基于人类动力学的社交网络信息传播实证分析与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网技术和移动通信技术的日益成熟,基于互动服务的新型社交网络应用得到了前所未有的发展机会。社交网络已经成为人们传播信息的工具,以及分享、沟通和交流的重要平台。不同于传统的信息传播方式,社交网络用户的行为模式和社交网络的结构特征使得信息的传播过程变得更复杂和不确定。并且,在传统信息传播建模中过于简化的模型假设和简单的理论方法难以刻画真实社交网络中信息传播的演进过程。鉴于此,本文结合人类动力学、复杂网络理论和传播动力学等学科的思想和方法,对社交网络环境下的信息传播进行实证分析和建模研究。本文的实证分析结果和理论预测结果基本一致,具有较高的实际价值和科研价值。
     论文主要的研究内容和结论包括以下四个方面:
     (1)研究了新浪微博用户的爆发性评论方式对微博信息流行度的影响。本文对新浪微博的真实网络数据统计研究发现,新浪微博在线用户评论信息的行为具有异质性,表现在两次连续的评论时间间隔服从幂律分布。因此本文基于新浪微博用户评论行为异质性的假设,对微博信息流行度消亡行为进行建模,并给出理论分析。得到的主要结论:当用户评论时间间隔幂指数越大,则评论爆发性越强,大部分评论集中在很短的时间内,随后评论数减少,因此信息的消亡速度快。
     (2)本文建立了基于用户活跃时间异质性的信息传播模型。对建立的模型进行数值仿真和理论分析,得到的结论有:一、群体层面,用户活跃时间间隔和用户转发信息时间间隔都服从幂律分布,并且两者的幂指数相关;二、用户活跃时间间隔分布幂指数越小,即时间间隔异质性越大,导致信息传播速度越慢,感染用户比例也越小;
     (3)为了理解社交网络的形成及演化机制,本文在连接最近邻(CNN)机制和强度驱动(SD)机制的基础上,提出了基于强度驱动的连接最近令(?)(SD-CNN)模型。该模型不仅反映了社交网络形成的实际情况:两个具有共同好友的用户成为好友的可能性比随机选取的两个用户大的多,同时又考虑了用户选择的偏好性。对模型进行数值仿真,得到的结论有:生成的网络具有服从幂律分布的节点度和节点强度,并且节点度和节点强度呈正的非线性相关关系。
     (4)定量研究了具有社团结构网络上的信息传播动力学过程,并建立了信息传播模型。模型的仿真结果揭示:社团结构间的链接数对信息传播的速度和范围具有决定性影响。当网络规模一定时,网络划分的社团结构数对信息传播过程也有重要影响。本章的研究结果为信息传播的优化和控制提供了建议。
With the popularity of Web2.0and the fast development of related technologies, the Social Networking Service as a form of network application has developed rapidly. Nowadays, the social network has become an important platform for people to disseminate information, express views and interact with each other. Different from the traditional ways of information dissemination, user activity patterns and social network structure characteristics make the propagation of information becoming more complex and uncertain, and traditional mathematical model of spreading dynamics can't depict the spreading phenomenon in online social network. In view of this, combined with the theories and methods of the disciplines of information science, human dynamics, complex network and spreading dynamics, we empirical analysis and modeling of information spreading in social network. In this thesis, we study the impact of human activity patterns on information propagation, structural characteristics of social networks and evolutionary mechanismes. Furthermore, we investigate the impact of the structural characteristics of social networks on the information propagation. Empirical results and the findings are consistent and have great value scientific research and application.
     The main contents and conclusions are as follows:
     (1) We study the impact of bursty human comment patterns on the popularity of online content. In this paper, we first analyses the dataset from Sina micro-blogging. The result suggests that users comment patterns have periodic and bursty. The popularity of micro-blogging (namely the number of comments of micro-blogging) diminishes over time with power-law. According to the users comment patterns, we establish the model of information propagation and give the theoretical analysis. The analytical result shows that the user comment patterns are closely related to micro-blogging popularity. Finally, we comparative analyze the theoretical results and empirical results, and they are all support the conclusion very well.
     (2) We investigate the impact of the temporal heterogeneity on the information propagation. Empirical studies have shown that human life rhythms and patterns of activity greatly affect the information dissemination, especially temporal heterogeneity. In addition, the prevalence of online social networking services makes users inundated with a lot of information. Based on these two factors we establish the model of information propagation. From the simulation results, we find that the propagation velocity increases monotonously with the increase of temporal heterogeneity exponent. Furthermore, the decay of propagation velocity, namely the newly infected individuals at each time step, also follows power law distribution. Meanwhile, the exponent characterizing the temporal heterogeneity is related to that in the decay of propagation velocity by the relationβ=α-1. These results are well supported by both the theoretical predictions and empirical data.
     (3) In order to understand the mechanism of the formation and evolution of social network, we propose the SD-CNN model. The model based on the mechanism of strength driven attachment and connecting the nearest neighbor, and reflects the real phenomenon of social network:two users who have common friends become friends is more likely than randomly selected two users. Simulation results show that the degree and strength of nodes follow power law distributions.
     (4) We investigate the impact of community structure on information propagation on social network. We established the propagation model not only consider the number of community structure, but also the number of links between the communities. The conclusions are as follows:for a piece of information propagation on social networks, we find that the number of links among communities determines the fraction of infected nodes. And the number of community structure also has great impact on information propagation process. The results can be useful for optimizing or controlling information, such as rumor or facts, propagate on online social networks.
引文
[1]Duncan J.W. Six degrees:the science of a connected age [M]. New York:W.W. Norton & Company,2003.
    [2]第31次中国互联网发展状况统计报告,中国互联网信息中心,2013.
    [3]Aral S, Walker D. Identifying influential and susceptible members of social networks [J]. Science,2012,337:337-341.
    [4]Bond R.M., Fariss C.J., Jones J.J., Kramer A.D.I., Marlow C., Settle J.E., Fowler J.H. A 61-million-person experiment in social influence and political mobilization [J]. Nature,2012,489:295-298.
    [5]McPherson M., Smith L.L., Cook J.M. Birds of a feather:Homophily in social networks [J]. Annual Review Sociology,2001,27:415-444.
    [6]Aral S., Muchnik L., and Sundararajan A., Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks [J]. Proc. Natl. Acad. Sci. USA,2009,106(51):21544-21549.
    [7]Newman M. E. J., Spread of epidemic disease on networks [J]. Phys. Rev. E,2002, 66:016128.
    [8]Golub B. and Jackson M. O., Using selection bias to explain the observed structure of internet diffusions [J]. Proc. Natl. Acad. Sci. USA,2010,107(24):10833-10836.
    [9]Moreno Y, Nekovee M., and Pacheco A. F., Dynamics of rumor spreading in complex networks [J]. Phys. Rev. E,2004,69:066130.
    [10]Daley D. J. and Kendall D. G., Epidemics and rumours [J]. Nature,1964,204: 1118.
    [11]Barabasi A.-L., The origin of bursts and heavy tails in human dynamics [J]. Nature,2005,435:207-211.
    [12]Gruhl D., Guha R., Liben-Nowell D., and Tomkins A., Information diffusion through blogspace [C]. In Proceedings of the 13th International Conference on World Wide Web,2004,491-501(ACM, New York,2004).
    [13]Leskovec J., McGlohon M., and Faloutsos C., Cascading behavior in large blog graphs [J].2007, arXiv:0704.2803.
    [14]Pitkow J. E., Characterizing world wide web ecologies [C]. Proceedings of the 7thWorld Wide Web Conference,1997, (ACM, New York).
    [15]Anderson R.M. and May R., Infectious Diseases of Humans:Dynamics and Control [M].1991 (Oxford University Press, Oxford).
    [16]Vazquez A., Oliveira J. G., Dezso Z., Goh K. I., Kondor I., and Barabasi A.-L., Modeling bursts and heavy tails in human dynamcis [J]. Phys. Rev. E,2006,73: 036127.
    [17]Stouffer D. B., Malmgren R. D., and Amaral L. A. N., Comment on Barabasi [J]. Nature,2005,435:207.
    [18]Karsai M., Kivela M., Pan R.K., Kaski K., Kertesz J., Barabasi A.-L., and Saramaki J., Small but slow world:How network topology and burstiness slow down spreading [J]. Phys. Rev. E,2011,83:025102.
    [19]Miritello G., Moro E., and Lara R., Dynamical strength of social ties in information spreading [J]. Phys. Rev. E,2011,83:045102.
    [20]Pastor-Satorras R., Vazquez A., and Vespignani A., Dynamical and correlation properties of the Internet [J]. Phys. Rev. Lett.,2001,87(25):258701.
    [21]Pareto V., Cours d'economie politique [M].1896, (Droz, Geneva).
    [22]Haight, F. A., Handbook of the Poisson Distribution [M]. Wiley, New York,1967.
    [23]Reynolds, P., Call Center Staffing [M]. The Call Center School Press, Lebanon, Tennessee,2003.
    [24]Greene, J. H., Production and Inventory Control Handbook 3rd edn [M]. McGraw-Hill, New York,1997.
    [25]Zhou T, Human activity Pattern on online movie watching [J]. Complex System and Complexity Science,2008,5:1-5.
    [26]赵庚升,张宁. 群体用户的网页浏览模式[J].统计与决策,2009.
    [27]谢伟聪.维基百科的人类行为动力学探讨[D].华南理工大学,2011.
    [28]罗芳,杨建梅,李志宏.QQ群消息中的人类行为动力学研究[J].华南理工大学学报(社会科学版),2011,13(4):14-19.
    [29]Guo J.L., Weblog patterns and modeling human dynamics with decaying interest [J]. Computer Science,2010,1008:0042v3.
    [30]Zhao Z. D. and Zhou T., Empirical analysis of online human dynamics [J]. PhysicaA,2012,391:3308-3315.
    [31]Riley C. and Didier Sornette. Robust dynamic classes revealed by measuring the response function of a social system [J]. Proc. Natl. Acad. Sci. USA,2008,105(41): 15649-15653.
    [32]Dezso Z, Almaas E, Lukacs A, et al. Dynamics of information access on the web [J]. Phys Rev E,2006,73:066132.
    [33]Vazquez A., Oliveira J. G., Dezso Z., Goh K.-I., Kondor I., and Barabasi A.-L., Modeling bursts and heavy-tails in human dynamics [J]. Phys. Rev. E,2006,73(3): 036127.
    [34]Goncalves B. and Ramasco J. J. Human dynamics revealed through web analytics [J]. Phys. Rev. E 78,2008,78(2):026123.
    [35]Radicchi F. Human activity in the web [J]. Phys. Rev. E 80,2009,80(2):026118.
    [36]Leskovec J. and Horvitz E. Planetary-scale views on a large instant-mesaging network [C]. Proceedings of the 17th international conference on World Wide Web, 2008,915-924.
    [37]张彦超,刘云,张海峰,程辉,熊菲.基于在线社交网络的信息传播模型[J].物理学报,2011,60(5).
    [38]张彦超.社交网络服务中信息传播模式与舆论演进过程研究[D].博士论文,2012.
    [39]韩佳,肖如良,胡耀,唐涛,房丽娜.在线社交网络中信息传播模式的特征分析[J1.计算机应用,2013,33(1):105-107.
    [40]郭海霞,新型社交网络信息传播特点和模型分析[J].现代情报,2012,32(1).
    [41]顾亦然,夏玲玲.在线社交网络中谣言的传播与抑制[J].物理学报,2012,61(23).
    [42]Vazquez A., Racz B., Lukacs A., and Barabasi A.L. Impact of non-Poisson activity patterns on spreading processes [J]. Phys. Rev. Lett.,2007,98(15):158702.
    [43]Iribarren J.L. Impact of human activity patterns on the dynamics of information diffusion [J]. Phys. Rev. Lett.,2009,103(3):038702.
    [44]Vazquez A. Polynomial growth in branching processes with diverging reproductive number [J]. Phys. Rev. Lett.,2006,96(3):038702.
    [45]Min B., Goh K.I., and Vazquez A. Spreading dynamics following bursty human activity patterns [J]. Phys. Rev. E,2011,83(3):036102.
    [46]Yang Z.M., Cui A.X, and Zhou T. Impact of heterogeneous human activities on epidemic spreading [J]. Physica A,2011,390(23):4543-4548.
    [47]易兰丽.基于人类动力学的微博用户行为统计特征分析与建模研究[D].北京邮电大学,2012.
    [48]赵庚生,张宁,周涛.网页浏览中的标度行为研究[J].统计与决策,2009,1:18
    [49]Vojnovic M. On mobile user behaviour patterns [J]. Microsoft Research, Techn ical Report MSR-TR,2008.
    [50]Zhou T., Kiet H.A.T., Kim B.J., et al. Role of Activity in Human Dynamics [J]. Europhys. Lett.,2008,82:28002.
    [51]Hu H.B., and Han D.Y. Empirical analysis of individual popularity and activit yon an online music service system [J]. Physica A,2008,387(23):5916-5921.
    [52]Wang P., Xie X.Y., Yeung C. H., et al. Heterogenous scaling in interevent tim e of on-line bookmarking [J]. Physica A,2011,390(12):2395-2400.
    [53]Wang J., Gao K., Li G. Empirical Analysis of Customer Behaviors in Chines e E-Commerce [J]. J. Networks,2010,5(10):1177-1184
    [54]Wang P, Lei T, Yeung C-H, et al. Heterogenous human dynamics in intra-and i nter-day timescales [J]. EPL,2011,94:18005.
    [55]Lambiotte R, Ausloos M, Thelwall M. Word statistics in Blogs and RSS feed s:Towards empirical universal evidence [J]. J. Informetrics,2007,1(4):277-286.
    [56]Li N, Yan H, Zhang W-Y, et al. Temporal statistical analysis on human articl e creation Patterns. arXiv:1108.0833.
    [57]Leskovec J. and Horvitz E. Planetary-scale views on a large instant-messagin g networks [C]. Proc.17th Intl:Conf. World Wide Web, New York, ACM Press,200 8.
    [58]Chen G., Han X.P., Wang B.H. Multi-Level Scaling Properties of Instant-Messag e Communications [J]. PhysicsProcedia,2010,3:1897.
    [59]Gotz M., Leskovec J., McGlohon M., et al. Modeling Blog Dynamics [C]. Pr oc.3rd Intl. ICWSM Conf., AAAI Press,2009.
    [60]Wang P., Zhou T., Han X-P, et al. Modeling correlated human dynamics. arXi v:1007.4440.
    [61]Guo J.L., Fan C., Guo Z.H., Weblog patterns and human dynamics with decrea sing interest [J]. Eur. Phys. J. B,2011,81(3):341-344.
    [62]Song Y., Zhang C., and Wu M., The study of human behavior dynamics base d on blogosphere [C]. Proc.2010 Intl. Conf. Web Inf. Syst. &. Min., IEEE Press,201 0,1:87-91.
    [63]Bao Y., and Xin Z., Human Activity Pattern on Microblogging Interaction [C]. Proc.2011 Intl. Conf. Inf. Manag, Innovation Manag. &. Industrial Eng., IEEE Press, 2011,3:303-306.
    [64]Chun H., Kwak H., Eom Y.H., Comparison of online social relations in volum e vs. Interaction:a case study of cyworld [C]. Proc.8th ACM SIGCOMM Conf. Inte met Measurement, New York, ACM Press,2008.
    [65]Brewington B. E., and Cybenko G., Keeping up with the changing Web [J]. IEEE Computer,33(5):52-58,2000.
    [66]Fetterly D., Manasse M., Najork M., and Wiener J.L. A large-scale study of the evolution of Web pages [C]. In Proc.12th International World Wide Web Conference, 2003.
    [67]Kleinberg J. Bursty and hierarchical structure in streams [C]. In Proc.8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,2002.
    [68]Kumar R., Novak,J. Raghavan P., and Tomkins A., On the bursty evolution of blog-space [C]. In Proc.12th International World Wide Web Conference, pages 568-576,2003.
    [69]Mathioudakis M., Koudas N., and Marbach P., Early online identification of attention gathering items in social media [C]. In WSDM'10:Proceedings of the third ACM international conference on Web search and data mining, pages 301-310, New York, NY, USA,2010. ACM.
    [70]Wu F. and Bernardo A. H., Novelty and collective attention [J]. Proc. Natl. Acad. Sci. USA,104(45):17599-17601,2007.
    [71]Ratkiewicz J., Menczer F., Fortunato S., Flammini A., and Vespignani A., Traffic in Social Media Ⅱ:Modeling Bursty Popularity [C]. In Proc. of the International Symposium on Social Intelligence and Networking (SIN-10). IEEE,2010.
    [72]Albert R. and Barabasi A.L., Statistical mechanics of complex networks [J]. Rev. Mod. Phys.,200?,74:47-97.
    [73]Cohen R., Havlin S., Complex Networks:Structure, Robustness and Function [M].Cambridge University Press, Cambridge,2010.
    [74]Mitzenmacher M., A brief history of generative models for power law and lognormal distributions [J]. Internet Mathematics,2004,1(2):226-251.
    [75]Newman M.E.J., Power laws, Pareto distributions and Zipf's law [J]. Contemporary Physics,2005,46 (5):323-351.
    [76]Clauset A., Shalizi C.R., Newman M.E.J., Power-law distributions in empirical data [J]. SIAM Review,2009,51 (4):661-703.
    [77]Wasserman L., All of Statistics:A Concise Course in Statistical Inference [M]. Springer-Verlag, Berlin,2003.
    [78]Muniruzzaman A. N. M., On measures of location and dispersion and tests of hypotheses in a Pareto population [J]. Calcutta Statist. Assoc. Bull.,1957,7:115-123.
    [79]Goldstein M.L., Morris S.A., and Yen G.G., Problems with fitting to the power-law distribution [J]. Eur. Phys. J. B,2004,41:255-258:
    [80]Centola D., The spread of behavior in an online social network experiment [J]. Science,2010,329(5996):1194-1197.
    [81]Kossinets G. and Watts D. J., Empirical analysis of an evolving social network [J]. Science,2006,311(5757):88-90.
    [82]Daley D.J. and Gani J., Epidemic Modeling:An Introduction [M]. Cambridge University Press, Cambridge,1999.
    [83]Balcan D., Colizza V, Goncalves B., Hu H., Ramasco J.J., and Vespignani A., Multiscale mobility networks and the spatial spreading of infectious diseases [J]. Proc. Natl. Acad. Sci. U.S.A.,2009,106(51):21484-21489.
    [84]Sanz J., Flona L.M., and Moreno Y, Spreading of persistent infections in heterogeneous populations [J]. Phys. Rev. E,2010,81(5):056108.
    [85]Yan Q., Yi L.L., and Wu L.R., Human dynamic model co-driven by interest and social identity in the microblog community [J]. Physica A:Statistical Mechanics and its Applications,2012,391:1540-1545.
    [86]Granovetter M., Threshold models of collective behavior [J]. American Journal of Sociology,1978,83(6):1420-1443.
    [87]Weng L., Flammini A., Vespignani A., and Menczer F., Competition among memes in a world with limited attention [J].2012, Scientific Reports 2:335.
    [88]Feller W., An introduction to probability theory and its applications [M].1967, New York:Wiley.
    [89]Dodds P.S., Watts D. J., and Sabel C. F., Information exchange and the robustness of organizational networks[J]. Proc. Natl. Acad. Sci. U.S.A.,2003, 100(21):12516-12521.
    [90]Valente T.W., Network models of the diffusion of innovations [J]. Comupation & Mathematical Organization Theory,1996,2(2):163-164.
    [91]Davidsen J., Ebel H., and Bornholdt S., Emergence of a small world from local interactions:Modeling acquaintace networks [J]. Phys. Rev. Lett.,2002,88(12): 128701.
    [92]Vazquez A., Growing network with local rules:Preferential attachment, clustering hierarchy, and degree correlations [J]. Phys. Rev. E,2003,67(5):056104.
    [93]Yuta K., Ono N., and Fujiwara Y, A gap in the community-size distribution of a large-scale social networking site [J].2007, arXic:physics/0701168.
    [94]Wu L.R. and Yan Q., Modeling dynamical evolution of online friendship network [J]. Commun. Theor. Phys.,2012,58(4):599-605.
    [95]Rudolf B., Markosova M., Cajagi M., and Tino P., Degree distribution and scaling in the connecting-nearest-neighbors model [J]. Phys. Rev. E,2012,85(2):026114.
    [96]Watts D. J., and Strogatz S. H., Collective dynamics of "small-world" networks [J]. Nature,1998,393:440-442.
    [97]Palla G., Barabasi A.L., and Vicsek T., Quantifying social group evolution [J]. Nature,2007,466:664-667.
    [98]闫强,吴联仁,郑兰,微博社区中用户行为特征及其机理研究[J].电子科技大学学报。(已录用,待出版)
    [99]Yan Q., Wu L.R., Zheng L., Social network based microblog user behavior analysis [J]. Physica A:Statistical Mechanics and its Application,2013, 392(7):1712-1723.
    [100]张立,刘云,虚拟社区网络的演化过程研究[J].物理学报,2008,57(9).
    [101]Facebook人均好友120人SNS难扩人类社交规模”科技时代,互联网,2009年03月.
    [102]Barrat A., Barthelemy M., and Vespignani A., Weighted evolving networks: Coupling topology and weight dynamics [J]. Phys. Rev. Lett.,2003,92(22):228701.
    [103]Wang W.X., Wang B.H., Hu B., Yan G., and Qu Q., General dynamics of topology and traffic on weighted technological networks [J]. Phys. Rev. Lett.,2005, 94(18):188702.
    [104]Newman M. E. J. Assortative mixing in networks [J]. Phys. Rev. Lett.,2002, 89(20):208701.
    [105]Barabasi A.L. and Albert R., Eemergence of scaling in random networks [J]. Science,1999,286(5439):509-512.
    [106]Newman M. E. J., Modularity and community structure in networks [J]. Proc. Nat. Acad. Sci. USA,2006,103(23):8577-8582.
    [107]Huang W. and Li C.G., Epidemic spreading in scale-free networks with community structure [J]. J. Stat. Mech.2007, P01014.
    [108]Sun H.J. and Gao Z.Y., Dynamical behaviors of epidemics on scale-free networks with community structure [J]. Physica A:Statistical Mechanics and its Applications,2007,381:491-496.
    [109]Zhao J.C., Wu J.J., Feng X., Xiong H., and Xu K., Information propagation in inline social networks:a tie-strength perspective [J]. Knowl. Inf. Syst,2012, DOI 10.1007/s10115-011-0445-x.
    [110]Miritello G., Moro E, Lara R., Dynamical strength of social ties information spreading [J]. Phys. Rev. E,2011,83:045102(R).
    [111]Huang L., Park K., and Lai Y.C., Information propagation on modular networks [J]. Phys. Rev. E,2006,73:035103(R).
    [112]汪小帆,刘亚冰.复杂网络中的社团结构算法综述[J].电子科技大学学报,2009,38(5).
    [113]李晓佳,张鹏,狄增如,樊瑛.复杂网络中的社团结构[J].复杂系统与复杂性科学,2008,5(3).
    [114]Radicchi F., Castellano C., Cecconi F., Loreto V., and Parisi D., Defining and identifying communities in networks [J]. Proc Natl Acad Sci USA,2004,101(9): 2658-2663.
    [115]Castellano C., Cecconi F., Loreto D., and Radicchi F., Self-contained algorithms to detect communities in networks [J]. Eur Phys J. B.,2004,38(2):311-319.
    [116]Newman M. E. J. and Girvan M. Finding and evaluating community structure in networks [J]. Phys. Rev. E,2004,69(2):026113.
    [117]Leicht E.A., and Newman M.E.J., Community structure in directed networks [J]. Phys. Rev. Lett.,2008,100(11):118703.
    [118]Arenas A., Duch J., Fernandez A., and Gomez S., Size reduction of complex networks preserving modularity [J]. New J. Phys.,2007,9:176.
    [119]李明杰,吴晔,刘维清,肖井华.手机短信息传播过程和短信息寿命研究[J].物理学报,58(8),2009,5251-5258.
    [120]李明杰.人类活动模式对信息传播过程影响的研究[D].北京,北京邮电大学,2012.
    [121]鲍媛媛.人类行为动力学的实证及生成机制研究[D].北京,北京邮电大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700