淑琴.沸石催化合成丁酸乙酯[J].广州化工,2006,34(5):40-41.
    [96]Pires-Cabral P, da Fonseca MMR, Ferreira-Dias S. Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams:A kinetic study[J]. Biochemical Engineering Journal,2009,43(3):327-332.
    [97]Chen JP. Production of ethyl butyrate using gel-entrapped Candida cylindracea lipase[J]. Journal of Fermentation and Bioengineering,1996,82(4):404-407.
    [98]Santos JC, de Castro HF. Optimization of lipase-catalysed synthesis of butyl butyrate using a factorial design[J]. World Journal of Microbiology & Biotechnology,2006,22(10):1007-1011.
    [99]Lozano P, Perez-Marin AB, De Diego T, et al. Active membranes coated with immobilized Candida antarctica lipase B:preparation and application for continuous butyl butyrate synthesis in organic media[J]. Journal of Membrane Science,2002,201(1-2):55-64.
    [100]Xu Y, Wang D, Mu XQ, et al. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase[J]. Journal of Molecular Catalysis B-Enzymatic,2002,18(1-3):29-37.
    [101]Ferreira-Dias S, Correia AC, Baptista FO. Activity and batch operational stability of Candida rugosa lipase immobilized in different hydrophilic polyurethane foams during hydrolysis in a biphasic medium[J]. Bioprocess Engineering,1999,21(6):517-524.
    [102]de Castro HF, de Lima R, Roberto IC. Rice straw as a support for immobilization of microbial lipase[J]. Biotechnology Progress,2001,17(6):1061-1064.
    [103]Hwang S, Lee KT, Park JW, et al. Stability analysis of Bacillus stearothermophilus L1 lipase immobilized on surface-modified silica gels[J]. Biochemical Engineering Journal,2004,17(2):85-90.
    [104]Torres R, Ortiz C, Pessela BCC, et al. Improvement of the enantio selectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions[J]. Enzyme and Microbial Technology,2006,39(2):167-171.
    [105]Santos JC, Nunes GFM, Moreira ABR, et al. Characterization of Candida rugosa lipase immobilized on Poly(N-methylolacrylamide) and its application in butyl butyrate synthesis[J]. Chemical Engineering & Technology,2007,30(9):1255-1261.
    [106]鲁玉侠,蔡妙颜,郭祀远,等.海藻酸钠包埋法制备固定化脂肪酶研究[J].现代食品科技,2007,23(1):30-32.
    [107]虞英,蒋惠亮.非水相中固定化脂肪酶催化性能的研究[J].广州化学,2008,33(1):1-5.
    [108]刘春雷,于殿宇,屈岩峰,等.吸附-交联法固定化脂肪酶的研究[J].食品工业科技,2008,6):104-106.
    [109]程媛媛,陈必强,谭天伟.以天然纤维织物为载体固定化脂肪酶[J].北京化工大学学报(自然科学版),2008,35(6):71-74.
    [110]黄磊,程振民.纳米-微米复合孔泡沫陶瓷固定化脂肪酶[J].催化学报,2008,29(1):57-62.
    [111]王燕佳,蒋惠亮,方银军,等.新型磁性纳米粒子固定脂肪酶的研究[J].食品与生物技术学报,2008,27(6):98-102.
    [112]Alkaya E, Kaptan S, Ozkan L, et al. Recovery of acids from anaerobic acidification broth by liquid-liquid extraction[J]. Chemosphere,2009,77(8):1137-1142.
    [113]宋宝东,宋丽,庞春霞,等.树脂吸附法固定Candida rugosa脂肪酶[J].化学工程,2009,37(4):8-11.
    [114]Wang SG, Zhang WD, Li Z, et al. Lipase Immobilized on the Hydrophobic Polytetrafluoroethene Membrane with Nonwoven Fabric and Its Application in Intensifying Synthesis of Butyl Oleate[J]. Applied Biochemistry and Biotechnology,2010,162(7):2015-2026.
    [115]Bayramoglu G, Hazer B, Altintas B, et al. Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis[J]. Process Biochemistry,2011,46(1):372-378.
    [116]Thakar A, Madamwar D. Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica[J]. Process Biochemistry,2005,40(10):3263-3266.
    [117]Yigitoglu M, Temocin Z. Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils[J]. Journal of Molecular Catalysis B-Enzymatic,2010,66(1-2):130-135.
    [118]聂开立,王芳,邓利,等.间歇及连续式固定化酶反应生产生物柴油[J].生物加工过程,2005,3(1):58-62.
    [119]Jenish S, Saravanan K, Venkatesan S. Immobilized Enzyme Lipase Catalyzed Transesterification of Olive Oil in Packed Column Reactor[J]. Asian Journal of Chemistry,2011,23(3):1060-1064.
    [120]Saponjic S, Knezevic-Jugovic ZD, Bezbradica DI, et al. Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis:Batch and fluidized bed reactor study[J]. Electronic Journal of Biotechnology,2010,13(6):1-15.
    [121]He P, Greenway G, Haswell SJ. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system[J]. Process Biochemistry,2010,45(4):593-597.
    [122]李丽丽,吴晖,吴苏喜,等.米糠固定化脂肪酶的制备及生化性质的研究[J].现代食品科技,2009,25(7):760-764.
    [123]Kamath N, Melo JS, Dsouza SF. Urease Immobilized on Polyethyleneimine Cotton Cloth[J]. Applied Biochemistry and Biotechnology,1988,19(3):251-258.
    [124]Albayrak N, Yang ST. Immobilization of Aspergillus oryzae beta-galactosidase on tosylated cotton cloth[J]. Enzyme and Microbial Technology,2002,31(4):371-383.
    [125]Albayrak N, Yang ST. Immobilization of beta-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose[J]. Biotechnology Progress,2002,18(2):240-251.
    [126]Rodriguez-Nogales JA, Roura E, Contreras E. Biosynthesis of ethyl butyrate using immobilized lipase:a statistical approach[J]. Process Biochemistry,2005,40(1):63-68.
    [127]Krishna SH, Prapulla SG, Karanth NG. Enzymatic synthesis of isoamyl butyrate using immobilized Rhizomucor miehei lipase in non-aqueous media[J]. Journal of Industrial Microbiology & Biotechnology, 2000,25(3):147-154.
    [128]Varma MN, Madras G. Kinetics of synthesis of butyl butyrate by esterification and transesterification in supercritical carbon dioxide[J]. Journal of Chemical Technology and Biotechnology,2008,83(8): 1135-1144.
    [129]Maury S, Buisson P, Perrard A, et al. Compared esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel[J]. Journal of Molecular Catalysis B-Enzymatic,2005, 32(5-6):193-203.
    [130]Dave R, Madamwar D. Candida rugosa lipase immobilized in Triton-X100 microemulsion based organogels (MBGs) for ester synthesis[J]. Process Biochemistry,2008,43(1):70-75.
    [131]Pires-Cabral P, da Fonseca MMR, Ferreira-Dias S. Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate[J]. Biochemical Engineering Journal,48(2):246-252.
    [132]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(1-2):248-254.
    [133]Halling PJ. Salt Hydrates for Water Activity Control with Biocatalysts in Organic Media[J]. Biotechnology Techniques,1992,6(3):271-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700