机载/地面海量点云数据组织与集成可视化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载和地面激光雷达(LiDAR)是一种新型的遥感测量系统,它可以快速获取地球表面及其上面各种目标的三维点云数据,从而生成数字表面模型、数字高程模型、三维构筑模型、数字树冠模型等。由于LiDAR获取地面三维数据的方法比传统的测量方法具有效率高和成本低等优点,目前正在城市、林业、交通、电力、水利等领域得到广泛应用。
     在LiDAR数据处理与应用中,机载和地面激光雷达数据的管理与可视化是一个基础性研究问题,虽然前人做了大量的研究,但是机载和地面激光雷达数据的混合管理与大规模数据的可视化的问题仍然没有完全解决。在实际应用中,激光雷达数据往往需要与其它的空间数据配合使用,例如水利施工测量数据、道路施工测量数据和工程设计数据等。因此,激光雷达点云数据和其它工程测量数据、工程设计数据的集成与应用也是一个需要研究解决的问题。
     本文以机载和地面激光雷达数据点云数据为基础,兼顾其它测量数据和工程设计数据,深入研究大规模机载和地面点云数据的组织与快速可视化方法。并在在此基础上,研究了基于虚拟地球平台的多种类空间数据的集成方法,及其点云数据在水利工程中的应用问题。本文的主要贡献和创新点如下:
     (1)针对海量机载LiDAR点云数据,提出了四叉树和局部KD树相结合的混合空间索引结构,不仅在全局可以通过四叉树金字塔模型实现快速的检索调度,在局部也能够通过内存中构建的KD树实现高效的查询,既保证了点云数据的精度和密度,又提高了数据的调度效率,为大规模点云数据的可视化奠定了基础;
     (2)针对真三维的地面点云数据,提出了基于面元拟合的三维R树索引方法,在对点云数据进行递归分割和面元拟合的过程中形成R树节点的包罗盒,通过对传统R树的改进,使之更好地保留平面特征,以更适合点云数据的管理。对于地面测量点云数据中的重要点特征和线特征数据,则采用了四叉树与三角网相结合的数据管理方法,较好地解决了数字地形模型、工程设计模型和工程施工测量动态模型可视化与分析问题;
     (3)为了解决各种点云数据的集成与可视化问题,研究了多源点云数据的集成方法,提出了基于混合索引机制的机载点云数据与地面点云数据集成方法,以及与虚拟地球集成的方法,解决了多类型(机载激光雷达、地面激光雷达、GPS、全站仪等获取的数据)、多源(不同单位、不同厂家仪器获取的数据)、多区域、多文件点云数据在虚拟地球上的集成管理问题,并通过局部KD树索引和LoD方法实现了点云数据的快速可视化,为点云数据的广泛应用奠定了良好的方法与技术基础;
     (4)基于虚拟地球平台GeoGlobe研发了机载和地面点云数据组织管理与集成显示模块,形成了点云数据管理与服务平台,实现了从虚拟地球到机载点云数据到地面点云数据的无缝浏览;依托作者本人主持的实际工程项目,研发了“两河口水电站施工测量数据采集及数据仓库建立和应用系统”,演示验证了本文提出的数据组织和管理方法,实例研究表明本文提出的方法不仅具有理论意义,而且具有实用价值。
LiDAR(Light detection and ranging) technology, including airborne and terrestrial laser scanning, is a new remote sensing technology for fast acquisition of accurate three dimensional spatial information of Earth's surface and other targets. The three-dimensional point cloud is an important data source of digital surface models, digital elevation model, three-dimensional building model reconstruction and forests estimation. Compared to traditional measuring technology, LiDAR technology has advantages of high efficacy and low cost. Thus, LIDAR is currently used in the digital city, forestry management, transportation line and power line detection, cultural heritage documentation and other area.
     Point cloud management and visualization is a basic research question, which influence the following data processing and application significantly. In spite of many previous relate work, this problem has always been a challenge, especially for the terrestrial laser scanning data and combination with airborne data. In addition, the approach to manage other surveying point cloud data from construction projects is also an issue.
     This paper focuses on the management of airborne and terrestrial laser scanning point cloud data at the beginning, then extend to other types of measuring data. Plus, the paper also pays a lot of attentions on the combination methods of multi-source data. Finally, the implementation system of virtual globe platform and the application in a hydraulic engineering project are briefly disused. The main contributions of this thesis are as follows:
     1. Based on the analysis of multi-source point cloud data, we have proposed a pyramid data organization model of airborne LiDAR point cloud data. This pyramid model is a multi-resolution data structure which combines the global quadtree index with local KD-tree. We use quadtree index to organize the overall data, which construct the upper layers of the multi-resolution structure. However, we can't guarantee all the leaf nodes contain limited points and thus KD-tree is used to index the local region where the spatial distribution is uneven. This is the basis for large-scale visualization of point cloud data.
     2. We have also proposed the multi-resolution data structure for terrestrial laser scanning point clouds and other surveying point cloud. The terrestrial laser scanning data is indexed by R-tree and plane features are also considered in the process of data partition, which is the most significant feature in TLS data sets. For other surveying point data, we build multi-resolution triangulation data structure to construct three dimensional models. The methods are useful for efficient rendering.
     3. The above data structures are used to implement a LiDAR data management and display module in the virtual earth system-GeoGlobe, which is developed as a spatial information sharing platform by Wuhan University. The integration methods of airborne and terrestrial point cloud on virtual globe are discussed. Two different rendering approaches based on LoD are also described.
     4. We examine the methods on virtual globe platform by airborne and terrestrial point cloud data in the City of Dunhuang(Gansu Province) and power line data in the City of Yichang(Hubei Province). The methods are also be used in a hydraulic engineering project.
引文
Acharya, P. K. and T. C. Henderson (1988). Parameter estimation and error analysis of range data, Robotics and Automation,1988. Proceedings.,1988 IEEE International Conference on.
    Agarwal, P., L. Arge, et al. (2006). "From point cloud to grid DEM:A scalable approach." Progress in Spatial Data Handling:771-788.
    Agarwal, S., N. Snavely, et al. (2010). Building rome in a day, IEEE 12th International Conference on Computer Vision,2009.
    Akenine-Moller, T., E. Haines, et al. (2004).实时计算机图形学,北京大学出版社.
    APL. (2011). "QTViewer-Software for Three-Dimensional Visualization of Large Models." from http://www.jhuapl.edu/ott/technologies/technology/articles/P01701.asp.
    ASPRS (2005). "ASPRS LIDAR Data Exchange Format Standard Version 1.1." URL:http://www. lasformat. org.
    Baboud, L. and X. Decoret (2006). Rendering geometry with relief textures, Canadian Information Processing Society.
    Beckmann, N., H. P. Kriegel, et al. (1990). "The R*-tree:an efficient and robust access method for points and rectangles." ACM SIGMOD Record 19(2):322-331.
    Bentley, J. (2006). "Multidimensional binary search trees in database applications." Software Engineering, IEEE Transactions on(4):333-340.
    Bentley, J. L. (1975). "MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING." Communications of the ACM 18(Compendex):509-517.
    Bentley, J. L. and J. H. Friedman (1979). "Data structures for range searching." ACM computing surveys (CSUR) 11(4):397-409.
    Brakatsoulas, S., D. Pfoser, et al. (2002). Revisiting R-tree construction principles, Springer. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8651
    Cai, K., W. Wang, et al. (2003). "A single-pass approach to adaptive simplification of out-of-core models." International Journal of Image and Graphics 3(2):291-309.
    Cignoni, P., F. Ganovelli, et al. (2004). Adaptive tetrapuzzles:efficient out-of-core construction and visualization of gigantic multiresolution polygonal models, ACM SIGGRAPH.
    Dachsbacher, C., C. Vogelgsang, et al. (2003). "Sequential point trees." ACM Transactions on Graphics (TOG) 22(3):657-662.
    Duchaineau, M., M. Wolinsky, et al. (1997). ROAMing terrain:real-time optimally adapting meshes, IEEE Computer Society Press.
    Finkel, R. A. and J. L. Bentley (1974). "QUAD TREES. A DATA STRUCTURE FOR RETRIEVAL ON COMPOSITE KEYS." Acta informatica 4(Compendex):1-9.
    Garland, M. and P. S. Heckbert (1997). Surface simplification using quadric error metrics, ACM Press/Addison-Wesley Publishing Co.
    GeoSystems, L. (2011). "Leica Cyclone,3D Point Cloud Processing Software." http://hds.leica-geosystems.com/en/6515.htm
    Gobbetti, E. and F. Marton (2004). "Layered point clouds:a simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models." Computers & Graphics 28(6):815-826.
    Gross, M. and H. Pfister (2007). Point-based graphics, Morgan Kaufinann Pub. Published: JUN-2007,ISBN 10:0-12-370604-1,ISBN 13:978-0-12-370604-1
    Guttman, A. (1984). R-trees:A dynamic index structure for spatial searching, ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA.
    Heritage, G. and A. Large (2009). Laser scanning for the environmental sciences, Blackwell Pub.
    Hoppe, H. (1998). "Smooth view-dependent level-of-detail control and its application to terrain rendering."ACM proceedings of the conference on Visualization '98.
    Hu, Y. (2004). "Automated extraction of digital terrain models, roads and buildings using airborne LiDAR data." PhD Thesis of York University, Advisor:Vincent Tao.
    Kofler, M., M. Gervautz, et al. (1998). The Styria Flyover-LOD management for huge textured terrain models. Computer Graphics International,1998. Proceedings.
    Kothuri, R., A. Godfrind, et al. (2008). Pro Oracle Spatial for Oracle Database 11g, Book. Springer,2007.
    Lakhia, A. (2004). "Efficient interactive rendering of detailed models with hierarchical levels of detail." 3DPVT'04 Proceedings of the 3D Data Processing, Visualization, and Transmission,2nd International Symposium.
    Lamb, P. (1994). Tiling very large rasters. http://www.spatialdbadvisor.com/file_download/50/TilingVeryLargeRasters.pdf
    Larsen, B. D. and N. J. Christensen (2003). "Real-time terrain rendering using smooth hardware optimized level of detail." Journal of WSCG 11(1).
    Leica. (2011). "HDS高清晰激光扫描系统.”from http://www.leica-geosystems.com.cn/product600.asp?11=6&12=0&13=0.
    Levoy, M. and T. Whitted (1985). "The use of points as a display primitive." Tech. Report85-022, University of North Carolina at Chapel Hill.
    Losasso, F. and H. Hoppe (2004). Geometry clipmaps:terrain rendering using nested regular grids, ACM SIGGRAPH.
    Mark, D. M., J. P. Lauzon, et al. (1989). "A review of quadtree-based strategies for interfacing coverage data with digital elevation models in grid form." International Journal of Geographical Information Science 3(1):3-14.
    McGaughey, R. and W. Carson (2003). "Fusing LIDAR data, photographs, and other data using 2D and 3D visualization techniques." Proceedings of Terrain Data:Applications and Visualization "CMaking the Connection:28-30.
    MERRICK. (2011). "MARS(?) Software." from http://www.merrick.com/index.php/geospatial/services-gss/mars-software.
    Miller, H. (2004). "Tobler's first law and spatial analysis." Annals of the Association of American Geographers 94(2):284-289.
    Molennar, M. (1996). Spatial Data Modelling for Geographic Information Systems. ISPRS Tutorial on Conceptual Aspects of GIS Technology. Vienna.
    NIST. (2009). "Definition of Quadtree." from http://xw2k.nist.gov/dads//HTML/quadtree.html.
    Ohsawa, Y. and M. Sakauchi (1983). BD-tree:A new n-dimensional data structure with efficient dynamic characteristics. IFIP Congress 1983. from http://www.pubzone.org/dblp/conf/ifip/OhsawaS83
    Optech. (2011). "3D point cloud of urban landscape." from http://www.optech.ca/lynx.htm#top.
    Pajarola, R. (1998). "Large scale terrain visualization using the restricted quadtree triangulation." Visualization'98. Proceedings.
    Pointools. (2011). "View Pro." from http://www.pointools.com/.
    Rabbani, T. (2006). "Automatic reconstruction of industrial installations using point clouds and images." Publications on geodesy 62.
    Ravada, S., M. Horhammer, et al. "Point Cloud:Storage, Loading, and Visualization." National Science Foundation TeraGrid Workshop on Cyber-GIS, February 2-3,2010, Washington DC, USA.
    Robinson, J. (1981). The KDB-tree:a search structure for large multidimensional dynamic indexes, ACM SIGMOD'81 Proceedings of the 1981 ACM SIGMOD international conference on Management of data. New York, USA.
    Rusinkiewicz, S. and M. Levoy (2000). QSplat:A multiresolution point rendering system for large meshes, ACM Press/Addison-Wesley Publishing Co. SIGGRAPH.
    Sch n, B., M. Bertolottoa, et al. (2009). Storage, manipulation, and visualization of LiDAR data, Trento, Italy,25-28 February 2009:International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences:Volume ⅩⅩⅩⅧ-5/W1.
    Sellis, T., N. Roussopoulos, et al. (1984). "THE R-TREE:A DYNAMIC INDEX FOR MULTI-DIMENSIONAL OBJECTS." Published by ACM 1984 Article. Bibliometrics Data Bibliometrics.
    Shakarji, C. M. (1998). "Least-squares fitting algorithms of the NIST algorithm testing system." JOURNAL OF RESEARCH-NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 103:633-641.
    Shan, J. and C. Toth (2008). Topographic laser ranging and scanning:Principles and Processing, CRC Press of Taylor & Francis Group,2008.
    Tobler, W. (1970). "A computer movie simulating urban growth in the Detroit region." Economic geography 46:234-240.
    Varadhan, G. and D. Manocha (2002). Out-of-core rendering of massive geometric environments, IEEE computer society proceedings of the conference on Visualization'02.
    Vassilakopoulos, M. and Y. Manolopoulos (1995). "Dynamic inverted quadtree:A structure for pictorial databases." Information Systems 20(6):483-500.
    Vosselman, G. and S. Dijkman (2001). "3D building model reconstruction from point clouds and ground plans." International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34(3/W4):37-44.
    Wand, M. (2004). Point-Based Multi-Resolution Rendering. Wilhelm Schickard Institute for Computer Science, Graphical-Interactive Systems (WSI/GRIS), University of Tubingen. PhD
    Wand, M., A. Berner, et al. (2008). "Processing and interactive editing of huge point clouds from 3D scanners." Computers & Graphics 32(2):204-220.
    WANG, M. and Y. H. TSENG (2010). "Automatic Segmentation of LiDAR Data into Coplanar Point Clusters Using an Octree-Based Split-and-Merge Algorithm." Photogrammetric engineering and remote sensing 76(4):407-420.
    Yang, H. (1990). Quadtree-Datenstrukturen als Basis fur Geo-Informationssystemen mit vektor-und Rasterdaten-Basisdaten, Technical University of munchen.
    Zhi, X., K. Zhang, et al. (2008). Data management based on geocoding index and adaptive visualization for airborne LiDAR, Citeseer.
    Mark, D. et al.,1989, A Review of Quadtree-based Strategies for Interfacing Coverage Data with Digital Elevation Models in Grid Form, INT. J. Geographical Information systems, No.1.
    Egenhofer, M.J.,1989, A Formal Definition of Binary Topological Relationships, Proce. of the Third International Conference on the Foundations of Data Organization and Algorithm, Poris.
    Gahegan, M.,1989, An Efficient Use of Quadtree in Geographical Information System,INT. J. Geographic Information System,No.3.
    Shaffer, C. et al.,1990, QUILT:A Geographic Information System Based on Quadtrees, INT. J. Geographical Information Systems, No.2.
    Yang, H.,1990a, Zur Integration Von Vektor-und Rasterdaten in Geo-Informationsysstemen, Dissertation of the Technical University of muncben.
    Yang, H.,1990b, Quadtree-Datenstrukturen als Basis fur Geo-Informationssystemen mit vektor-und Rasterdaten-Basisdaten, Geomatrie und Topologie veintegierte thematischen Datenbanken, Technical University of munchen.
    Princen, J., J. Illingworth, et al. A Hierarchical Approach to Line Extraction. (1989). Proc. IEEE Computer Vision and Pattern Recognition, San Diego.
    Princen, J., H. K. Yuen, et al. A comparison of Hough transform methods. (1989). Image Processing and its Applications, Warwick, UK.
    Rau, J.-Y. and L.-C. Chen. Robust Reconstruction of Building Models from Three-Dimensional Line Segments. PE & RS. (2003) Vol.69(2):181-188.
    Remondino Fabio From point cloud to surface:The modeling and visualization problem,. (2003). ISPRS International Workshop on "Visualization and Animation of Reality-based 3D Models".
    Rieger, W., M. Kerschner, et al. Roads and buildings from laser scanner data withing a forest enterprise. IAPRS. (1999) Vol.32-Part3/W14:185.
    Suveg, I. and G. Vosselman. Reconstruction of 3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and Remote Sensing. (2004) Vol.58(3-4):202-224.
    Takano, K. T., T. Doihara, et al. Automatic building extraction and 3-D city modeling from LiDAR data based hough transformation. IAPRS. (2004) Vol.35-B3.
    Takeda, H. Ground surface estimation in dense forest. (2004). Geo-Imagery Bridging Continents, XXth ISPRS Congress, Commission 3, Istanbul, Turkey
    Varadhan, G. and D. Manocha Out-of-Core Rendering of Massive Geometric Environments (2002). IEEE Visualization 2002.
    Vosselman, G. Building reconstruction using planar faces in very high density height data. IAPRS. (1999) Vol.32-Part 3/2W5:87.
    Vosselman, G. Slope based filtering of laser altimetry data. IAPRS. (2000) Vol.33(B3/2):935.
    Vosselman, G. Fusion of laser scanning data, maps, and aerial photographs for building reconstruction. (2002). IEEE International Geoscience and Remote Sensing Symposium and the 24th Canadian Symposium on Remote Sensing, Toronto, Canada.
    Vosselman, G.3-D reconstruction of roads and trees for city modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. (2003) Vol.34-Part 3/W13: 231.
    Vosselman, G., P. Kessels, et al. The utilisation of airborne laser scanning for mapping. International Journal of Applied Earth Observations and Geoinformation. (2005) Vol.6(3-4): 177-186.
    Vosselman, G., P. Kessels, et al. The utilisztion of airborne laser scanning for three-dimensional mapping. International Journal of Applied Earth Observation and Geoinformation. (2005) Vol. 6(3-4)(177):186.
    Vosselman, G. and H. G. Maas Adjustments and filtering of raw laser altimetry data. (2001). Proceedings of OEEPE workshop on airborne laser systems and interferometric SAR for detailed digital elevation models, Stockholm, OEEPE Official Publication.
    Wand, M., M. Fischer, et al. The Randomized z-Buffer Algorithm:Interactive Rendering of Highly Complex Scenes. (2004). SIGGRAPH 2001.
    Wand, M. and W. Straber Multi-Resolution Rendering of Complex Animated Scenes. (2002). EUROGRAPHICS 2002 Conference Procedings, Saarbruecken, Germany.
    Weidner, U. and W. Forstner. Towards automatic building extraction from hign resolution. ISPRS Journal of Photogrammetry & Remote Sensing. (1995) Vol.50(4):38.
    Zhang, K. Q., S. C. Chen, et al. A progressive morphological filter for removing non-ground measurements from airborne LIDAR data. Ieee Transactions on Geoscience and Remote Sensing. (2003) Vol.41(4):872.
    天地图.(2011).”天地图.”from http://www.tianditu.com/.
    支晓栋,林宗坚,et al.(2010).”基于改进四叉树的LiDAR点云数据组织研究.”计算机工程与应用46(9).
    王宗跃,马洪超,et al.(2009).”结合影像和LiDAR点云数据的水体轮廓线提取方法.”计算机工程与应用45(21):33.36.
    王宗跃,马洪超,et al.(2009).LiDAR点云数据的分布式组织及其并行获取方法.武汉大学学报(信息科学版)2009年第8期
    李建成…,范.(2005).激光高度计卫星ICESAT在地学研究中的应用.大地测量与地球动力学,2005年第2期
    李胜,冀俊峰,et al.(2006).超大规模地形场景的高性能漫游.2006,17(3):535-545
    李婕(2009),三维海量激光数据管理及可视化研究,首都师范大学.硕士论文.
    李婕,钟若飞,et al.(2008).”车载激光点云海量数据的管理与快速显示.”系统仿真学报20(z1).
    孟放(2005).大型三维点云数据的交互绘制研究.北京大学博士论文,信息科学学院.
    官云兰,程效军,et al.(2008).”一种稳健的点云数据平面拟合方法.”同济大学学报(自然科学版)36(007):981-984.
    林鹏(2009).基于数据库的点云多精度局部KD树索引.城建学院.武汉,武汉大学.硕士论文:65.
    邱航and陈雷霆(2009).”基于点的计算机图形学研究与进展.”计算机科学36(006):10-15.
    徐景中(2008).”LIDAR地面点云的简化方法研究.”测绘信息与工程33(1).
    郭薇(2006).空间数据库索引技术.郭菁 and胡志勇.上海,上海交通大学出版社.
    路明月and何永健(2008).”三维海量点云数据的组织与索引方法.”地球信息科学10(002):190-194.
    蔡占川,梁延研,et al.(2010).”基于嫦娥一号卫星激光测高数据的月球数字高程模型.”地球物理学进展25(4):1153-1160.
    刘春(2005).”三维激光扫描数据的压缩与地形采样.”遥感信息2005年第2期.
    刘春,陈华云,et al.(2010).激光三维遥感的数据处理与特征提取,科学出版社.
    刘艳丰(2009).基于kd-tree的点云数据空间管理理论与方法.中南大学硕士论文
    刘艳丰,王守彬,et al.(2009).”基于kd树的机载LIDAR点云滤波处理.”测绘工程18(005):59-62.
    张明波,陆.,申排伟,程昌秀(2005).R树家族的演变和发展.计算机学报,2005年第3期
    张齐勇(2009).”城区LiDAR点云的树木提取.”西南交通大学硕士学位论文
    杨玲(2009).”顾及矢量特征的机载LiDAR点云数据压缩方法.”地理与地理信息科学25(4).
    黄先锋(2006).利用机载LIDAR数据重建3D建筑物模型的关键技术研究.测绘遥感信息工程国家重点实验室.武汉,武汉大学.博士:144.
    黄先锋,陶闯,et al.(2005).”机载激光雷达点云数据的实时渲染.”武汉大学学报:信息科学版30(011):975-978.
    钟良,马洪超,管海燕,刘鹏飞.利用安置角检校进行机载LiDAR点云数据与同步影像快速配准.武汉大学学报(信息科学版)2011年第09期
    龚健雅(1993).整体SIS的数据组织,武汉测绘科技大学出版社
    龚健雅(1999).当代GIS的若干理论与技术,武汉测绘科技大学出版社.
    龚健雅(2001).地理信息系统基础,科学出版社.
    龚健雅,刘学军(2001).约束数据域的Delaunay三角剖分与修改算法.测绘学报,2001年第1期.
    庞勇,赵峰,李增元,周淑芳,邓广,刘清旺.机载激光雷达平均树高提取研究.遥感学报,2008年第1期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700