赤泥中金属元素分析和CTAB/STAB改性赤泥吸附Cr(Ⅵ)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中国铝业河南分公司拜耳法和烧结法赤泥为原料实验,用原子发射法、原子吸收法、滴定分析法测定出赤泥金属元素的含量,用红外光谱仪、差热分析仪、X射线衍射仪对赤泥表征分析,讨论赤泥内部结构;分别用十六烷基三甲基溴化铵(CTAB)和十八烷基三甲基溴化铵(STAB)对盐酸中和后的烧结法赤泥改性得到改性吸附剂CARM(CTAB Activated Red Mud)和SARM(STAB Activated Red Mud),用CARM和SARM对水溶液中Cr(Ⅵ)进行吸附性能研究,考察最佳吸附条件,结合吸附等温线、吸附动力学、吸附热力学探讨吸附机理。主要内容如下:
     (1)赤泥样品预处理后用酸法消解;对赤泥消解液进行ICP-AES全分析扫描,分析可能含有的金属元素并用ICP-AES法进行准确测定;Fe、Al、Ca、Mg、K、Na六种金属元素用AAS、滴定分析法作对比测定和加标回收实验验证;得到拜耳法赤泥中46种金属元素和烧结法赤泥中47种金属元素的具体含量;硅含量用重量法测定。
     (2)根据测定结果和赤泥在建筑材料中的应用以及赤泥金属元素的提取现状,对赤泥金属元素进行可利用分析,发现赤泥中很多金属元素都有一定的提取利用价值,但限于工业化技术因素和经济因素导致利用价值不大。总之,赤泥综合利用有多种方法,但当前的利用方法和提取工艺有待改进。
     (3)对赤泥做红外、热重、XRD表征,发现赤泥中有8%左右的羟基水,以结晶水、结合水和结构水的形态存在于赤泥复杂的矿物结构中;赤泥中有含CaCO3较多的矿物成分,这些矿物在580℃~680℃时分解放出CO2使拜耳法赤泥失重5%左右,烧结法赤泥失重10%左右;赤泥中的矿物组成比较复杂,主要有方解石、硅酸二钙、钙钛矿、钙霞石、水钙石榴石等。
     (4)烧结法赤泥表面有丰富的可交换阳离子,利用离子交换原理将阳离子表面活性剂CTAB中的阳离子基团C_(16)H_(33)(CH_3)_3N~+和STAB中的阳离子基团C_(18)H_(37)(CH_3)_3N~+结合到烧结法赤泥表面,达到扩充烧结法赤泥孔径增大烧结法赤泥比表面积的目的;两种改性剂CTAB和STAB的最佳改性浓度确定为0.5%和0.6%;改性后的CARM和SARM红外光谱图中发现CH_3~-(N~+)和-CH_2-的特征峰,证明改性成功。
     (5)通过条件选择实验得到CARM和SARM吸附水溶液中Cr(Ⅵ)的最佳吸附条件;以CARM为吸附剂时,溶液初始pH值为2的酸性条件下吸附率最高,吸附30分钟可达吸附平衡,温度对吸附效果的影响不大,相同条件下随着Cr(Ⅵ)浓度的增加吸附量会有所上升;SARM吸附45分钟可达到平衡,其它条件和CARM相同。
     (6)在最佳实验条件下CARM和SARM对100mg/L的Cr(Ⅵ)的吸附率分别可以达到95%和97%以上,对20mg/L的Cr(Ⅵ)吸附率均可以到99%以上;原赤泥、CARM和SARM最大吸附量分别为4.658mg/g、22.03mg/g和25.16mg/g,说明改性后吸附量大幅增加,其中STAB的改性效果更好。
     (7)采用Langmuir和Freundlich两种等温吸附模型分析吸附等温线,分析结果表明,CARM吸附Cr(Ⅵ)的Langmuir等温吸附模型拟合qmax值为22.20mg/g和实验值22.03mg/g非常接近,线性关系为0.9997;SARM吸附Cr(Ⅵ)的Langmuir等温吸附模型拟合qmax值为25.21mg/g和实验值25.16mg/g非常接近,线性关系为0.9990;说明CARM和STAB对水溶液中Cr(Ⅵ)的吸附过程都符合以单分子吸附为主的Langmuir等温吸附模型。
     (8)吸附动力学分析中讨论了准一级动力学和准二级动力学模型,两个吸附过程的准一级动力学拟合出的qe的值分别为0.2165mg/g和0.9531mg/g,偏离实验值较大;CARM吸附Cr(Ⅵ)的准二级动力学模型拟合方程的R2为0.9999,qe理论计算值11.87mg/g和实验所得qe值11.86mg/g非常接近,SARM吸附Cr(Ⅵ)的准二级动力学模型拟合方程的R2为0.9999,qe理论计算值为11.96mg/g和实验所得qe值11.92mg/g也非常接近,说明CARM和STAB对Cr(Ⅵ)的吸附过程符合准二级动力学模型,两个吸附过程都是物理吸附和化学吸附共同作用的结果。
     (9)吸附热力学中计算出了CARM和STAB对Cr(Ⅵ)的吸附过程中吉布斯自由能△G0、吸附焓变值△H0和熵变值△S0,其中两个过程的△G0均小于0说明吸附可以自发进行;△H0分别为-21.75kJ/mol和~(-1)6.48kJ/mol说明两个吸附都是属于放热反应,温度升高不利于吸附;△S0为-66.86J·mol~(-1)·K~(-1)和-48.76J·mol~(-1)·K~(-1)说明两个吸附反应都是总熵减小的过程。
In this arcital, the Bayer red mud and sintering red mud were used as the experimental materials. Thedetermination of the metal element content in the two kinds of red mud are got using AES,AAS andtitration analysis method, characterized analysis to determine the internal structure using infraredspectroscopy, differential thermal analyzer and X-ray diffraction. Then we use CTAB and STAB to modifythe Sintering red mud which was neutralized by hydrochloric acid and the obtained adsorbents were namedas CARM and SARM.Then we use CARM and SARM to study the adsorption capability of Cr(Ⅵ) insolution, during this process, we investigate the optimum adsorption conditions and discuss the mechanismof adsorption in reference of the adsorption isotherms, adsorption kinetics and adsorption thermodynamics.The main research contents in this paper are as follows:
     (1) Treat the red mud samples by acid digestion after their pretreatment,then use ICP-AES qualitativeanalysis to make a full scanning of the digestion solution so as to determine whether a certain metalelement exist and its content by ICP-AES quantitative analysis, while Fe, Al, Ca, Mg, K and Na by AASwith titrimetry analysis method for comparison and standard recovery test for verification. We finally theaccurate contents of47kinds of metal elements of sintering red mud contains and46kinds of metalelements of the Bayer red mud in this study. In addition,silicon content in red mud is determined bygravimetric method.
     (2) According to the determination result and application of building materials as well as metalelements extracting statuses of red mud, we made a analysis of the potential utilization of the metalelements in red mud and it proves that many metal elements of the red have their certain amounts of extractvalue, but limited to the industrialized technical factors, there is little economic value. In short, there arevarious comprehensive utilization methods of red mud,but the current application ways and extractingtechnology still need to be improved.
     (3) The characterization of red mud was made by infrared spectroscopy, differential thermal analyzer andX-ray diffraction. It was found that the red mud contains about8%of the hydroxyl water which exists asthe form of crystal water, combined with the shape of the water and structural water present in the complexmineral structure of the red mud. Red mud contains the minerals which are rich in CaCO3, and these minerals break down at580℃~680℃and release CO2,which leads Bayer red mud about5%weight lossand sintering red mud about10%weight loss. The mineral composition of red mud are rathercomplicated,including mainly calcite, declaim silicate, perovskite, calcium nepheline, water calciumgarnet,etc.
     (4) The surface of Sintering red mud is rich in exchangeable cations, so the surface of Sintering redmud was combined with the cationic group C16H33(CH3)3N+from the cationic surfactant CTAB and thecationic group C18H37(CH3)3N+from the cationic surfactant STAB to the sintering of red mud surface byion exchange principle, this,as a result, achieves the purpose of expanding the aperture of the sintering redmud and increasing its surface area. CTAB and STAB are best modified when their concentration aredetermined as0.5%and0.6%. From the infrared spectra of CARM and Warmth peaks of CH3-(N+) and-CH2-were found and it is proved the modification was successful.
     (5) We got the best adsorption conditions of Cr(Ⅵ) by CARM and SARM through adsorptionexperimental conditions selection. With CARM for example, the highest adsorption rate can be obtainedwhen the initial acid condition is pH2; Adsorption equilibrium time is30minutes; the best adsorbentdosage is0.2g;Adsorption rate increases at lower temperature; with the same other conditions, adsorptioncapacity will increase with the concentration of Cr (Ⅵ). All the mentioned conditions are same to theCARM except that the adsorption equilibrium time is45minutes.
     (6) Under the optimal experimental conditions, Cr(Ⅵ) adsorption rate by CARM and SARM canreach over95%and97%when the initial concentration is100mg/L,while this value can be up to more than99%when the initial concentration of Cr(Ⅵ) is20mg/L. The maximum adsorption capacity of original redmud,CARM and SARM are4.658mg/g,22.03mg/g and25.16mg/g and it shows that red mud adsorptionquantity increases considerably after its modifition, while STAB better.
     (7) Adsorption isotherm was analyzed using Langmuir and Freundlich two adsorption isotherm modelanalysis, and the results show that the Langmuir isothermal adsorption model fitted qmaxvalue for theadsorption of Cr (Ⅵ) of CARM is22.20mg/g and it is very close to the experimental value of22.03mg/g,with linear relationship0.9997. Moreover, this value for SARM adsorption of Cr(Ⅵ) is25.21mg/g andvery close to its experimental value of25.16mg/g,too, with linear relationship value0.9990. In a word, it can be supposed that the adsorption processes of Cr(Ⅵ) of CARM and STAB from aqueous solution are inline with the Langmuir isotherm model based on single-molecule adsorption.
     (8) As for the analysis of adsorption kinetics,both of the pseudo first-order kinetics and dynamicsmodel of quasi two levels were discussed. The values of qefitted out from the pseudo-first order kineticwere0.2165mg/g and0.9531mg/g during the adsorption processes, with a vast deviation from theexperimental ones. However, for the adsorption of Cr (Ⅵ) by CARM,the value of R2in the quasi twolevels dynamic model fitting equation is0.9999, and theoretical calculation value of qeis11.87mg/g whichis very close to the experiment value of qe11.86mg/g. While for the adsorption of Cr (Ⅵ) by SARM,thevalue of R2in the quasi two level dynamic model fitting equation is also0.9999, and theoretical calculationvalue of qeis11.87mg/g which is very close to the experiment value of qe11.86mg/g,too. The resultsshow that, the adsorption processes of Cr (Ⅵ) by CARM and STAB meet quasi two level dynamic modelsand two adsorption processes is a joint action of both physical adsorption and chemical adsorption.
     (9) For adsorption thermodynamics, we calculated the Gibbs free energy△G0, adsorption enthalpyvalue△H0and entropy variable value△S0of CARM and STAB during the process of Cr(Ⅵ) adsorption.The△G0of the two processes are both less than zero and it can be determined the adsorption can bespontaneous. Delta△H0of two adsorption reaction are21.75kJ/mol and16.48kJ/mol accounting foradsorption reaction are-66.86J·mol~(-1)·K~(-1)and-48.76J·mol~(-1)·K~(-1)which prove that the two adsorptionreaction are both entropy reduction processes.
引文
[1]Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste: studies onenvironmental compatibility [J]. J Hazard Mater,2005,117(1):55-63.
    [2]Schwartz A M. Red Mud by-Product [J]. Chem Eng News,2010,88(48):4-4.
    [3]Alp A, Selim Goral M. The effects of the additives, calcination and leach conditions for alumina productionfrom red mud [J]. Scandinavian journal of metallurgy,2003,32(6):301-305.
    [4]Hind A R, Bhargava S K, Grocott S C. The surface chemistry of Bayer process solids: a review [J]. Colloidsand surfaces A: Physicochemical and engineering aspects,1999,146(1-3):359-374.
    [5]Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer Process and bauxitecalcination method [J]. J Hazard Mater,2007,146(1-2):255-261.
    [6]Sidrak Y L. Dynamic simulation and control of the Bayer process. A review [J]. Ind Eng Chem Res,2001,40(4):1146-1156.
    [7]Yatsenko S P, Pyagai I N. Red mud pulp carbonization with scandium extraction during alumina production[J]. Theor Found Chem En+,2010,44(4):563-568.
    [8]刘桂华,刘云峰,李小斌, et al.拜耳法溶出过程降低赤泥碱耗[J].中国有色金属学报,2006,16(3):555-559.
    [9]王亮,修磐石.氧化铝生产中赤泥的堆存与环境保护[J].辽宁化工,2011,40(10):1056-1059.
    [10]赵福辉,芦东.拜耳法外排赤泥铝硅比升高原因及抑制措施的探讨[J].世界有色金属,2002,1(2):25-29.
    [11]Liu W, Yang J, Xiao B. Review on treatment and utilization of bauxite residues in China [J]. InternationalJournal of Mineral Processing,2009,93(3):220-231.
    [12]Bhatnagar A, Vilar V J P, Botelho C M S, et al. A review of the use of red mud as adsorbent for the removalof toxic pollutants from water and wastewater [J]. Environ Technol,2011,32(3):231-249.
    [13]景英仁,景英勤.赤泥的基本性质及其工程特性[J].轻金属,2001,1(4):20-23.
    [14]Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilisation of wastes frommetallurgical and allied industries [J]. Resources, conservation and recycling,2006,48(4):301-314.
    [15]Zhang R, Zheng S, Ma S, et al. Recovery of alumina and alkali in Bayer red mud by the formation ofandradite-grossular hydrogarnet in hydrothermal process [J]. J Hazard Mater,2011,189(3):827-835.
    [16]Wang S, Ang H, Tade M. Novel applications of red mud as coagulant, adsorbent and catalyst forenvironmentally benign processes [J]. Chemosphere,2008,72(11):1621-1635.
    [17]郭晖,邹波蓉,管学茂, et al.拜耳法赤泥的特性及综合利用现状[J].砖瓦,2011,1(3):50-53.
    [18]张彦娜,潘志华.不同温度下赤泥的物理化学特征分析[J].济南大学学报:自然科学版,2006,19(4):293-297.
    [19]张拯,王克勤,李爱秀, et al.赤泥盐酸浸出液中铝的EDTA络合滴定法研究[J].新技术新工艺,2011,1(9):97-99.
    [20]何英,任凤莲.浅谈赤泥中测定铝的实验条件[J].湖南冶金职业技术学院学报,2007,7(3):4-5.
    [21]张吉亮,吴国旗,曹志功.熟料和赤泥中氧化钙,氧化镁一种新测定方法探讨[J].商丘职业技术学院学报,2010,9(2):95-96.
    [22]马淞江,罗道成.阴离子树脂萃取富集-埃铬青R光度法测定赤泥中痕量钪[J].冶金分析,2011,31(8):40-43.
    [23]张国义,李令.丁基罗丹明B萃取光度法测定赤泥中三氧化二镓[J].无机盐工业,2010,1(9):59-62.
    [24]王永惠,贺瑞红,关西安.钼兰光度法测定拜尔赤泥中二氧化硅[J].山西冶金,2003,26(2):31-32.
    [25]马淞江,罗道成.6-氯-苯并噻唑偶氮苯甲酸光度法测定赤泥中钴(Ⅱ)[J].无机盐工业,2010,1(11):58-60.
    [26]李玲,任晓燕.赤泥中钾钠测定方法研究[J].采矿技术,2001,1(1):56-58.
    [27]吴伟明.赤泥矿中的稀土元素测定方法的研究[J].有色金属科学与工程,2011,2(3):76-79.
    [28]范哲锋.离子交换—溶剂萃取ICP—AES法测定红泥中的钪[J].分析试验室,1999,18(2):83-85.
    [29]罗湘宁,周开雄,吴志华.直接压片X-射线荧光光谱法在赤泥分析中的应用[J].分析试验室,2004,23(4):60-63.
    [30]张清香,杨建红.赤泥附碱浓度的离子选择电极法测定[J].轻金属,1995,1(6):13-16.
    [31]高华.离子选择电极法测定铝土矿,赤泥中的氟[J].山西科技,2004,1(2):73-74.
    [32]陈艳丽,李玉平,张懿.离子排斥色谱法同时测定赤泥中硅和磷的含量[J].色谱,2003,21(3):297-297.
    [33]王鑫书,黄德修.赤泥利用的研究[J].轻金属,1999,1(5):13-15.
    [34]郭晖,管学茂,马小娥.烧结法赤泥物理化学特性的研究[J].山西冶金,2010,1(6):1-3.
    [35]Pascual J, Corpas F, López-Beceiro J, et al. Thermal characterization of a spanish red mud [J]. J Therm AnalCalorim,2009,96(2):407-412.
    [36]Palmer S J, Reddy B J, Frost R L. Characterisation of red mud by UV–vis–NIR spectroscopy [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,71(5):1814-1818.
    [37]Sushil S, Batra V S. Catalytic applications of red mud, an aluminium industry waste: A review [J]. AppliedCatalysis B: Environmental,2008,81(1-2):64-77.
    [38]南相莉,张廷安,刘燕, et al.我国主要赤泥种类及其对环境的影响[J].过程工程学报,2009,9(1):459-461.
    [39]Dauvin J C. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure andfunctions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea)[J]. Mar Pollut Bull,2010,60(2):197-206.
    [40]Singh M, Upadhayay S, Prasad P. Preparation of iron rich cements using red mud [J]. Cement Concrete Res,1997,27(7):1037-1046.
    [41]Yang J, Xiao B. Development of unsintered construction materials from red mud wastes produced in thesintering alumina process [J]. Constr Build Mater,2008,22(12):2299-2307.
    [42]Yang H, Chen C, Pan L, et al. Preparation of double-layer glass-ceramic/ceramic tile from bauxite tailingsand red mud [J]. J Eur Ceram Soc,2009,29(10):1887-1894.
    [43]Yang J, Zhang D, Hou J, et al. Preparation of glass-ceramics from red mud in the aluminium industries [J].Ceram Int,2008,34(1):125-130.
    [44]Liu W, Yang J, Xiao B. Application of Bayer red mud for iron recovery and building material productionfrom alumosilicate residues [J]. J Hazard Mater,2009,161(1):474-478.
    [45]Sglavo V M, Maurina S, Conci A, et al. Bauxite ‘red mud’in the ceramic industry. Part2: production ofclay-based ceramics [J]. J Eur Ceram Soc,2000,20(3):245-252.
    [46]李小雷,翟二安,陶丰, et al.赤泥的特性及其在建材方面的应用[J].科协论坛:下半月,2010,1(2):7-8.
    [47]贺深阳,蒋述兴,汪文凌.我国赤泥建材资源化研究进展[J].轻金属,2008,1(12):1-5.
    [48]Sglavo V M, Campostrini R, Maurina S, et al. Bauxite ‘red mud’in the ceramic industry. Part1: thermalbehaviour [J]. J Eur Ceram Soc,2000,20(3):235-244.
    [49]Li X B, Xiao W, Liu W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron byreduction sintering [J]. T Nonferr Metal Soc,2009,19(5):1342-1347.
    [50]Cengeloglu Y, Kir E, Ersoz M, et al. Recovery and concentration of metals from red mud by Donnan dialysis[J]. Colloids and surfaces A: Physicochemical and engineering aspects,2003,223(1-3):95-101.
    [51]Tsakiridis P, Oustadakis P, Katsiapi A, et al. Synthesis of TiO2nano-powders prepared from purifiedsulphate leach liquor of Red Mud [J]. J Hazard Mater,2011,19(4)42-47.
    [52]周秋生,范旷生,李小斌.采用烧结法处理高铁赤泥回收氧化铝[J].中南大学学报:自然科学版,2008,39(1):92-97.
    [53]孙静,王家伟,吴成艳.高效回收赤泥中铁的研究[J].贵州化工,2011,36(2):27-29.
    [54]周凯.低温拜耳法赤泥磁选提铁试验研究[J].现代矿业,2011,1(1):36-38.
    [55]高建阳,陈玉海,郑霞.拜耳法赤泥制备海绵铁影响因素分析[J].山东冶金,2010,32(4):37-40.
    [56]李军旗,龙琼,徐本军.烧结法处理赤泥回收氧化铝的研究[J].轻金属,2009,1(11):11-13.
    [57]李亮星,黄茜琳.从赤泥中提取钛的试验研究[J].湿法冶金,2011,30(4):323-325.
    [58]蔡定建,刘慧.用硫酸从赤泥浸出金属钛实验的动力学研究[J].铝镁通讯,2011,1(1):29-31.
    [59]张江娟.从赤泥中回收二氧化钛的初步研究[J].中国资源综合利用,2003,1(1):28-30.
    [60]Liu Y, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases [J]. Geoderma,2011,163(1-2):1-12
    [61]Zhao Y, Zhang L, Ni F, et al. Evaluation of a novel composite inorganic coagulant prepared by red mud forphosphate removal [J]. Desalination,2011,273(2-3):414-420
    [62]Wang Q, Luan Z, Wei N, et al. The color removal of dye wastewater by magnesium chloride/red mud (MRM)from aqueous solution [J]. J Hazard Mater,2009,170(2-3):690-698.
    [63]郭晖,马名杰.赤泥在水处理中的应用与研究现状[J].河南化工,2011,1(15):25-28.
    [64]朱新锋,杨珊姣,焦桂枝.赤泥在水处理中的应用与研究进展[J].无机盐工业,2010,1(2):5-8.
    [65]张乐观,冯兴华,肖波.赤泥在环境治理中的应用研究进展[J].化工环保,2010,1(1):34-36.
    [66]任根宽.赤泥的改性及其在水泥生产中的应用[J].有色金属,2011,63(1):123-126.
    [67]Richardson I, Groves G. The structure of the calcium silicate hydrate phases present in hardened pastes ofwhite Portland cement/blast-furnace slag blends [J]. Journal of materials science,1997,32(18):4793-4802.
    [68]吴芳,李利,周代军, et al.拜耳法赤泥对水泥浆体孔溶液碱度及强度发展的影响[J].粉煤灰综合利用,2011,1(2):7-11.
    [69]贾韶辉,刘恒波,蒋琨, et al.利用赤泥研制蒸压加气混凝土[J].墙材革新与建筑节能,2011,1(6):24-25.
    [70]王瑞燕,岳涛.赤泥-粉煤灰加气混凝土制备研究[J].新型建筑材料,2011,1(6):31-34.
    [71]李大伟,张立全,刘学峰, et al.高含量赤泥烧结砖的研究[J].新型建筑材料,2009,36(6):26-29.
    [72]宋晓焱,尹国勋.赤泥免烧免蒸砖的正交试验设计及分析[J].砖瓦,2007,1(1):39-41.
    [73]李良波,杜辛颖,张智理, et al. UHMWPVC/微细赤泥/炭黑复合导电材料的研究[J].上海塑料,2010,1(2):41-44.
    [74]蒋述兴,贺深阳.利用赤泥制备建筑陶瓷[J].桂林工学院学报,2008,28(3):385-388.
    [75]冯琼,云斯宁,惠攀, et al.钠钙粉作为添加剂制备赤泥激发偏高岭土胶凝材料[J].非金属矿,2009,32(2):36-39.
    [76]黄迪,倪文,祝丽萍, et al.激发剂对赤泥一矿渣胶结充填材料性能影响研究‘[J].矿业研究与开发,2011,1(4):13-16.
    [77]吴建锋,徐晓虹,张亚涛, et al.烧结法制备赤泥质微晶玻璃及其结构分析[J].武汉理工大学学报,2009,31(11):8-12.
    [78]杨家宽,侯健,姚昌仁, et al.烧结法赤泥道路材料工程应用实例及经济性分析[J].轻金属,2007,1(2):18-21.
    [79]吴红应,李晓勇,杜建新, et al.赤泥复配协同阻燃聚乙烯研究[J].轻金属,2010,1(11):18-21.
    [80]黄柱成,蔡凌波,张元波, et al.拜耳法高铁赤泥直接还原制备海绵铁的研究[J].金属矿山,2009,1(3):173-177.
    [81]芦小飞,王磊,王新德, et al.金属镓提取技术进展[J].有色金属,2008,60(4):105-108.
    [82]薛泽春,李广超,李连之, et al.用盐酸,硝酸提取赤泥中钪的试验研究[J].聊城大学学报:自然科学版,2011,24(1):78-81.
    [83]姜平国,梁勇,王鸿振.赤泥中回收稀有金属[J].上海有色金属,2006,27(1):36-39.
    [84]Geyikci F, Kilic E, Coruh S, et al. Modelling of lead adsorption from industrial sludge leachate on red mudby using RSM and ANN [J]. Chem Eng J,2012,183(1):53-59.
    [85]孟铁宏,朱云勤,胡兆平, et al.改性拜耳法赤泥制备聚合氯化铝铁的研究[J].中国给水排水,2009,1(15):89-91.
    [86]Orescanin V, Nad K, Mikelic L, et al. Utilization of bauxite slag for the purification of industrial wastewaters[J]. Process Safety and Environmental Protection,2006,84(4):265-269.
    [87]Dimas D D, Giannopoulou I P, Panias D. Utilization of alumina red mud for synthesis of inorganicpolymeric materials [J]. Mineral Processing&Extractive Metallurgy Review,2009,30(3):211-239.
    [88]Poulin E, Blais J F, Mercier G. Transformation of red mud from aluminium industry into a coagulant forwastewater treatment [J]. Hydrometallurgy,2008,92(1):16-25.
    [89]杨国俊,于海燕,李威, et al.赤泥脱硫的工程化试验研究[J].轻金属,2010,1(9):26-29.
    [90]于绍忠,满瑞林.赤泥用于热电厂烟气脱硫研究[J].矿冶工程,2005,25(6):63-65.
    [91]Jones G, Joshi G, Clark M, et al. Carbon capture and the aluminium industry: preliminary studies [J].Environ Chem,2006,3(4):297-303.
    [92]刘艳,罗琳,罗惠莉, et al.赤泥颗粒对韭菜吸收污染土壤中铅锌的抑制效应研究[J].农业环境科学学报,2011,30(2):289-294.
    [93]杨宣华,聂呈荣,甄畅迪, et al.赤泥改良对重金属污染土壤种植象草的影响[J].佛山科学技术学院学报:自然科学版,2011,29(1):9-13.
    [94]Soner Altundogan H, Altundogan S, Tümen F, et al. Arsenic removal from aqueous solutions by adsorptionon red mud [J]. Waste Manage,2000,20(8):761-767.
    [95]Gen H, Tjell J C, McConchie D, et al. Adsorption of arsenate from water using neutralized red mud [J]. JColloid Interf Sci,2003,264(2):327-334.
    [96]Rajkumar M, Nagendran R, Sasikumar S. Removal of trivalent chromium from wastewater using red mud[J]. Indian Journal of Environmental Protection,2001,21(2):97-100.
    [97]Zouboulis A I, Kydros K A. Use of red mud for toxic metals removal: the case of nickel [J]. Journal ofChemical Technology and Biotechnology,1993,58(1):95-101.
    [98]Hannachi Y, Shapovalov N A, Hannachi A. Adsorption of Nickel from aqueous solution by the use oflow-cost adsorbents [J]. Korean journal of chemical engineering,2010,27(1):152-158.
    [99]Agrawal A, Sahu K, Pandey B. A comparative adsorption study of copper on various industrial solid wastes[J]. AIChE journal,2004,50(10):2430-2438.
    [100]Nadaroglu H, Kalkan E, Demir N. Removal of copper from aqueous solution using red mud [J].Desalination,2010,251(1-3):90-95.
    [101]Apak R, Tütem E, Hügül M, et al. Heavy metal cation retention by unconventional sorbents (red muds andfly ashes)[J]. Water Research,1998,32(2):430-440.
    [102]Walsh G E, Bahner L H, Horning W B. Toxicity of textile mill effluents to freshwater and estuarine algae,crustaceans and fishes [J]. Environmental Pollution Series A, Ecological and Biological,1980,21(3):169-179.
    [103]侯文俊,余健.印染废水处理工艺进展[J].水处理信息报导,2005,24(2):105-107.
    [104]Gupta V, Suhas, Ali I, et al. Removal of rhodamine B, fast green, and methylene blue from wastewaterusing red mud, an aluminum industry waste [J]. Ind Eng Chem Res,2004,43(7):1740-1747.
    [105]Namasivayam C, Arasi D. Removal of congo red from wastewater by adsorption onto waste red mud [J].Chemosphere,1997,34(2):401-417.
    [106]Namasivayam C, Yamuna R, Arasi D. Removal of procion orange from wastewater by adsorption on wastered mud [J]. Separation science and technology,2002,37(10):2421-2431.
    [107]Tor A, Cengeloglu Y. Removal of congo red from aqueous solution by adsorption onto acid activated redmud [J]. J Hazard Mater,2006,138(2):409-415.
    [108]Liang Z, Peng X J, Luan Z K, et al. Reduction of phosphorus release from high phosphorus soil by red mud[J]. Environmental Earth Sciences,2012,65(3):581-588.
    [109] engeloglu Y, KIr E, Ers z M. Removal of fluoride from aqueous solution by using red mud [J].Separation and Purification Technology,2002,28(1):81-86.
    [110]Li Y, Liu C, Luan Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud andfly ash [J]. J Hazard Mater,2006,137(1):374-383.
    [111]Huang W, Wang S, Zhu Z, et al. Phosphate removal from wastewater using red mud [J]. J Hazard Mater,2008,158(1):35-42.
    [112]LIU C, LI Y, LUAN Z, et al. Adsorption removal of phosphate from aqueous solution by active red mud [J].Journal of Environmental Sciences,2007,19(10):1166-1170.
    [113]Tor A, Cengeloglu Y, Ersoz M. Increasing the phenol adsorption capacity of neutralized red mud byapplication of acid activation procedure [J]. Desalination,2009,242(1-3):19-28.
    [114]Cengeloglu Y, Tor A, Ersoz M, et al. Removal of nitrate from aqueous solution by using red mud [J].Separation and Purification Technology,2006,51(3):374-378.
    [115]Altundogan H S, Altundogan S, Tümen F, et al. Arsenic adsorption from aqueous solutions by activated redmud [J]. Waste Manage,2002,22(3):357-363.
    [116]Pradhan J, Das S N, Thakur R S. Adsorption of hexavalent chromium from aqueous solution by usingactivated red mud [J]. J Colloid Interf Sci,1999,217(1):137-141.
    [117]Gen-Fuhrman H, Tjell J C, McConchie D. Adsorption of arsenic from water using activated neutralizedred mud [J]. Environ Sci Technol,2004,38(8):2428-2434.
    [118]Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueoussolutions using red mud--an aluminium industry waste [J]. Water Research,2001,35(5):1125-1134.
    [119]Wei N, Luan Z, Wang J, et al. Preparation of modified red mud with aluminum and its adsorptioncharacteristics on fluoride removal [J]. Chin J Inorg Chem,2009,25(849-854.
    [120]张书武,刘昌俊,栾兆坤, et al.铁改性赤泥吸附剂的制备及其除砷性能研究[J].环境科学学报,2008,27(12):1972-1977.
    [121]Zhu C, Luan Z, Wang Y, et al. Removal of cadmium from aqueous solutions by adsorption on granular redmud (GRM)[J]. Separation and Purification Technology,2007,57(1):161-169.
    [122]潘嘉芬,马艳飞,李梦红.利用拜耳法赤泥制备水处理多孔陶粒滤料试验研究[J].金属矿山,2010,9(1):130-151.
    [123]李孟,刘丹,吴梓鸿.赤泥基多孔陶瓷材料及其改性物除Cu2+研究[J].武汉理工大学学报,2010,32(18):29-32.
    [124]Yue Q, Zhao Y, Li Q, et al. Research on the characteristics of red mud granular adsorbents (RMGA) forphosphate removal [J]. J Hazard Mater,2010,176(1-3):741-748.
    [125]Owlad M, Aroua M K, Daud W A W, et al. Removal of hexavalent chromium-contaminated water andwastewater: a review [J]. Water, Air,&Soil Pollution,2009,200(1):59-77.
    [126]Dan U. Chromate removal from water using red mud and crossflow microfiltration [J]. Desalination,2005,181(1):135-143.
    [127]闫旭,李亚峰.含铬废水的处理方法[J].辽宁化工,2010,39(2):143-146.
    [128]Mohan D, Pittman C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalentchromium from water [J]. J Hazard Mater,2006,137(2):762-811.
    [129]Chingombe P, Saha B, Wakeman R. Surface modification and characterisation of a coal-based activatedcarbon [J]. Carbon,2005,43(15):3132-3143.
    [130]Babel S, Kurniawan T A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal andcommercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere,2004,54(7):951-967.
    [131]Di Natale F, Lancia A, Molino A, et al. Removal of chromium ions form aqueous solutions by adsorptionon activated carbon and char [J]. J Hazard Mater,2007,145(3):381-390.
    [132]张惠灵,王淑英,伊江明.沸石对含铬废水的处理[J].工业安全与环保,2006,32(10):5-7.
    [133]李静,岳钦艳,李倩, et al.阳离子聚合物改性膨润土对六价铬的吸附特性研究[J].环境科学,2009,30(6):1738-1743.
    [134]Ahalya N, Ramachandra T, Kanamadi R. Biosorption of heavy metals [J]. Res J Chem Environ,2003,7(4):71-79.
    [135]张继义,梁丽萍,蒲丽君, et al.小麦秸秆对Cr (Ⅵ)的吸附特性及动力学,热力学分析[J].环境科学研究,2010,23(12):1546-1552.
    [136]Pugazhenthi G, Sachan S, Kishore N, et al. Separation of chromium (VI) using modified ultrafiltrationcharged carbon membrane and its mathematical modeling [J]. Journal of membrane science,2005,254(1):229-239.
    [137]Aroua M K, Zuki F M, Sulaiman N M. Removal of chromium ions from aqueous solutions bypolymer-enhanced ultrafiltration [J]. J Hazard Mater,2007,147(3):752-758.
    [138]Chiha M, Samar M H, Hamdaoui O. Extraction of chromium (VI) from sulphuric acid aqueous solutions bya liquid surfactant membrane (LSM)[J]. Desalination,2006,194(1):69-80.
    [139]Yilmaz A, Kaya A, Alpoguz H K, et al. Kinetic analysis of chromium (VI) ions transport through a bulkliquid membrane containing p-tert-butylcalix [4] arene dioxaoctylamide derivative [J]. Separation andPurification Technology,2008,59(1):1-8.
    [140]Sapari N, Idris A, Hamid N H A. Total removal of heavy metal from mixed plating rinse wastewater [J].Desalination,1996,106(1-3):419-422.
    [141]Lin S, Kiang C. Chromic acid recovery from waste acid solution by an ion exchange process: equilibriumand column ion exchange modeling [J]. Chem Eng J,2003,92(1-3):193-199.
    [142]Janssen L, Koene L. The role of electrochemistry and electrochemical technology in environmentalprotection [J]. Chem Eng J,2002,85(2-3):137-146.
    [143]Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbonaerogel electrodes [J]. Water Research,2004,38(12):2811-2820.
    [144]Kurniawan T A, Chan G, Lo W H, et al. Physico–chemical treatment techniques for wastewater laden withheavy metals [J]. Chem Eng J,2006,118(1):83-98.
    [145]Kongsricharoern N, Polprasert C. Electrochemical precipitation of chromium (Cr6+) from an electroplatingwastewater [J]. Water science and technology,1995,31(9):109-117.
    [146]Burke I T, Mayes W M, Peacock C L, et al. Speciation of Arsenic, Chromium, and Vanadium in Red MudSamples from the Ajka Spill Site, Hungary [J]. Environ Sci Technol,2012,46(6):3085-3092.
    [1]Alp A, Selim Goral M. The effects of the additives, calcination and leach conditions for alumina productionfrom red mud [J]. Scandinavian journal of metallurgy,2003,32(6):301-305.
    [2]Hind A R, Bhargava S K, Grocott S C. The surface chemistry of Bayer process solids: a review [J]. Colloidsand surfaces A: Physicochemical and engineering aspects,1999,146(1-3):359-374.
    [3]Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer Process and bauxitecalcination method [J]. J Hazard Mater,2007,146(1-2):255-261.
    [4]Sidrak Y L. Dynamic simulation and control of the Bayer process. A review [J]. Ind Eng Chem Res,2001,40(4):1146-1156.
    [5]Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste: studies onenvironmental compatibility [J]. J Hazard Mater,2005,117(1):55-63.
    [6]Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilisation of wastes frommetallurgical and allied industries [J]. Resources, conservation and recycling,2006,48(4):301-314.
    [7]Zhang R, Zheng S, Ma S, et al. Recovery of alumina and alkali in Bayer red mud by the formation ofandradite-grossular hydrogarnet in hydrothermal process [J]. J Hazard Mater,2011,189(3):827-835.
    [8]Bhatnagar A, Vilar V J P, Botelho C M S, et al. A review of the use of red mud as adsorbent for the removal oftoxic pollutants from water and wastewater [J]. Environ Technol,2011,32(3):231-249.
    [9]李玲,任晓燕.赤泥中钾钠测定方法研究[J].采矿技术,2001,1(1):56-58.
    [10]马淞江,罗道成.阴离子树脂萃取富集-埃铬青R光度法测定赤泥中痕量钪[J].冶金分析,2011,31(8):40-43.
    [11]何英,任凤莲.浅谈赤泥中测定铝的实验条件[J].湖南冶金职业技术学院学报,2007,7(3):4-5.
    [12]张国义,李令.丁基罗丹明B萃取光度法测定赤泥中三氧化二镓[J].无机盐工业,2010,1(9):59-62.
    [13]王宴秋,刘钢耀,战丽君. ICP—AES法测定硅铁中锰,铝,钙,铬,镍,铜[J].包钢科技,2008,34(4):83-84.
    [14]张芙蕖,蒋晶晶.三种土壤消解方法的对比研究[J].环境科学与管理,2008,33(3):132-134.
    [15]艾勇.氧化铝生产矿物的红外光谱[J].光谱仪器与分析,2000,1(1):19-21.
    [16]彭速标,郑建国,翟翠萍, et al.铁矿石中全铁的测定[J].广东化工,2009,36(6):162-165.
    [17]雷建平,陈瑜,干宁, et al.环境与生物样品中铝测定的吸光光度和荧光光度分析方法进展[J].无机化学学报,2000,16(1):15-17.
    [18]Li X B, Xiao W, Liu W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron byreduction sintering [J]. T Nonferr Metal Soc,2009,19(5):1342-1347.
    [19]鲁桂林,迟松江,毕诗文.赤泥中氧化铝和氧化铁的浸出[J].材料与冶金学报,2010,9(1):31-34.
    [20]Agatzini-Leonardou S, Oustadakis P, Tsakiridis P, et al. Titanium leaching from red mud by diluted sulfuricacid at atmospheric pressure [J]. J Hazard Mater,2008,157(2):579-586.
    [21]姜平国,王鸿振.从赤泥中浸出钛的研究[J].中国有色冶金,2008,1(2):52-54.
    [22]尹书刚,陈后兴,罗仙平.镓的资源,用途与分离提取技术研究现状[J].四川有色金属,2006,1(2):24-27.
    [23]芦小飞,王磊,王新德, et al.金属镓提取技术进展[J].有色金属,2008,60(4):105-108.
    [24]杨桂株,赵玉清.铷和铯含量的示波极谱滴定法测定[J].分析测试学报,1998,17(5):84-86.
    [25]孙建之.锂的测定方法的进展[J].理化检验:化学分册,2009,1(10):1240-1244.
    [26]胡文兰,张本宏.铍测定方法的研究进展[J].中国卫生检验杂志,2009,1(9):2204-2206.
    [27]毕忠华.可可托海花岗伟晶岩矿床铯的矿化特征[J].新疆有色金属,2009,1(1):9-10.
    [28]刘力.铯榴石提铯置换法制硝酸铯转型工艺[J].新疆有色金属,2007,30(4):36-38.
    [29]邓菲菲.锂提取方法的研究进展[J].沈阳工程学院学报:自然科学版,2010,1(3):285-288.
    [30]楚广,杨天足,楚盛.从钌铱锇矿中提取贵金属的规模化生产[J].贵金属,2005,26(2):1-4.
    [31]王洋,唐晓宁.铝厂赤泥中提钪技术的研究[J].贵州化工,2011,36(5):7-9.
    [32]张海青.世界铀资源概况[J].世界核地质科学,2007,24(4):212-215.
    [33]Liu Y, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases [J]. Geoderma,2011,163(1-2):1-12
    [34]Paredes J, Ordó ez S, Vega A, et al. Catalytic combustion of methane over red mud-based catalysts [J].Applied Catalysis B: Environmental,2004,47(1):37-45.
    [1]Khezami L, Capart R. Removal of chromium (VI) from aqueous solution by activated carbons: kinetic andequilibrium studies [J]. J Hazard Mater,2005,123(1-3):223-231.
    [2]Garg U K, Kaur M, Garg V, et al. Removal of hexavalent chromium from aqueous solution by agriculturalwaste biomass [J]. J Hazard Mater,2007,140(1-2):60-68.
    [3]Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals [J]. WaterResearch,1999,33(11):2469-2479.
    [4]张继义,梁丽萍,蒲丽君等.小麦秸秆对Cr(Ⅵ)的吸附特性及动力学,热力学分析[J].环境科学研究,2010,1(12):1546-1552.
    [5]范树景,王春梅,封孝信.天然及改性沸石对水中Cr6+的吸附研究[J].非金属矿,2006,29(2):56-57.
    [6]Hasan S, Singh K, Prakash O, et al. Removal of Cr (VI) from aqueous solutions using agricultural waste‘maize bran’[J]. J Hazard Mater,2008,152(1):356-365.
    [7]Park D, Yun Y S, Park J M. Use of dead fungal biomass for the detoxification of hexavalent chromium:screening and kinetics [J]. Process Biochemistry,2005,40(7):2559-2565.
    [8]Gupta V K, Rastogi A, Nayak A. Adsorption studies on the removal of hexavalent chromium from aqueoussolution using a low cost fertilizer industry waste material [J]. J Colloid Interf Sci,2010,342(1):135-141.
    [9]Ting J, Rosario L, Ulano A, et al. Enhancement of Chromium (VI) Removal by Pre-Treatments ofCocolumber (Cocos nucifera) Sawdust: Vacuum Drying and Plasma Treatments [J]. World Applied SciencesJournal,2010,8(2):241-246.
    [10]Gupta V, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogoniumhatei from aqueous solutions [J]. J Hazard Mater,2009,163(1):396-402.
    [11]吴宗华,陈少平,庞燕.木麻黄树皮的原位固化制备及其对Cr(Ⅵ)的吸附[J].应用化学,2010,27(11):1256-1259.
    [12]胡付欣,杨性坤.改性膨润土及其在含铬废水处理中的应用研究[J].非金属矿,2002,25(1):46-47.
    [13]Pradhan J, Das S N, Thakur R S. Adsorption of hexavalent chromium from aqueous solution by usingactivated red mud [J]. J Colloid Interf Sci,1999,217(1):137-141.
    [14]韩毅,王京刚,唐明述.用改性赤泥吸附废水中的六价铬[J].化工环保,2005,25(2):132-136.
    [15]Sales J A A, Airoldi C. Epoxide silylant agent ethylenediamine reaction product anchored on silicagel–thermodynamics of cation–nitrogen interaction at solid/liquid interface [J]. Journal of non-crystallinesolids,2003,330(1):142-149.
    [16]Chandra Babu N, Asma K, Raghupathi A, et al. Screening of leather auxiliaries for their role in toxichexavalent chromium formation in leather--posing potential health hazards to the users [J]. J Clean Prod,2005,13(12):1189-1195.
    [17]Lorenc-Grabowska E, Gryglewicz G. Adsorption characteristics of Congo Red on coal-based mesoporousactivated carbon [J]. Dyes and pigments,2007,74(1):34-40.
    [18]Alkan M, Celikcapa S, Demirbas O, et al. Removal of reactive blue221and acid blue62anionic dyes fromaqueous solutions by sepiolite [J]. Dyes and pigments,2005,65(3):251-259.
    [19]Khenifi A, Bouberka Z, Sekrane F, et al. Adsorption study of an industrial dye by an organic clay [J].Adsorption,2007,13(2):149-158.
    [20]Gucek A, Sener S, Bilgen S, et al. Adsorption and kinetic studies of cationic and anionic dyes onpyrophyllite from aqueous solutions [J]. J Colloid Interf Sci,2005,286(1):53-60.
    [1]刘彩娟.表面活性剂的应用与发展[J].河北化工,2007,30(4):20-21.
    [2]苗继斌,钱家盛,章于川.十八烷基三甲基溴化铵为模板合成有序介孔氧化硅及其表征[J].中国粉体技术,2008,14(3):24-27.
    [3]Sales J A A, Airoldi C. Epoxide silylant agent ethylenediamine reaction product anchored on silicagel–thermodynamics of cation–nitrogen interaction at solid/liquid interface [J]. Journal of non-crystallinesolids,2003,330(1):142-149.
    [4]Chandra Babu N, Asma K, Raghupathi A, et al. Screening of leather auxiliaries for their role in toxichexavalent chromium formation in leather--posing potential health hazards to the users [J]. J Clean Prod,2005,13(12):1189-1195.
    [5]Lorenc-Grabowska E, Gryglewicz G. Adsorption characteristics of Congo Red on coal-based mesoporousactivated carbon [J]. Dyes and pigments,2007,74(1):34-40.
    [6]Coruh S, Geyikci F, Ergun O N. Adsorption of basic dye from wastewater using raw and activated red mud [J].Environ Technol,2011,32(11):1183-1193.
    [7]Nadaroglu H, Kalkan E, Demir N. Removal of copper from aqueous solution using red mud [J]. Desalination,2010,251(1-3):90-95.
    [8]Alkan M, Celikcapa S, Demirbas O, et al. Removal of reactive blue221and acid blue62anionic dyes fromaqueous solutions by sepiolite [J]. Dyes and pigments,2005,65(3):251-259.
    [9]Khenifi A, Bouberka Z, Sekrane F, et al. Adsorption study of an industrial dye by an organic clay [J].Adsorption,2007,13(2):149-158.
    [10]Gucek A, Sener S, Bilgen S, et al. Adsorption and kinetic studies of cationic and anionic dyes onpyrophyllite from aqueous solutions [J]. J Colloid Interf Sci,2005,286(1):53-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700