电化学表面增强红外光谱的应用与发展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面电化学是电化学和表面化学相交叉的前沿学科,各种高灵敏度和特异性的现场光谱、扫描微探针和石英微天平等技术的广泛应用推动了表面电化学的发展。电极表面吸附构型解析和燃料电池相关电催化反应机理探索和过程跟踪是表面电化学中的重要研究内容。针对这些问题,现场表面振动光谱发挥着重要作用:它可有效地鉴别电化学催化过程的中问物种,推断电极表面吸附物种的取向和键合等。近年来表面光谱电化学的研究对象从本体光亮电极表面,逐步拓展到具有纳米结构的电极表面。针对这些特殊电极表面的光谱电化学研究,表面增强红外光谱(SEIRAS)与表面增强拉曼光谱(SERS)和反常红外光谱(AIREs)都是重要研究工具。
     配以衰减全反射(ATR)模式的ATR-SEIRAS较SERS表面选律简单,便以讨论分子吸附取向;而与外反射AIREs相比ATR-SEIRAS具有表面信号强、传质不受阻和本体溶液干扰小等优点,便于丌展机理和动态过程研究。然而电化学ATR-SEIRAS无论从研究体系和方法本身都存在不足之处,有必要加以发展。
     本论文工作首先利用传统ATR-SEIRAS技术研究了芳香小分子在电极表面吸附构型以及CO、有机小分子在电极表面催化反应过程。随后,重点针对传统ATR-SEIRAS技术检测限不够宽的局限性,根据“衰势波穿透”和“平面波棱柱-膜耦合理论”改进了电化学ATR-SEIRAS技术,将高质量频谱检测范围拓宽到700 cm~(-1),实现了甲醇电催化活性中间体的可靠鉴定以及芳香分子吸附构型的详细解析;最后,针对单纯ATR-SEIRAS光谱装置无法检测溶液相反应产物及难于评估金属纳米薄膜的增强效应的弱点,设计了内、外反射可切换的表面红外光谱附件系统。本学位论文主要内容摘要如下:
     I-1.异烟酸在Au电极上吸附构型的研究
     异烟酸(即4-吡啶羧酸,INA)在不同pH值水溶液中可以不同离子形式存在,从而可提供三种可能与金属表面作用的吸附端:羧酸根、吡啶N原子和芳香环兀键,因此INA是研究金属电极表面吸附构型的理想模型分子。有关碱性溶液中异烟酸分子在Au电极上的吸附构型以及特性吸附离子效应尚不得知。本文应用传统ATR-SEIRAS结合电化学循坏伏安法和微分电容法研究了0.1 mol·L~(-1) KCl0_4和0.1 mol·L~(-1)KCI碱性化溶液(pH 10)中,异烟酸(INA)在Au电极表面的吸附取向和结构。结果表明:-0.5~0.2 V(vs.SCE)问INA阴离子(INA)通过其羧酸根上的两个氧原子垂直吸附在Au电极表面;特性吸附C1-对上述吸附结构无实质影响。表面增强拉曼光谱的测试进一步表明即使在-0.8~-0.5 V,极少量吸附的INA~-很可能仍维持上述基本构型。
     1-2.芳香小分子在Ag电极上吸附构型的研究
     吡啶和苯甲酸分子是研究金属电极表面吸附构型的理想模型分子,也是SERS研究经典的体系。鉴于SERS选律复杂,我们利用ATR-SEIRAS结合电化学技术研究吡啶和苯甲酸在银电极表面的吸附模式,微分电容测试结果表明在0.1M NaF+10 mM吡啶溶液中,吡啶在-1.0 V(vs.SCE)时丌始吸附,在-0.65 V时吸附达到饱和,随后由于银的部分氧化或者表面氢氧化物的形成,吸附丌始减弱。红外光谱表明,吡啶的吸收峰以A1模式为主,B2模式(定义为面内)极弱,并且992 cm~(-1)(vI)蓝移至1004 cm~(-1)处,这些结果表明吡啶分子通过N端几乎垂直或者轻微倾斜的吸附在银电极表面,与SERS研究结果一致。类似地,微分电容测量结果表明:在0.1 M NaClO_4+10 mM苯甲酸溶液中,苯甲酸在-0.9 V附近发生吸附,在-0.4 v发生相转移变化,随着电位正移,吸附逐渐增强。红外光谱结果表明苯甲酸吸附以A_1模式为主,并且v_s(COO)最强,这些结果表明苯甲酸分子通过羧酸根的两个O原子垂直等位吸附在银电极表面。
     1-3.具有催化及SEIRA活性的Pd膜的制备与应用
     在甲酸燃料电池中Pd电极对甲酸有着良好的催化活性,为了在分子水平上利用ATR-SEIRAS技术研究Pd电极表面氧化甲酸的反应过程,必须在硅红外窗口反射面上成功制备具有SEIRA效应的Pd薄膜电极。本文改进了用于ATR-SEIRAS技术Si上Pd纳米薄膜的制备方法,即利用“种子生长法”化学镀成功在硅基上制备了具有良好结合力和典型电化学特性的Pd膜电极,其催化稳定性好,表面红外信号强且无反常倒峰和扭曲峰的存在,适合于电催化氧化CO和甲酸等的ATR-SEIRAS研究。另外本文还利用ATR-SEIRAS初步研究了甲酸在Pd表面氧化过程,(Ⅰ)澄清甲酸在Pd表面氧化是否产生CO毒性中间体;(Ⅱ)验证与补充甲酸在Pd表面氧化的“双路径机理”,即是否存在第三种氧化路径。
     Ⅱ.实用型宽频检测ATR-SEIRAS装置的研制及应用(论文重点)
     目前传统表面增强红外光谱装置中常用的红外窗口是硅、锗和硒化锌柱。硅柱在1000 cm~(-1)。以下有较强的吸收信号,无法给出相应的红外信号;锗和硒化锌在1000 cm~(-1)以下吸收较弱,但是这两种基底表面的金属薄膜主要依靠真空干法制备,更为严重的是锗和硒化锌基底在酸性溶液不稳定,容易造成金属膜在使用过程中的脱落,并且其上金属膜的电化学响应往往偏离本体金属电极的特征,不适于现场光谱电化学的研究。为此,本文根据“衰势波穿透深度原理”和“平面波棱柱一膜耦合理论”,在两个不同折射率的硒化锌柱体和硅片红外窗口间引入超薄水层,研制出一种简单易行的用于电化学内反射ATR-SEIRAS的装置。超薄水层的引入至关重要,大大增加了红外光在硒化锌柱和硅片之间的光通量。以CO和对硝基苯甲酸(PNBA)为探针分子对改进型ATR-SEIRAS装置实验参数进行测试,结果表明该装置以ZnSe/water/Si wafer为红外窗口,70°入射条件下可获得最强的吸附CO信号,并且在1000-700 cm~(-1)区问也可测得高质量的红外光谱;该装置可采用不同的工作电极,可用于动力学采谱,实时监测电极表面吸附物种随电位变化。利用这种改进型ATR-SEIRAS可同时检测到甲酸根对称伸缩振动v_s(COO)和剪式振动δ(OCO),确认铂电极上甲醇氧化活性中间体为吸附甲酸根;根据700-850 cm~(-1)的面外振动(b_1)和1000-1700 cm~(-1)。面内振动(a1和b2)模式谱峰强度,可估算出吸附PNBA分子平面与电极表面之间的二面央角(α),分子平面内旋转前后C2轴之间的夹角(β)以及电极表面法线与分子C2轴之间的央角(γ),从而全面判定电极表面芳香小分子PNBA吸附构型。
     Ⅲ.内、外反射模式可切换的表面红外光谱装置的研制及应用
     由于单纯的内反射ATR-SEIRAS技术无法检测到溶液中的反应产物,也难于合理评估表面增强红外吸收效应,所以有必要对其进行改进和发展。本文提出一种新型表面红外光谱池设计,利用相同的光路系统和光谱池装置,可实现内、外反射模式之间简便转换。两种光谱技术的联用可提供更多有关反应机理等的信息,利用这种设计按需可检测到在电极上CO_(ad)动态氧化过程,也可检测到溶液相中氧化产物CO_2的信号。也由于两种模式的入射角接近,便于考察ATR红外增强效果。该装置还可为异常红外效应(AIRES)的产生与解释提供实验上的证据,实验结果表明AIRES不仅与金属膜厚度和形貌有关,还很可能与用以制备金属薄膜基底的种类(即基底的反射率差异)有关。
     总之,本论文工作是应用现场ATR-SEIRAS对电极表面吸附与电催化若干重要体系作了有益的研究,同时针对该项技术的不足之处作出改进,进一步揭示了ATR-SEIRAS方法是表面电化学、分析化学和纳米科学研究领域中的重要工具。
Surface electrochemistry is the frontier inter-discipline concerned with the interrelation of electrochemistry and surface chemistry,and the development of surface electrochemistry has been promoted by extensive applications of in-situ spectroscopies, scanning probe microscopes and electrochemical quartz crystal microbalance with high sensitivity and unique specificity.Many interesting topics in surface electrochemistry include the determination of adsorption configuration of aromatic compounds on coinage metal electrodes and of the mechanisms associated with electro-catalytic oxidization of small organic molecules on Pt electrode.In-situ surface vibrational spectroscopies play an important role in investigating the above topics.Recent development of surface spectroelectrochemistry calls for an increasing interest in adsorption and reaction on nano-structured electrodes.Along with this trend, surface-enhanced IR absorption spectroscopy(SEIRAS),surface enhanced Raman spectroscopy(SERS) and abnormal IR spectroscopy(AIREs) are deemed as important analytical tools to offer structural information at electrode/electrolyte interfaces.
     SEIRAS with the Kretschmann ATR configuration(ATR-SEIRAS) has the merits of simpler surface selection rules as compared to SERS,and thus is convenient for discussing the adsorption configurations of aromatic compounds.In addition,with the advantages of higher surface signals and free problems otherwise caused by the thin-layer electrolyte structure with AIREs,ATR-SEIRAS is preferable for dynamically identifying and monitoring intermediates of irreversible reactions.Nevertheless,there is still a large space to be filled in terms of research systems and technique improvement before ATR-SEIRAS becomes perfect.
     In this thesis,firstly traditional ATR-SEIRAS has been applied to reinvestigate the adsorption configuration of typical aromatic molecules at electrodes and the reaction processes of CO as well as small organic molecules on Pd electrodes;Secondly, ATR-SEIRAS with a new optical window is proposed,based on the penetration of evanescent waves and the theory of "prism-film coupler for plane wave" to surmount the frequency detection limit of traditional ATR-SEIRAS.Thirdly,new design in IR optics switchable for internal and external modes on demand is proposed to take full advantage of the two modes.The main results and conclusions are summarized as follows:
     Ⅰ-1.Investigation of adsorption configuration of isonicotinic acid on Au electrode
     Isonicotinic acid has three possible sites for attaching the electrode surface,viz. -COOH,N atom andπbond,and thus taken as a model molecule for the study of adsorption geometries.ATR-SEIRAS combined with cyclic voltammetry and differential capacitance measurement has been applied to investigate the adsorption configuration of isonicotinate(INA~-) species on Au electrodes in alkalinized 0.1 mol·L~(-1) KClO_4 and 0.1 mol·L~(-1) KCl solutions(pH10).The results indicate that INA~- is nearly vertically adsorbed on the Au surface through the two oxygen atoms of its carboxylate group between -0.4 and 0.2 V(SCE).The presence of Cl~- in supporting electrolyte dose not changes the adsorption configuration of INA~- on Au electrodes. Further supporting information from surface-enhanced Raman spectroscopy suggests that at negative potentials from -0.8 to -0.5 V,INA~- species adsorbed on Au electrode of a very low coverage is likely to remain the nearly same configuration as that revealed at more positive potentials.
     Ⅰ-2.Investigation for adsorption configuration of aromatic molecules on Ag electrode surface
     Pyridine(Py) and benzoic acid(BA) molecules are the classic model molecules for studying adsorption configuration on metal surface,especially by SERS.Due to complicated nature of SERS surface selection rules,ATR-SEIRAS combined with cyclic voltammetry and differential capacitance measurement has been applied to investigate the adsorption configuration of Py and BA species on Ag electrodes.In the presence of 10 mM pyridine in 0.1 M NaF,the result of capacitance curve measurement suggests that adsorption of Py starts at the potential of ca.-1.0 V,and increases up to -0.65 V and then decreases at higher potentials due to partial oxidation of Ag electrodes.The ATR-SEIRA spectra are dominated with vibrational modes having A_1 symmetry,while those having B_2(in-plane) symmetry are hardly observed.It is noteworthy that spectral features for the adsorbed and the bulk pyridine are different in terms of relative band intensity and position.The totally symmetric ring breathing mode(ν_1) blue-shifts from 992 to 1004 cm~(-1),suggestive of the adsorption via N end. On the basis of the surface selection rule of SEIRAS,the adsorbed pyridine molecules are bound to the Ag electrode with its ring plane perpendicular or slightly tilted to the local surface without significantly rotating its C_2 axis about the surface normal consistent with the conclusion drawn by SERS in the literature.In 0.1 M NaClO_4+10 mM BA,the capacitance curve measurement suggests that BA adsorbs on Ag surface at ca.-0.9 V and undergoes phase transition at ca.-0.4 V.The ATR-SEIRA spectra are dominated by vibrational modes having A_1 symmetry and the intensity ofν_s(OCO) is the most strong,indicating that benzoic acid at positive potentials higher than -0.4 V is bound to the electrode surface through the carboxylate oxygen atoms with a bridging coordination.
     Ⅰ-3.Fabrication and application of SEIRA-active Pd film electrode
     Pd electrode shows a high catalytic activity toward the oxidation of formic acid in direct formic acid fuel acid(DFAFC).In order to clarify the mechanism for HCOOH oxidation on Pd electrodes by ATR-SEIRAS,it is essential to construct SEIRA-active Pd film electrodes on the basal plane of a Si window.Here,an improved protocol has been proposed for electroless plating of Pd on Si,enabling a strong adhesion between the plated Pd film and the Si substrate,even after repetitive electrochemical cycling in an acid solution.Besides,the Pd film electrode exhibit strong SEIRA effect and with unipolar band shape,laying the basis for reliable peak analysis.The electrochemical measurements manifest that Pd film electrode is excellent for the electro-oxidation of formic acid.Furthermore,preliminary study has been carried out on the electro-oxidation of HCOOH on Pd electrode by employing ATR-SEIRAS,1) to clarify whether poisonous CO_(ad) will be formed for HCOOH oxidation on Pd electrodes; 2) to supplement the so-called "dual pathway" mechanism for HCOOH oxidation on Pd electrode.
     Ⅱ.Fabrication and application of practically modified ATR-SEIRAS for high-quality frequency-extended detection of surface species at electrodes
     In electrochemical ATR-SEIRAS application,the Si prism is the most frequently used IR window to support the film electrodes owing to its stability in acidic electrolytes,as well as readily available mature and economical wet processes for fabricating various metal electrodes on Si surface.However,a Si prism per se suffers from strong IR absorption in the frequency lower than 1000 cm~(-1),preventing the observation of important spectral fingerprints in this region,hence compromises the structural and mechanistic elucidation at electrodes.Nevertheless,metal film electrodes supported on ZnSe and Ge prisms(having much higher IR transmission in the range of 1000-700 cm~(-1) than Si prism) suffer frequently from abnormal electrochemical responses in wide potential excursions especially in strong acid solutions,due to the instability and dissolution of Ge and ZnSe substrate as well as peeling off metal films.To address this issue,primarily based on "the penetration of evanescent wave" and "the theory of prism-film coupler for plane wave",we present here a practically modified ATR-SEIRAS configuration by sandwiching an ultra-thin water interlayer(submicron thick) between a Si wafer and a ZnSe prism.It is very important to introduce water interlayer in this new ATR optics,which significantly enhances the throughput of effective IR beam across the ZnSe/gap/Si/metal film.This new ATR-SEIRAS with ZnSe/water/Si IR window at incidence angle of 70°can yield the strongest surface IR signal down to 700 cm~(-1).The advantages of this modified ATR-SEIRAS have been initially applied to explore two selected systems: wide-ranged in-situ ATR-SEIRA spectra includingν_s(OCO) andδ(OCO) modes provided strong evidence in support of the formate intermediate pathway for methanol electro-oxidation at Pt electrode in an acid solution.In addition,new spectral fingerprints revealed comprehensive orientational information about of the p-nitrobenzoate species at Pt electrode as a result of the dissociative adsorption of p-nitrobenzoic acid molecules from an acid solution.From the in-plane and out-of-plane vibrations obtained from 700-1700 cm~(-1),three parameters associated with the orientation configuration can be evaluated,including the dihedral angle between the molecular plane and local surface plane,the edge-tilted angle of the molecular plane,and the angle between the symmetry axis of the molecular plane and the local surface normal.
     Ⅲ.Design and application of an IR spectral cell switchable for internal and external reflection modes
     ATR-SEIRAS alone is unable to identify the products in bulk solution and to evaluate IR enhancement.In this thesis,we design a spectral cell convenient for the switching between internal and external reflection modes,favoring the acquisition of full information regarding both the surface and the solution.This switchable IR spectroscopy can be applied to identify CO adsorption and its subsequent oxidation to CO_2,as well as elucidate the origin of abnormal IR effect(AIRES) experimentally. The results show that the AIRES is not only related to the thickness and structure of the metal overfilm but also to the reflectivity of the substrate.
     In summary,conventional ATR-SEIRAS has been applied to investigate the adsorption configuration of prototype molecules on Au and Ag electrodes,as well as the electrocatalytic reaction on Pd and Pt electrodes.We also focus on the improvement of ATR-SEIRAS technique per se for extended detections.The thesis reveals that ATR-SEIRAS is an important analytical tool in surface electrochemistry, analytical chemistry and nanotechnology.This work is expected to contribute to the advancement of electrochemical ATR-SEIRAS.
引文
[1]A.J.Bard,L.R.Faulkner,Electrochemical Methods Fundamentals and Applications[M].John Wiley & Sons,Inc.2001.
    [2]巴德,福克纳著,邵元华,朱果逸,董献堆等译,电化学方法—原理和应用[M].北京:化学工业出版社,2005
    [3]T.Kuwana,R.K.Darlington and D.W.Leedy,Spectrophotometric determination of silicon in gallium phosphide.Anal.Chem.,1964,36(10):2036-2037.
    [4]T.Kuwana and N.Winograd,in Electroanalytical Chemistry,A.J.Bard,Ed.,Vol.7,Marcel Dekker,New York,1974.
    [5]W.R.Heineman,F.M.Hawkridge and H.N.Blount,in Electroanalytical Chemistry,A.J.Bard,Ed.,Vol.13,Marcel Dekker,New York,1983.
    [6]E.Yeager,T.E.Furtak,K.L.Kliewer,D.W.Lynch,Non-Traditional Approaches to the Study of the Solid Electrolyte Interface[M].Amsterdam:North-Holland Publishing Co.,1980.
    [7]A.J.Bard,H.D.Abruna,C.E.Chidsey,et al,The electrode electrolyte interface a status report[J].J.Phys.Chem.,1993,97(28):7147-7173.
    [8]田中群,孙世刚,罗瑾,杨勇,现场光谱电化学研究的新进展[J].物理化学学报,1994,10(9):860-866.
    [9]A.Wieckowshki,Interfacial electrochemistry[M].New York:VCH,1999.
    [10]郑华均,马淳安,光谱电化学原位测试技术的应用及进展[J].浙江工业大学学报,2003,31(5):501-507.
    [11]林仲华,叶思宇,黄明东等,电化学中的光学方法[M].北京:科学出版社,1990.
    [12]罗瑾,林仲华,田昭武.电化学原位紫外可见反射光谱法[J].化学通报,1994,2:5-8.
    [13]J.D.E.Mcintyre,D.E.Aspnes,Differential reflection spectroscopy of very thin surface films[J].Surf.Sci,1971,24:417-434.
    [14]W.Akemann,K.A.Friedrich,U.Linke,U.Stimming,The catalytic oxidation of carbon monoxide at the platinum/electrolyte interface investigated by optical second harmonic generation(SHG):comparison of Pt(111) and Pt(997) electrode surfaces[J].Surf.Sci.,1998,402(1-3):571-575
    [15]G.Q.Lu,A.Lagutchev,D.D.Dlott,A.Wieckowski,Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry:CO on a Pt electrode[J].Surf.Sci.,2005,585(1-2):3-16.
    [16]M.L.Lynch,R.M.Corn,In-situ second Harmonic generation studies of the surface-structure of a well-ordered Pt(111) electrode[J].J.Phys.Chem.1990, 94(11):4382-4385.
    [17]B.Pettinger,J.Lipkowski,S.Mirwald and A.Friedrich,Specific adsorption at Au(111) electrodes studied by second harmonic generation[J].J.Electroanal.Chem.1993,329:289-311.
    [18]D.A.Higgins,R.M.Corn,Secend Harmonic generation studies of adsorption at a liquid liquid electrochemical interface[J].J.Phys.Chem.1993,97(2):489-493.
    [19]O.Sato,R.Baba,K.Hashimoto,A.Fujishima,Coherent interferometric analysis of the molecular orientation based on the study of the optical second harmonic generation[J].J.Electroanal.Chem.1991,306:291-296.
    [20]P.Guyot-Sionnest,A.Tadjeddine,Spectroscopic investigations of adsorbates at the metal-electrolyte interface using sum frequency generation[J].Chem.Phys.Lett.,1990,172:341-345.
    [21]Robert W Collins,Kim Yeontaik,Ellipsometry for thin-film and surface analysis [J].Anal chem.,1990,62(17):887A-904A.
    [22]雷惊雷,李凌杰,蔡生民等.弱碱性介质中氯离子对铜电极腐蚀行为的研究[J].物理化学学报,2001,17(12):1107-1111
    [23]S.Bruckenstein,R.R.Gadde.Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J],J.Am.Chem.Soc,1971,93(3):793-794.
    [24]T.Iwasita,W.Vielstich and E.Santos.Identification of the adsorbate during methanol oxidation[J],J.Electroanal.Chem.1987,229(1-2):367-376.
    [25]A.A.Gewirth,B.K.Niece,Electrochemical applications of in situ scanning probe microscopy.Chem Rev,1997,97:1129-1162.
    [26]毛秉伟,任斌.扫描电化学显微.化学通报,1995,3:13-17
    [27]M.Fleischmann,P.J.Hendra,A.J.McQuillan[J].Chem.Phys.Lett.,1974,26:163-166.
    [28]L.Jeanmaire,R.P.Van Duyne,Surface raman spectroelectrochemistry part Ⅰ.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized ailver electrode.[J]J.Electroannal.Chem.1977,84:1-20.
    [29]M.G.Albrecht,J.A.Creighton,Anomalously intense Raman spectra of pyridine at silver electrode[J].J.Am.Chem.Soc.,1979,99:5215-5217.
    [30]R.L.Birke,T.H.Lu,J.R.Lombardi,in Techniques for Characterization of Electrodes and Electrochemical processes,[M]Edited by R.Varma and J.R.Selman,chapt.5,212,1991.
    [31]A.Otto,I.Mrozek,H.Grabhorn,W.Akemann,Surface-enhanced Raman scattering[J].J.Phys.Condens.Matter.,1992,4:1143-1212.
    [32]W.H.Schrotter,H.W.Klochner.Vol.11 in Raman spectroscopy of gases and liquids[M],A Weber,Ed.;Springer-Verlag:Berlin,1979.
    [33]J.Gui,T.M.Devine.Obtaining surface-enhanced Raman-spectra from the passive film on iron[J].J.Electrochem.Soc.,1991,138(5):1376-1384.
    [34]L.J.Oblonsky,T.M.Devine,J.W.Ager,et al.Surface-enhanced Raman-scattering from pyridine adsorbed on thin-layers of stainless-steel[J].J.Electrochem.Soc.,1994,141(12):3312-3317.
    [35]L.W.H.Leung,M.J.Weaver.Extending surface-enhanced Raman spectroscopy to transition-metal surfaces:Carbon monoxide adsorption and electrooxidation on platinum and palladium-coated gold electrodes[J].J.Am.Chem.Soc.,1987,109:5113-5119.
    [36]S.Zou,M.J.Weaver.Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes:Chemical bonding versus electrostatic field effects[J].J.Phys.Chem.B,1996,100:4237-4242.
    [37]S.Zou,M.J.Weaver,X.Q.Li,et al.New strategies for surface-enhanced Raman scattering at transition-metal interfaces:Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon[J].J.Phys.Chem.B,1999,103:4218-4222.
    [38]S.Zou,M.J.Weaver.Surface-enhanced Raman scattering on uniform transition-metal films:Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces?[J].Anal.Chem.,1998,70:2387-2395.
    [39]S.Zou,C.T.Williams,E.K.Y.Chen,et al.Probing molecular vibrations at catalytically significant interfaces:A new ubiquity of surface-enhanced Raman scattering[J].J.Am.Chem.Soc.,1998,120(15):3811-3812.
    [40]M.F.Mrozek,Y.Xie,M.J.Weaver,Surface-enhanced Raman scattering on uniform platinum-group overlayers:preparation by redox replacement of underpotential-deposited metals on gold[J].Anal.Chem.,2001,73(24):5953-5960.
    [41]S.A.Bilmes,J.C.Rubim,A.Otto,et al.SERS from pyridine adsorbed on electrodispersed platinum electrodes[J].Chem.Phys.Lett.,1989,159:89-96.
    [42]W.B.Cai,B.Ren,X.Q.Li,et al.Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J].Surf.Sci.,1998,406:9-22.
    [43]B.Ren,X.F.Lin,J.W.Yan,et al.Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy[J].J.Phys.Chem.B,2003,107(4):899-902.
    [44]P.G.Cao,J.L.Yao,B.Ren,et al.Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaC104 solution[J].J.Phys.Chem.B,2002,106(39):10150-10156.
    [45]Y.Xie,D.Y.Wu,G.K.Liu,et al,Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories[J].J.Electroanal.Chem.,2003,554:417-425.
    [46]Q.J.Huang,X.F.Lin,Z.L.Yang,et al.An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J].J.Electroanal.Chem.,2004,563(1):121-131.
    [47]Z.Q.Tian,Z.L.Yang,B.Ren,et al.Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape[J].Faraday Discuss.,2006,132:159-170.
    [48]J.Corset,J.Aubard,Ed.,Surface enhanced Raman scattering:new trends and applications[J].J.Raman Spectrosc.,Special Issue,1999,29:8.
    [49]Z.Q.Tian,Ed.,Surface-enhanced Raman scattering:advancements and applications[J].J.Raman Spectrosc.,Special Issue,2005,36:6-7.
    [50]K.Kneipp,Y.Wang,H.Kneipp,et al,Single molecule detection using surfaceenhanced Raman scattering(SERS)[J].Phys.Rev.Lett.,1997,78(9):1667-1670.
    [51]S.Nie,S.R.Emory,Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science,1997,2 75:1102-1106.
    [52]Z.Q.Tian,B.Ren,D.Y.Wu,Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanost ructures[J].J.Phys.Chem.B,2002,106(37):9463-9483.
    [53]B.Ren,Z.Q.Tian,The progress in surface-enhanced Raman spectroscopy[J].Mod.Instrum.,2004,5(9):1-8.
    [54]R.M.Stockle,Y.D.Suh,V.Deckert,et al,Nanoscale chemical analysis by tipenhanced Raman spectroscopy[J].Chem.Phys.Lett.,2000,318(1-3):131-136.
    [55]N.Hayazawa,Y.Inouye,Z.Sekkat,et al,Metallized tip amplification of near-field Raman scattering[J].Opt.Commun.,2000,183(1-4):333-336.
    [56]M.S.Anderson,Locally enhanced Raman spectroscopy with an atomic force microscope[J].Appl.Phys.Lett.,2000,76(21):3130-3132.
    [57]B.Pettinger,G.Picardi,R.Schuster,et al.Surface-enhanced Raman spect roscopy:towards single molecule spectroscopy[J].Electrochemistry,2000,68(12):942-949.
    [58]X.Wang,Z.Liu,M.D.Zhuang,et al,Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,Appl.Phys.Lett.2007,91:101105-101107.
    [59]P.A.Brooksby,W.R.Fawcett,Determination of the Electric Field Intensities in a Mid-Infrared Spectroelectrochemical Cell Using Attenuated Total Reflection Spectroscopy with the Otto Optical Configuration[J].Anal.Chem.,2001,73:1155-1160.
    [60]W.R.Heineman,J.N.Burnett,R.W.Murry,Optically transparent thin-larer electrodes:ninhydrin reduction in an infrared transparent cell[J].Anal.Chem.,1968,40:1974-1978.
    [61]周尉,王俊逸,盛海涛,江志裕,严曼明,甲醇阳极氧化的现场FTIR透射差谱研究,化学学报,2000,58(11):1447-1451.
    [62]F.Liu,W.Zhou,M.Yan,Z.Jiang,In situ transmission difference FTIR spectroscopic investigation on anodic oxidation of methanol in aqueous solution [J].Electrochem.Commun.,2003,5:276-282.
    [63]R.G.Greenler,Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques[J].J.Chem.Phys.1966.44(1):310-315.
    [64]S.G.Sun,Y.Lin,Kinetics of isopropanol oxidation on Pt(111),Pt(110),Pt(100),Pt(610) and Pt(211) single crystal electrodes-Studies of in situ time-resolved FTIR spectroscopy[J].Electrochimica Acta,1998,44:1153-1162.
    [65]S.M.Moon,C.Bock,B.MacDougall,Setup,sensitivity and application of thin electrolyte layer ATR-FTIR spectroscopy[J].J.Electroanal.Chem.2004,568:225-233.
    [66]A.Bewick,J.M.Mellor,B.S.Pons,Distinction between ECE and disproportionation mechanisms in the anodic oxidation of methyl benzenes using spectroelectrochemical methods[J].Electrochim.Acta,1980,25(7):931-941.
    [67]周志胡,厦门大学博士论文[D],2004.
    [68]C.H.Zhen,S.G.Sun,C.J.Fan,S.P.Chen,B.W.Mao,Y.J.Fan,In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions[J].Electrochim.Acta 2004,49(8):1249-1255.
    [69]Q.H.Wu,N.H.Li,S.G.Sun,Manipulation of electrocatalytic reaction pathways through surface chemistry:In situ Fourier transform infrared spectroscopic studies of 1,3-butanediol oxidation on a Pt surface modified with Sb and S adatoms[J].J.Phys.Chem.B,2006,110(23):11383-11390.
    [70]A.Hartstein,J.R.Kirtley,J.C.Tsang,Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J].Phys.Rev.Lett.,1980,45(3):201-204.
    [71]M.Osawa,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy[J].Bull.Chem.Soc.Jpn.,1997,70(12):2861-2880.
    [72]A.Hatta,T.Ohshima,W.Suetaka,Observation of the enhanced infrared-absorption of para-nitrobenzoate on Ag island films with an ATR technique[J].Appl.Phys.A-Mater.,1982,29(2):71-75.
    [73]A.Hatta,Y.Suzuki,W.Suetaka,Infrared-absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration-evidence for two types of enhanced surface electric-fields[J].Appl.Phys.A-Mater.,1984,35(3):135-140.
    [74]G.Q.Lu,S.G.Sun,S.P.Chen.In Electrode Processes Ⅵ[M],A Wieckowski,K Itaya,(Eds),The Electrochemical Society,Inc.,1996,PV 96-8:436-445.
    [75]G.Q.Lu,S.G.Sun,L.R.Cai,et al,In situ FTIR spectroscopic studies of adsorption of CO,SCN~-,and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt,Pd,and Rh:Abnormal infrared effects(AIREs)[J].Langmuir,2000,16(2):778-786.
    [76]S.G.Sun,Abnormal infrared effects of nanometer-scale thin film material of platinum group metals and alloys at electrode-electrolyte interfaces,Chapter 21 in Catalysis and Electrocatalysis of nanoparticles[M],E.R.Savinova,C.G.Vayenas and A.Wieckowski(Eds),Marcel Dekker.Inc.,New York,2003.
    [77]M.S.Zheng,S.G.Sun,S.P.Chen,Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation[J].J.Appl.Electrochem.,2001,31(7):749-757.
    [78]G.Q.Lu,S.G.Sun,S.P.Chen,et al,Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J].J.Electroanal.Chem.,1997,421(1-2):19-23.
    [79]H.Gong,S.G.Sun,J.T.Li,et al,Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule[J].Electrochim.Acta,2003,48(20-22):2933-2942.
    [80]G.Q.Lu,L.R.Cai,S.G.Sun et al,In situ FTIR spectroscopic studies of CO adsorption on electrodes of nanometer-thin layer of Pt-Ru and Pt-Pd surface alloys[J].Chinese Sci.Bulletin,1999,44(11):1470-1473.
    [81]M.S.Zheng,S.G.Sun,In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions [J].J.Electroanal.Chem.,2001,500(1-2):223-232.
    [82]Z.Chen,S.G.Sun,N.Ding,Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J].Chinese Sci.Bulletin,2001,46(17):1439-1442.
    [83]W.G.Lin,S.G.Sun,Z.Y.Zhou,et al,Abnormal infrared effects of nanostructured rhodium thin films for CO adsorption at solid/gas interfaces[J].J.Phys.Chem.B,2002,106(45):11778-11783.
    [84]G.Orozco,C.Gutierrez,Adsorption and electro-oxidation of carbon monoxide,methanol,ethanol and formic acid on osmium electrodeposited on glassy carbon [J].J.Electroanal.Chem.,2000,484(1):64-72.
    [85]R.Ortiz,A.Cuesta,O.P.Marquez,et al,Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J].J.Electroanal.Chem.,1999,465(2):234-238.
    [86]贡辉,陈声培,孙世刚等.阵列Pt微电极上CO吸附的原位显微FTIR反射光谱研究[J].科学通报,2001,46(12):996-998.
    [87]W.Chen,S.G.Sun,Z.Y.Zhou,IR optical properties of Pt nanoparticles and their agglomerates investigated by in situ FTIR using CO as the probe molecule[J].J.Phys.Chem.B,2003,107(36):9808-9812.
    [88]U.Fano.Effects of configuration interaction on intensities and phase shifts[J].Phys.Rev.,1961,124(6):1866-1878.
    [89]Y.Zhu,H.Uchida,M.Watanabe,Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated reflection technique[J].Langmuir,1999,15(25):8757-8764.
    [90]O.Krauth,G.Fahsold,A.Pucci,IR-spectoscopy of CO on iron ultrathin films[J].J.Mol.Struct.,1999,482-483:237-240.
    [91]O.Krauth,G.Fahsold,A.Pucci,Asymmetic line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J].J..Chem.Phys.,1999,I10(6):3113-3117.
    [92]O.Krauth,G.Fahsold,N.Magg,et al,Anomalous infrared transmission of adsorbates on ultrathin metal films:Fano effect near the percolation threshold[J].J.Chem.Phys.,2000,113(15):6330-6333.
    [93]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J].Anal.Chem.,1999,71:1967-1974.
    [94]M.Osawa,K.Ataka,K.Yoshii,et al,Surface-enhanced infrared spectroscopy:The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J].Appl.Spectrosc.,1993,47(9):1497-1502.
    [95]R.K.Chang and T.E.Furutak(Eds),Surface Enhanced Raman Scattering[M],Plenum,New York,1982.
    [96]H.Metiu.Surface enhanced spectroscopy[J].Prog.Surf Sci.,1984,17(3-4):153-320.
    [97]M.Moskovits,Surface-enhanced Raman Spectroscopy[J].Rev.Mod.Phys.,1985,57(3):783-789.
    [98]Y.Nakao and H.Yamada,Enhanced infrared ATR spectra of surface layers using metal films[J].Surf Sci.,1986,176(1-3):578-592.
    [99]R.Aroca and B.Price.A new surface for surface-enhanced infrared spectroscopy:Tin island films[J]J.Phys.Chem.B,1997,101(33):6537-6540.
    [100]T.Yoshidome,T.Inoue and S.Kamata.Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films[J]Chem.Lett.,1997,6:533-534.
    [101]S.Sato,K.Kamada and M.Osawa.Surface-enhanced IR absorption(SEIRA) of CO adsorbed on small Pt particles deposited on an island Au film[J].Chem.Lett.,1999,1:15-16.
    [102]M.Watanabe,Y.Zhu and H.Uchida.Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy[J].J.Phys.Chem.,2000,104(8):1762-1768.
    [103]Y.Nishikawa,K.Fujiwara,K.Ataka and M.Osawa.Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface-analysis of semiconductors,glass,and polymers[J].Anal.Chem.,1993,65(5):556-562.
    [104]P.Dumas,R.G.Tobin,P.L.Richards,Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy:Ⅰ.Silver[J].Surf Sci.,1986,171:555-578.
    [105]S.Badilescu,P.V.Ashrit,V.V.Truong,Enhanced infrared attenuated-total-reflection spectra of p-nitrobenzoic acid with Ag films[J].Appl.Phys.Lett.,1988,52:1551-1553.
    [106]S.Badilescu,P.V.Ashrit,V.V.Truong,et al.Enhanced infrared ATR spectra of o-nitrobenzoic,m-nitrobenzoic and p-nitrobenzoic acid with Ag films[J].Appl.Spectrosc.,1989,43(3):549-552.
    [107]G.T.Merklin,P.R.Griffiths.Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films[J].Langmuir,1997,13(23):6159-6163.
    [108]M.Osawa and M.Ikeda.Surface-enhanced infrared absorption of para-nitrobenzoic acid deposited on silver island films-contributions of electromagnetic and chemical mechnisms[J].J.Phys.Chem.,1991,95(24):9914-9919.
    [109]K.Ito,K.Hayashi,Y.Hamanaka,et al.Infrared and Raman scattering spectroscopic study on the structures of Langmuir-Blodgett monolayers containing a merocyanine dye[J].Langmuir,1992,8(1):140-147.
    [110]Y.Nishikawa,K.Fujiwara and T.Shima.Qualitative analysis of nanogram samples with Fourier transform infrared transmission surface electromagnetic wave spectroscopy[J].Appl.Spectrosc.,1990,44(4):691-694.
    [111]Y.Nishikawa,K.Fujiwara and T.Shima.A study on the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films[J].Appl.Spectrosc.,1991,45(5):747-751.
    [112]R.Kellner,B.Mizaikoff,M.Jakusch,H.D.Wanzeneb ock and N.Weissenbacher.Surface-enhanced vibrational spectroscopy:A new tool in chemical IR sensing?[J].Appl.Spectrosc.,1997,51(4):495-503.
    [113]S.Sato and T.Suzuki.Study of surface-enhanced IR absorption spectroscopy over evaporated Au films in an ultrahigh vacuum system[J].Appl.Spectrosc.,1997,51(8):1170-1175.
    [114]E.Johnson and R.Aroca.Surface-enhanced infrared spectroscopy of monolayers [J].J.Phys.Chem.,1995,99(23):9325-9330.
    [115]H.D.Wanzenbock,B.Mizaikoff,N.Weissenbacher and R.Kellner.Surface enhanced infrared absorption spectroscopy(SEIRA) using extemal reflection on low-cost substrates[J].Fresenius' J.Anal.Chem.,1998,362(1):15-20.
    [116]Y.Nishikawa,Y.Nagasawa,K.Fujiwara and M.Osawa.Silver island films for surface-enhanced infrared absorption spectroscopy- effect of island morphology on the absorption enhancement[J].Vib.Spectrosc.,1993,6(1):43-53.
    [117]T.Wadayama,O.Suzuki,Y.Suzuki and A.Hatta.Infrared absorption enhancement of p-cyanobenzoic acid on silver island films deposited on oxidized and hydrogen-terminated Si(100) surfaces[J].Appl.Phys.A,1997,64(5):501-506.
    [118]W.B.Cai,L.J.Wan,H.Noda,et al.Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J].Langmuir,1998,14(24):6992-6998.
    [119]H.Miyake,S.Ye,M.Osawa.Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J].Electrochem.Commun.,2002,4(12):973-977.
    [120]A.Hatta,Y.Chiba and W.Su~taka.Infrared absorption study of absorbed species at metal/water interface by use of the Kretschmann configuration[J].Sur.Sci.,1985,158(1-3):616-623.
    [121]Y.X.Diao,M.J.Han,L.J.Wan,et al.Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR[J].Langmuir,2006,22(8):3640-3646.
    [122]H.Miyake,M.Osawa.Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution[J].Chem.Lett.,2004,33(3):278-279.
    [123]M.Osawa,K.Ataka,M.Ikeda,H.Uchihara and R.Namba.Surface-enhanced infrared absorption spectroscopy:mechanism and application to trace analysis[J].Anal.Sci.,1991,7(Suppl.):503-506.
    [124]Y.Suzuki,K.Sagisaka and A.Hatta.Infrared-absorption enhancement of species at the lithium metal electrolytic solution interface[J]Appl.Surf Sci.,1995,84(1):1-7.
    [125]R.Aroca and R.Bujalski.Surface enhanced vibrational spectra of thymine[J].Vib.Spectrosc.,1999,19(1):11-21.
    [126]李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J].高等学校化学学报,2006,27(12):2414-2416.
    [127]A.Miki,S.Ye and M.Osawa.Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions [J].Chem.Commun.,2002,1500-1501.
    [128]Y.G.Yan,Q.X.Li,S.J.Huo,et al.Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces[J].J.Phys.Chem.B,2005,109(16):7900-7906.
    [129]严彦刚,李巧霞,霍胜娟.铂和钉纳米电极的全湿法制备及表面增强红外效应[J],化学学报,2005,63(6):545-549.
    [130]H.Miyake,E.Hosono,M.Osawa.Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes[J].Chem.Phys.Lett.,2006,428(4-6):451-456.
    [131]M.Futamata and L.Q.Luo.Adsorbed water and CO on Pt electrode modified with Ru[J].J.Power Sources,2007,164(2):532-537.
    [132]T.R.Jensen,R.P.V.Duyne,S.A.Johnson and V.A.Maroni.Surface-enhanced infrared spectroscopy:A comparison of metal island films with discrete and nondiscrete surface plasmons[J].Appl.Spectrosc.,2000,54(3):371-377.
    [133]N.A.F.Al-Rawashdeh,M.L.Sandrock,C.J.Seugling and J.C.A.Foss.Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene[J].J.Phys.Chem.B,1998,102(2):361-371.
    [134]M.Osawa,In Handbook of Vibrational Spectroscopy Chalmers,Chalmers J.M.,Griffiths,R R.,(Eds.);John Wiley & Sons:Chichester,U.K.,2002;Vol.1,pp785-799.
    [135]H.D.Wanzenbock,B.Mizaikoff,N.Weissenbacher and R.Kellner.Multiple internal reflection in surface enhanced infrared absorption spectroscopy(SEIRA)and its significance for various analyte groups[J].J.Mol.Struct.,1997,410-411:535-538.
    [136]F.Maroun,F.Ozanam,J.N.Chazalviel and W.Theiss.In situ infrared investigation of metals electrodeposited for SEIRAS[J].Vib.Spectrosc.,1999,19(2):193-198.
    [137]A.Rodes,J.M.Orts,J.M.Perez,J.M.Feliu,A.Aldaz.Sulphate adsorption at chemically deposited silver thin film electrodes:time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy[J].Elctrochem.Commun.2003,5(1):56-60.
    [138] J. M. Delgado, J. M. Orts, A. Rodes. ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes [J]. Langmuir 2005, 27(19): 8809-8816.
    [139] S. J. Huo, Q. X. Li, Y. G. Yan, et al. Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth ofcolloidal particles [J]. J. Phys. Chem. B, 2005, 709(33): 15985-15991.
    [140] S. J. Huo, X. K. Xue, Q. X. Li, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B, 2006, 770(51): 25721-25728.
    [141] H. F. Wang, Y. G. Yan, S. J. Huo. Wet process fabrication of Cu-on-Si electrodes for In situ SEIRAS Application [J]. Electrochim. Acta., 2007, 52(19): 5950-5957.
    [142] S. Y. Kang, I. C. Jeon, and K. Kim. Infrared absorption enhancement at silver colloidal particles [J]. Appl. Spectrosc., 1998, 52(2): 278-283.
    [143] A. A. Kamnev, L. A. Dykman, P. A. Tarantilis and M. G. Polissiou.Spectroimmunochemistry using colloidal gold bioconjugates [J]. Biosci. Rep., 2002, 22(5-6): 541-547.
    [144] C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, and J. A. Aznarez. "SERS and SEIR Joint Studies on Gold, Silver and Copper Nanostructures", in Proceedings of the XVIII ICORS (John Wiley and Sons, New York, 2002), pp.295.
    [145] M. H. Shao, P. Liu, R. R. Adzic. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes [J]. J. Am. Chem. Soc., 2006, 128(23): 7408-7409.
    [146] N. M. Markovic, J. P. N. Ross. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep., 2002, 45(4-6): 121-229.
    [147] T. Iwasita Electrocatalysis of methanol oxidation [J]. Electrochim. Acta, 2002,47(22-23): 3663-3674.
    [148] E. Herrero, W. Chrzanowski, A. Wieckowski. Dual path mechanism in methanol electrooxidation on a platinum-electrode [J]. J. Phys. Chem. 1995, PP(25): 10423-10424.
    [149] X. H. Xia, T. Iwasita, F. Ge, W. Vielstich. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum [J]. Electrochim. Acta, 1996, 41(5): 711-718.
    [150] B. Beden; J. M. Leger; C. Lamy. In Modern Aspects of Electrochemistry; Bockris, J. O. M., et al., Eds.; Plenum Press: New York, 1992; Vol. 22, pp 97-264.
    [151] Y. Zhu, H. Uchida, T. Yajima, M. Watanabe. Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode [J] ,Langmuir, 2001, 77(1): 146-154.
    [152] S. A. Johnson, N. H. Pham, V. J. Novick, V. A. Maroni. Application of surface-enhanced infrared absorption spectroscopy as a sensor for volatile organic compounds []].Appl. Spectrosc., 1997, 57(9): 1423-1426.
    [153] G. T. Merklin, L. T. He, and P. R. Griffiths. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide [J]. Appl. Spectrosc., 1999, 53(11): 1448-1453.
    [154] J. A. Seelenbinder, C. W. Brown, P. Pivarnik and A. G. Rand. Colloidal cold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy [J].Anal. Chem., 1999, 77(10): 1963-1966.
    [155] D. A. Heaps, P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry [J]. Anal. Chem., 2005, 77(18): 5965-5972.
    [156] C. W. Brown, Y. Li, J. A. Seelenbinder, P. Pivarnik, et al. Immunoassays based on surface enhanced infrared absorption spectroscopy [J]. Anal. Chem., 1998, 70 (14): 2991-2996.
    [157] H. Y. N. Holman, D. L. Perry and J. C. Hunter-Cevera. Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces [J]. J. Microbiol. Methods, 1998, 34(1): 59-71.
    [158] C. Kuhne, G. Steiner, W. B. Fischer and R. Salzer. Surface enhanced FTIR spectroscopy on membranes [J]. Fresenius' J. Anal. Chem., 1998, 5(50(7-8): 750-754.
    [159] K. P. Ishida and P. R. Griffiths. Theoretical and experimental investigation of internal -reflection at thin copper-films exposed to aqueous-solutions [J]. Anal. Chem., 1994, 66(4): 522-530.
    [160] K. P. Ishida and P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry - II. Thin copper films [J]. J. Colloid Interface Sci., 1999, 213(2): 513-524.
    [161] M. Ma, Y. G. Yan, S. J. Huo, et al. In situ surface-enhanced IR absorption spectroscopy on CO adducts of iron protoporphyrin IX self-assembled on a Au electrode [J]. J. Phys. Chem. 5, 2006, 770(30): 14911-14915.
    [162] S. Geng, J. Freidrich, J. Gahde and L. Guo, Surface-enhanced infrared absorption (SEIRA) and its use in analysis of plasma-modified surface [J]. J. Appl. Polym. Sci., 1999, 77(8): 1231 -1237.
    [163] A. Kudelski. Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review [J]. Vib. Spectrosc., 2005, 39(2): 200-213.
    [164] J. A. Seelenbinder, C. W. Brown, D. W. Urish. Self-assembled monolayers of thiophenol on gold as a novel substrate for surface-enhanced infrared absorption [J]. Appl. Spectrosc., 2000, 54(3): 366-370.
    [165] D. Enders, S. Rupp, A. Kuller, A. Pucci. Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO_2/Si for optical biosensing: Detection of the antibody-antigen reaction [J]. Surf. Sci., 2006, 600(23): L305-L308.
    [166] D. Enders, T. Nagao, A. Pucci, T. Nakayama. Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study [J]. Surf. Sci., 2006, 600(6): L71-L75.
    [167] C. A. Melendres. in Spectroscopic and diffraction techniques in interfacial electrochemistry [M], (Eds. C. Gutierrez, C. Melendres), Kluwer Academic Publishers, Dordrecht, 1990, pp. 181-222.
    [168] C. A. Melendres, in Electrochemical and optical techniques for the study and monitoring of metallic corrosion [M]. (Eds. M. G. S. Ferreira and C. A. Melendres), NATO-ASI Ser. 203, Kluwer Academic Publishers, Dordrecht, 1991, pp. 355-388.
    [169] J. L. Yao, H. C. Liu, P. G. Cao, B. Ren, B. W. Mao, R. A. Gu, Z. Q. Tian, Electrochemical Approach to Selected Corrosion and Corrosion Control Studies [M], 2000, 38-46.
    [170] M. E. Biggin and A. A. Gewirth. Infrared Studies of Benzotriazole on Copper Electrode Surfaces Role of Chloride in Promoting Reversibility [J]. J. Electrochem, Soc., 2001, 48(5): C339-C347.
    [171] M. R. Vogt, R. J. Nichols, O. M. Magnussen and R. J. Behm. Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCl: A Combined in Situ STM and in Situ FTIR Spectroscopy Study [J]. J. Phys. Chem. B, 1998, 702(30): 5859-5865.
    [172] B. Pettinger, M. R. Philport, J. G. Gordon II. Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy(SERS) of Ag electrodes [J]. J. Chem. Phys., 1981, 74(2): 934-940.
    [173] J. E. Pemberton, S. L. Joa. Water and electrolyte structure at Ag electrodes in nonaqueous butanol solutions using surface-enhanced Raman-scattering [J]. J. Electroanal. Chem., 1994, 575(1-2): 149-158.
    [174] Z. Q. Tian, Y. X. Chen, B. W. Mao, C. Z. Li, Z. F. Liu, Extending surface-enhanced Raman-spectroscopic studies on water at gold electrodes [J]. Chem. Phys. Lett., 1995, 240(1-3): 224-229.
    [175] Y. X. Chen, K. Q. Huang, Z. Q. Tian. SERS studies of electrode/electrolyte interfacial water part II - Librations of water correlated to hydrogen evolution reaction [J]. J. Raman Spectrosc., 1998, 249(8): 749-756.
    [176] T. Yajima, H. Uchida, M. Watanabe. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. J. Phys. Chem.B, 2004, 705(8): 2654-2659.
    [177] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 557(1): 132-138.
    [178] S. J. Huo, X. K. Xue, Y. G. Yan, et al. Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes [J]. J. Phys. Chem. B, 2006,110(9): 4162-4169.
    [179] H. Nagaoka and T. Imae, The construction of layered architectures of dendrimers-Adsorption layers of amino-terminated dendrimers on 3-mercaptopropionic acid self-assembled monolayer formed on Au [J]. Int. J. Nonlinear Sci. Num. Sim. 2002, 5(3-4): 223-227.
    [180] L. J. Wan, H. Noda, C. Wang, C. L. Bai, M. Osawa, Controlled Orientation of Individual Molecules by Electrode Potentials [J]. Chem. Phys. Chem. 2001, 2: 617-619.
    [181] T. Wandlowski, K. Ataka, and D. Mayer, In situ infrared study of 4,4 '-bipyridine adsorption on thin gold films [J]. Langmuir, 2002, 75(11): 4331-4341.
    [182] H. S. Kim, S. J. Lee, N. H. Kim, J. K. Yoon, H. K. Park, K. Kim, Adsorption Characteristics of 1,4-Phenylene Diisocyanide on Gold Nanoparticles: Infrared and Raman Spectroscopy Study [J]. Langmuir, 2003,79(17): 6701-6710.
    [183]H.Noda,L.-J.Wan,M.Osawa,Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution:A combined surface-enhanced infrared and STM study[J].Phys.Chem.Chem.Phys.2001,3:3336-3342.
    [184]X.Y.Xiao,S.G.Sun,Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry,EQCM,in situ FTIRS and Raman spectroscopy[J].Electrochimica Acta,2000,45:2897-2902.
    [1]黄惠忠,纳米材料分析,北京:化学工业出版社,2003
    [2]严凤霞,王莜敏,现代光学仪器分析选论,上海:华东师范大学出版社,1992
    [3]马礼敦,高等结构分析,上海:复旦大学出版社,2001
    [4]周伟舫,电化学测量,上海:科学技术出版社,1983
    [5]吴浩清,李永舫,电极过程动力学,北京:高等教育出版社,1998
    [6]查全性等,电极过程动力学导论,北京:科学出版社,2002
    [7]田昭武,电化学研究方法,北京:科学出版社,1984
    [8]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京:北京大学出版社,1995
    [9]K.Ataka,T.Yotsuyanagi and M.Osawa.Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J].J.Phys.Chem.,1996,100(25):10664-10672.
    [10]E.Kretschmann.Determination of Optical Constants of Metals by Excitation of Surface Plasmons[J].Zeitschrift Fur Physik,1971,241(4):313.
    [1]J.Barthelmes,W.Plieth,SERS investigations on the adsorption of pyridine carboxylic acids on silver-influence of pH and supporting electrolyte[J].Electrochim.Acta.1995,40(15):2487-2490.
    [2]R.Wen,Y.Fang.Adsorption of pyridine carboxylic acids on silver surface investigated by potential-dependent SERS[J].Vib.Spectrosc.2005,39(1):106-113.
    [3]R.Wen,Y.Fang.An investigation of the surface-enhanced Raman scattering(SERS)effect from a new substrate of silver-modified silver electrode[J]J.Colloid Interface Sci.2005,292(2):469-475.
    [4]N.Nanbu,F.Kitamura,T.Ohsaka,K.Tokuda.Adsorption behavior of pyridinecarboxylic acids in acids solution on a polycrystalline gold electrode surface studied by infrared reflection absorption spectroscopy[J]Electrochemistry.1999,67(12):1165-1167.
    [5]Y.G.Yan,Q.X.Li,S.J.Huo,M.Ma,W.B.Cai,M.Osawa.Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platium group metal-electrolyte interfaces[J].J.Phys.Chem.B.2005,109(16):7900-7906.
    [6]H.Miyake,S.Ye,M.Osawa.Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J].Electrochem.Commun.2002,4(12):973-977.
    [7]Y.G.Yan,Q.X.Li,S.J.Huo,Y.N.Sun,W.B.Cai.Surface-enhanced IR absorption effect of Pt and Ru nanofilms fabricated by all-wet processes[J].Acta Chim.Sinica.2005,63(6):545-549(in chinese).(严彦刚,李巧霞,霍胜娟,孙颖娜,蔡文斌.铂和钌纳米薄膜电极的全湿法制备及表面增强红外效应[J].化学学报,2005,63(6):545-549)
    [8]K.Ataka,T.Yotsuyanagi,M.Osawa.Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy[J]J.phys.Chem.1996,100(25):10664-10672.
    [9]R Gao,M.J.Weaver.Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:benzene and monosubstituted benzenes adsorbed at gold electrodes[J]J.Phys.Chem.1985,89(23):5040-5046.
    [10]W.B.Cai,L.J.Wan,H.Noda,Y.Hibino,K.Ataka,M.Osawa.Orientation phase transition in a pridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J].Langmuir,1998,14(24):6992-6998.
    [11]Osawa,M.In Handbook of Vibrational Spectroscopy[M],J.M.Chalmers,R R.Griffiths.(Eds.),Vol.1,John Wiley & Sons,Chichester,UK,2002,p.785-799.
    [12]S.Chattopadhyay.Vibrational spectra of isomeric pyridinic carboxylic acids in solid state and in solution and their SERS studies in silver sol[J]Spectrochim.Acta.1993,49A(4):589-597.
    [13]N.B.Colthup,L.H.Daly,S.E.Wiberly.Introduction to IR and Raman Spectroscopy[M],Academic Press,New York,1964.
    [14]W.Kemp.Organic Spectroscopy[M],ELBS,Hong Kong,1986.
    [1]N.J.DiNardo,Ph.Avouris,J.E.Demuth,Chemisorbed pyridine on Ni(001):A high resolution electron energy loss study of vibrational and electronic excitations [J].J. Chem.Phys., 1984,57:2169-2180.
    [2] Y. Ikezawa, T. Sawatari, T. Kitazume, H. Goto, K. Toriba, In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode [J]. Electrochim. Acta, 1998, 43:3297-3301.
    [3] S. Haq, D. A. King, Configurational Transitions of Benzene and Pyridine Adsorbed on Pt(111) and Cu(110) Surfaces: An Infrared Study [J]. J. Phys. Chem., 1996,100: 16957-16965.
     [4] B. J. Bandy, D. R. Llyoyd, N. V. Richardson, Selection rules in photoemission from adsorbates: Pyridine adsorbed on copper[J]. Surf. Sci., 1979, 89: 344-353.
    [5] M. E. Bridge, M. Connolly, D. R. Lloyd, J. Somers, P. Jakob , D. Menzel, Electron spectroscopic studies of pyridine on metal surfaces[J].Spectrochim. Acta A, 1987, 43: 1473-1478.
    [6] A. L. Johnson, E. L. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on platinum(111) by NEXAFS [J]. J. Phys. Chem. 1985, 59(19): 4071-4075.
    [7] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa, Orientational phase transition in a pyridine adlayer on gold(111) [J]. Langmuir, 1998, 14: 6992-6998.
    [8] Z. Q. Tian, B. Ren, D. Y. Wu. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B, 2002, 70(5(37): 9463-9483.
    [9] M. Fleischmann, P. J. Hendra, A. J. Mcquilla. Raman-spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett., 1974, 26(2):163-166.
    
    [10] D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode [J]. J. Eledroanal. Chem., 1977, 84{1): 1-20.
    
    [11] Pettinger, B. In Adsorption of Molecules at Metal Electrodes; Lipkowski, J., Ross, P. N., Eds.; VCH: New York, 1992; pp 285.
    [12] Pemberton, J. E. In Electrochemical Interfaces Modern Techniques for In-situ Interface Characterization of Molecules at Metal Electrodes; Abruna, H. D., Eds.; VCH: New York, 1991; pp 193.
    [13] L. A. Dick, A. D. McFarland, C. L. Haynes, R. P. Van Duyne. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].J.Phys.Chem.B,2002,106(4):853-860.
    [14]Pagannone,M.;Fomari,B.;Mattei,G,Molecular structure and orientation of chemisorbed aromatic carboxylic acids:Surface enhanced Raman spectrum of benzoic acid adsorbed on silver sol[J].Spectrochim.Acta 1987,43A(5):621-625.
    [15]Y.J.Kwon,D.H.Son,S.J.Ahn,et al,Vibrational Spectroscopic Investigation of Benzoic Acid Adsorbed on Silver J.Phys.Chem.1994,98(34):8481-8487.
    [16]S.J.Huo,X.K.Xue,Q.X.Li,et al,Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy[J].J.Phys.Chem.B 2006,110(51):25721-25728.
    [17]K.Ataka,T.Yotsuyanagi,M.Osawa,Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy[J],J.Phys.Chem.1996,100(25):10664-10672.
    [18]严彦刚,李巧霞,霍胜娟,孙颖娜,蔡文斌,铂和钌纳米电极的全湿法制备及表面增强红外效应[J]化学学报,2005,63(6):545-549.
    [19](a) M.Osawa,In Handbook of Vibrational Spectroscopy,Vol.1,Eds.:Chalmers,J.M.;Griffiths,P.R.,John Wiley & Sons,Chichester,UK,2002,p.785-799;(b)M.Osawa,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy[J].Bull.Chem.Soc.Jpn.,1997,70(12):2861-2880.
    [20]J.N.Jovicevic,V.D.Jovic,A.R.Despic.The influence of adsorbing substances on the lead UPD onto(111) oriented silver single crystal surface-Ⅰ[J].Electrochim.Acta,1984,29(12):1625-1638.
    [21]M.Fleischmann,J.Robinson,R.Waser.An electrochemical study of the adsorption of pyridine and chloride ions on smooth and roughened silver surfaces [J].J.Electroanal.Chem.,1981,117:257-266.
    [22]T.Wandlowski.Phase transitions in Uracil adlayers on Ag,Au and Hg electrodes-substrate effects[J].J.Electroanal.Chem.,1995,395(1-2):83-89.
    [23]G.Valette.Double layer on silver single-crystal electrodes in contact with electrolytes having anions which present a slight specific adsorption Part Ⅰ:The (110) face[J].J.Electroanal.Chem.1981,122(1-2):285-297.
    [24]K.Arihara,F.Kitamura,T.Ohsaka,K.Tokuda.Characterization of the adsorption state of carbonate ions at the Au(111) electrode surface using in situ IRAS[J].J.Electroanal.Chem.,2001,510(1-2):128-135.
    [25]T.Iwasita,A.Rodes,E.J.Pastor.Vibrational spectroscopy of carbonate adsorbed on Pt(111) and Pt(110) single-crystal electrodes[J].J.Electroanal.Chem.,1995,383(1-2):181-189.
    [26]L.Corrsin,B.J.Fax,R.C.Lord.The Vibrational Spectra of Pyridine and Pyridine-d5[J].J.Chem.Phys.,1953,2I(7):1170-1176.
    [27]Surface Enhanced Raman Scattering,R.K.Chang and T.E.Furutak(Eds.),Plenum,New York(1982).
    [28]李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J],高等学校化学学报,2006,27(12):2414-2416.
    [29]J.Lipkowski,L.Stolberg.In Adsorption of Molecules at Metal Electrodes;J.Lipkowski,P.N.Ross,Eds.;VCH:New York,1992;pp 171.
    [30]N.H.Li,V.Zamlynny,J.Lipkowski,F.Henglein,B.Pettinger.In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au(110)electrode surface[J].J.Electroanal.Chem.,2002,524-525:43-53.
    [31]Y.G.Yan,Q.J.Xu,W.B.Cai,Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy[J].Acta Chim.Sinica.,2006,64(6):458-462.
    [32]C.Zuo,P.W.Jagodzinski.Surface-enhanced Raman scattering of pyridine using different metals:Differences and explanation based on the selective formation of alpha-pyridyl on metal surfaces.[J].J.Phys.Chem.B,2005,109(5):1788-1793.
    [33]S.J.Huo,X.K.Xue,Y.G.Yan,et al.Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes.[J].J.Phys.Chem.B,2006,110(9):4162-4169.
    [34]D.Y.Wu,S.Duan,B.Ren,Z.Q.Tian.Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces.[J].J.Raman Spectrosc.,2005,36(6-7):533-540.
    [1]A.Hamnet,Interfacial Electrochemistry,Marcel Dekker,Inc.,New York,1999.
    [2]V.Tricoli,Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs~+ and H~+ cations[J]J.Electrochem Soc,1998,145(11):3798-3801.
    [3]Q.Y.Yuan,Y.W.Tang,Y.M.Zhou,et al,Formic acid as methanol-alternative fuel in direct methanol fuel cell[J]Appl.Chem.(in Chinese),2005,22(9):929-932.
    [4]A.Miki,S.Ye,M.Osawa,Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions Chem.Commun.2002,1500-1501.
    [5]Y.X.Chen,M.Heinen,Z.Jusys,R.J.Behm,Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]Angew.Chem.lnt.End.2006,45:981-985.
    [6]S.Pronkin,M.Hara,T.Wandlowski,Electrocatalytic properties of Au(111)-Pd quasi-single-crystal film electrodes as probed by ATR-SEIRAS[J]Russ.J.Electrochem.,2006,42(11):1177-1192.
    [7]M.E.Vela,R.O.Lezna,N.R.De Tacconi,et al,EMIRS studies of formic acid electrooxidation on Pd,Au and Pd+ Au alloys:Part 1.Investigation of the adsorbates derived from HCOOH and NaCOOH chemisorption at Pd in acid and alkaline solutions[J]J.Electroanal.Chem,1992,323(1-2):289-302.
    [8]H.Miyake,E.Hosono,M.Osawa,et al,Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes[J],Chem.Phys.Lett.,2006,428:451-456.
    [9]K.Ataka,T.Yotsuyanagi,M.Osawa,Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy[J],J.Phys.Chem.1996,100(25):10664-10672.
    [10]严彦刚,李巧霞,霍胜娟,孙颖娜,蔡文斌,铂和钉纳米电极的全湿法制备及表面增强红外效应[J]化学学报,2005,63(6):545-549.
    [11]C.Gutierrez,J.A.Caram,B.Beden,In-situ spectroscopic study of the adsorption of carbon monoxide on a polycrystalline ruthenium electrode by EMIRS and PMRS[J].J.Electroanal.Chem.1991,305:289-299.
    [12]B.Beden,C.Lamy,In Spectroelectrochemistry:Theory and Practice[M].R.J.Gale,Ed.;Plenum Press:New York,1988;Chapter 5.
    [13] R. J. Nichols, In Adsorption of Molecules at Metal Electrodes [M]. J. Lipkowski,P. N. Ross, Eds.; VCH: New York, 1992; Chapter 7.
    [14] Y. G. Yan, Q. X. Li, S. J. Huo, et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B, 2005, 709(16): 7900-7906.
    [15] Y. Zhu, H. Uchida, M. Watanabe, Oxidation of carbon monoxide at a Platinum film electrode studied by Fourier Transform Infrared Spectroscopy with attenuated total reflection technique [J]. Langmuir, 1999, 75(25): 8757-8764.
    [16] S. Motoo and N. Furuya, Electrochemistry of platinum single crystal surfaces: Part II. Structural effect on formic acid oxidation and poison formation on Pt (111), (100) and (110) [J] J. Electroanal. Chem. 1985,184(2): 303-316.
    [17] J. Clavilier and S. G. Sun, Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes [J] J.Electroanal. Chem. 1986, 799(2): 471-480.
    
    [18]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J] J. Am. Chem. Soc., 2003, 725(11): 3680-3861.
    
    [19] N. Hoshi, K. Kida, M Nakamura, et al, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of Palladium [J], J. Phys. Chem. B 2006, 770(25): 12480-12484.
    [1]M.Osawa,In Handbook of Vibrational Spectroscopy[M];Chalmers J.M.,Griffiths,P.R.,Eds.;John Wiley & Sons:Chichester,U.K.,2002;Vol.1,pp785-799.
    [2]H.Miyake,S.Ye,M.Osawa.Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J].Electrochem.Commun.,2002,4(12):973-977.
    [3]A.Miki,S.Ye and M.Osawa.Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions [J].Chem.Commun.,2002,1500-1501.
    [4]M.H.Shao,R.R.Adzic,Electrooxidation of ethanol on a Pt electrode in acid solutions:in situ ATR-SEIRAS study[J]Electrochim.Acta,2005,50(12):2415-2422.
    [5]Y.G.Yan,Q.X.Li,S.J.Huo,et al.Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces[J].J.Phys.Chem.B,2005,109(16):7900-7906.
    [6]严彦刚,李巧霞,霍胜娟,铂和钉纳米电极的全湿法制备及表面增强红外效应[J],化学学报,2005,63(6):545-549.
    [7]H.F.Wang,Y.G.Yan,S.J.Huo.Wet process fabrication of Cu-on-Si electrodes for In situ SEIRAS Application[J].Electrochim.Acta.,2007,52(19):5950-5957.
    [8]S.J.Huo,X.K.Xue,Y.G.Yan,et al.Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes[J].J.Phys.Chem.B,2006,110(9):4162-4169.
    [9]李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J],高等学校化学学报,2006,27(12):2414-2416.
    [10]S.J.Huo,Q.X.Li,Y.G.Yan,et al.Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J].J.Phys.Chem.B,2005,109(33):15985-15991.
    [11]S.J.Huo,X.K.Xue,Q.X.Li,et al.Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy[J].J.Phys.Chem.B,2006,110(51):25721-25728.
    [12]M.H.Shao,P.Liu,R.R.Adzic.Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J].J.Am.Chem.Soc.,2006, 128(23):7408-7409.
    [13](a)N.J.Harrick,In Internal Reflection Spectroscopy[M],Harrick Scientific Corporation,New York,1987;(b)M.Ohman,D.Persson,C.Leygraf,In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water and electrolyte[J]Prog.Org.Coat.2006,57:78-88.
    [14]R.Ulrich,Theory of the Prism-Film coupler by plane-wave analysis[J]J.Opt.Soc.Am.,1970,60(10):1337-1350.
    [15]K.Ataka,T.Yotsuyanagi,M.Osawa,Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy[J],J.Phys.Chem.1996,100(25):10664-10672.
    [16]严彦刚,徐群杰,蔡文斌,铂电极上的吸附芳香分子的表面增强红外光谱[J].化学学报,2006,64(6):458-462.
    [17]M.A.Ordal,L.L.Long,R.J.Bell,et al,Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,and W in the infrared and far infrared[J]Applied Optics.1983,22(7):1099-1119.
    [18]J.Pritchard,In Chemical physics of solids and their surfaces[M],Specialist Periodical Report,Vol.7,The Chemical Society,London,1978,pp.157-179.
    [19]N.M.Markovic,J.P.N.Ross.Surface science studies of model fuel cell electrocatalysts[J].Surf Sci.Rep.,2002,45(4-6):121-229.
    [20]T.Iwasita Electrocatalysis of methanol oxidation[J].Electrochim.Acta,2002,47(22-23):3663-3674.
    [21]E.Herrero,W.Chrzanowski,A.Wieckowski.Dual path mechanism in methanol electrooxidation on a platinum-electrode[J].J.Phys.Chem.1995,99(25):10423-10424.
    [22]X.H.Xia,T.Iwasita,F.Ge,W.Vielstich.Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum[J].Electrochim.Acta,1996,41(5):711-718.
    [23]B.Beden;J.M.Leger;C.Lamy.In Modern Aspects of Electrochemistry;Bockris,J.O.M.,et al.,Eds.;Plenum Press:New York,1992;Vol.22,pp 97-264.
    [24]Y.Zhu,H.Uchida,T.Yajima,M.Watanabe.Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode[J],Langmuir,2001,17(1):146-154.
    [25]Y.X.Chert,A.Miki,S.Ye,H.Sakai,M.Osawa,Formate,an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode[J].J.Am.Chem.Soc.2003, 125(11):3680-3861.
    [26]Y.X.Chen,M.Heinen,Z.Jusys,R.J.Behm,Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]Angew.Chem.Int.End.2006,45:981-985.
    [27]M.Endo,T.Matsumoto,J.Kubota,et al,Formation of formate in the deep oxidation of methanol on Pt(111) under UHV condition studied by IRAS[J]J.Phys.Chem.B 2000,104(20):4916-4922.
    [28]E.E.Ernstbrunner,R.B.Girling,R.E.Hester,Free radical studies by resonance raman spectroscopy part 3.--4-Nitrobenzoate radical dianion[J]J.Chem.Soc.Faraday Trans.2 1978,74:1540-1549.
    [29]H.Noda,L.J.Wan,M.Osawa,Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution:A combined surface-enhanced infrared and STM study[J].Phys.Chem.Chem.Phys.2001,3:3336-3342.
    [1]M.Osawa,In Handbook of Vibrational Spectroscopy Chalmers,Chalmers J.M.,Griffiths,R R.,(Eds.);John Wiley & Sons:Chichester,U.K.,2002;Vol.1,pp785-799.
    [2]M.Osawa,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy[J].Bull.Chem.Soc.Jpn.,1997,70(12):2861-2880.
    [3]L.W.H.Leung,M.J.Weaver.Extending surface-enhanced Raman spectroscopy to transition-metal surfaces:Carbon monoxide adsorption and electrooxidation on platinum and palladium-coated gold electrodes[J].J.Am.Chem.Soc.,1987,109:5113-5119.
    [4]S.Zou,M.J.Weaver.Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes:Chemical bonding versus electrostatic field effects[J].J.Phys.Chem.B,1996,100:4237-4242.
    [5]S.Zou,M.J.Weaver,X.Q.Li,et al.New strategies for surface-enhanced Raman scattering at transition-metal interfaces:Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon [J]. J. Phys. Chem. B, 1999, 103: 4218-4222.
    [6] S. Zou, M. J. Weaver. Surface-enhanced Raman scattering on uniform transition-metal films: Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? [S].Anal. Chem., 1998, 70: 2387-2395.
    [7] S. Zou, C. T. Williams, E. K. Y. Chen, et al. Probing molecular vibrations at catalytically significant interfaces: A new ubiquity of surface-enhanced Raman scattering [J].J.Am. Chem. Soc., 1998, 720(15): 3811-3812.
    [8] W. B. Cai, B. Ren, X. Q. Li, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment [J]. Surf. Sci., 1998, 406: 9-22.
    [9] B. Ren, X. F. Lin, J. W. Yan, et al. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. B, 2003,107(4): 899-902.
    [10] P. G. Cao, J. L. Yao, B. Ren, et al. Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO_4 solution [J]. J. Phys. Chem. B, 2002, 106(39):10150-10156.
    [11] Y. Xie, D. Y. Wu, G. K. Liu, et al, Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories [J]. J. Electroanal. Chem., 2003, 554: 417-425.
    [12] Q. J. Huang, X. F. Lin, Z. L.Yang, et al. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem., 2004, 563(1): 121-131.
    [13] Z. Q. Tian, Z. L. Yang, B. Ren, et al. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape [J]. Faraday Discuss.,2006, 132: 159-170.
    [14] J. Corset, J. Aubard, Ed., Surface enhanced Raman scattering: new trends and applications [J]. J. Raman Spectrosc. , Special Issue, 1999, 29: 8.
    [15] Z. Q. Tian, Ed., Surface-enhanced Raman scattering: advancements and applications [J] . J. Raman Spectrosc., Special Issue, 2005, 36: 6-7.
    
    [16] G. Q. Lu, S. G. Sun, S. P. Chen. In Electrode Processes VI [M], A Wieckowski, K Itaya, (Eds), The Electrochemical Society, Inc., 1996, PV 96-8: 436-445.
    [17] G. Q. Lu, S. G. Sun, L. R. Cai, et al, In situ FTIR spectroscopic studies of adsorption of CO, SCN~-, and poly (o-phenylenediamine) on electrodes of nanometer thin films of Pt,Pd,and Rh:Abnormal infrared effects(AIREs)[J].Langmuir,2000,16(2):778-786.
    [18]S.G.Sun,Abnormal infrared effects of nanometer-scale thin film material of platinum group metals and alloys at electrode-electrolyte interfaces,Chapter 21 in Catalysis and Electrocatalysis of nanoparticles[M],E.R.Savinova,C.G.Vayenas and A.Wieckowski(Eds),Marcel Dekker.Inc.,New York,2003.
    [19]M.S.Zheng,S.G.Sun,S.P.Chen,Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation[J].J.Appl.Electrochem.,2001,31(7):749-757.
    [20]G.Q.Lu,S.G.Sun,S.P.Chen,et al,Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J].J.Electroanal.Chem.,1997,421(1-2):19-23.
    [21]H.Gong,S.G.Sun,J.T.Li,et al,Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule[J].Electrochim.Acta,2003,48(20-22):2933-2942.
    [22]G.Q.Lu,L.R.Cai,S.G.Sun et al,In situ FTIR spectroscopic studies of CO adsorption on electrodes of nanometer-thin layer of Pt-Ru and Pt-Pd surface alloys[J].Chinese Sci.Bulletin,1999,44(11):1470-1473.
    [23]M.S.Zheng,S.G.Sun,In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions [J].J.Electroanal.Chem.,2001,500(1-2):223-232.
    [24]Z.Chen,S.G.Sun,N.Ding,Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J].Chinese Sci.Bulletin,2001,46(17):1439-1442.
    [25]W.G.Lin,S.G.Sun,Z.Y.Zhou,et al,Abnormal infrared effects of nanostructured rhodium thin films for CO adsorption at solid/gas interfaces[J].J.Phys.Chem.B,2002,106(45):11778-11783.
    [26]C.Pecharroman,A.Cuesta,C.Gutierrez,Comments on the paper by M.-S.Zheng,S.-G.Sun,entitled 'In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions'[J.Electroanal.Chem.,500(2001) 223][J]J.Electroanal.Chem.,2002,529:145-154.
    [27]肖晓银,电化学表面过程的原位振动光谱和扫描隧道显微镜研究—Pt、Au多品和单晶电极上CO,CN~-,PNBA和氨基酸分子的吸附及Cu的电沉积过程, 厦门大学博士论文[D],2000.
    [28]Y.G.Yan,Q.X.Li,S.J.Huo,et al.Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces[J].J.Phys.Chem.B,2005,109(16):7900-7906.
    [29]M.D.Porter,T.B.Bright,D.L.Allara,et al,Quantitative aspects of infrared external reflection spectroscopy:polymer/glassy carbon interface[J]Anal.Chem.1986,58(12):2461-2465.
    [30]J.A.Mielczarski and R.H.Yoon,Fourier transform infrared external reflection study of molecular orientation in spontaneously adsorbed layers on low-absorption substrates[J]J.Phys.Chem.,1989,93(5):2034-2038.
    [31]J.A.Mielczarski,External refelction infrared-spectroscopy at metallic,semiconductor,and nonmetallic substates 1.monolayer films[J]J.Phys.Chem.,1993,97(11):2649-2663.
    [32]J.A.Mielczarski,E.Mielczarski,J.Zachwieja,et al.In-situ and ex-situ infrared studies of nature and structure of thiol monolayers ansorbed on cuprous sulfide at controlled potential-simulation and experimental results[J]Langmuir,1995,11(7):2787-2799.
    [33]J.A.Mielczarski,In situ and ex situ infrared studies of nature and structure of thiol monolayers adsorbed on cuprous sulfide at controlled potential.Simulation and experimental results-Reply[J]Langmuir,1997,13(4):878-880.
    [34]P.A.Christensen,A.Hamnett,J.Munk,et al,An in situ FTIR study of the electrochemical oxidation of methanol at small platinum particles[J]J.Electroanal.Chem.,1994,370(1-2):251-258.
    [35]A.E.Bjerke and P.R.Griffiths,Surface-Enhanced Infrared Absorption of CO on Platinized Platinum[J]Anal.Chem.1999,71(10):1967-1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700