转hrf1基因水稻抗白叶枯病机理研究及水稻抗病相关基因Oscyp71Z2的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病是由黄单胞病菌侵染引起的水稻三大病害之一,每年造成10%到80%的产量损失,威胁着世界粮食安全。目前,大量使用化学农药已经严重破坏了生态环境。同时,水稻品种抗性易于丧失对水稻抗病育种提出更高的要求。经济有效且环境友好的控制病害途径之一就是利用生物技术创制持久的、广谱抗性水稻栽培品种。而鉴定水稻抗病相关基因是培育抗病水稻新品种的基础。进一步发掘具有潜在利用价值的激发子蛋白编码基因为通过改善水稻自身防御体系来控制病害提供了可利用的资源。
     来源于白叶枯菌株JXOⅢ的harpinxoo蛋白通过激活多重防卫反应,如系统获得抗病性(system acquired resistance, SAR)、过敏反应(hypersensitive response, HR),从而增强植物对多种病害的抗性。然而,仍旧不清楚植保素以及信号分子活性氧是否也在harpinxoo蛋白所激发的水稻抗病信号通路中起作用。在前期研究工作中,本实验室获得的部分转编码harpinXoo基因hrfl水稻T3代纯合体增强了对白叶枯病的抗性。在此基础之上,本研究选择转hrfl基因水稻T3代纯合体NJH12用来分析hrfl异源表达增强水稻白叶枯病抗性的机理。本研究表明,在水稻中异源表达harpinxoo蛋白编码基因hrf1激发了植保素生物合成通路,同时抑制了内源H202产生,并增强了对白叶枯病菌的抗性。在水稻中异源表达hrfl基因显著诱导植保素合成相关基因表达,促使快速持续地大量合成植保素。随着抗氧化酶活性的变化,转基因系的ROS-清除能力升高,H202量显著减少。通过扫描电镜和能谱分析,转基因水稻的硅含量显著升高,并且有部分的硅质体的分布也发生变化。在接菌的条件下,转基因系的防卫反应相关基因的表达量也显著升高。这些结果为更好地理解防卫反应在hrfl介导的白叶枯病抗性中所起到的作用提供了证据,并且也为获得非特异性病害抗性转基因植物提供了可利用的资源。
     从转hrf1基因水稻NJH12芯片数据中筛选到一个表达倍数高达114.6倍的抗病相关基因。随后经生物信息学分析该基因是一个细胞色素P450基因,命名为Oscyp71Z2,是CYP71Z亚家族成员之一。从水稻品种日本晴中克隆Oscyp71Z2全长基因、Oscyp71Z2RNAi靶片段以及启动子上游序列分别构建超量表达载体、RNAi载体以及启动子/GUS融合载体,利用农杆菌介导法转化水稻日本晴。常规PCR和Southern blot结果表明T-DNA区已整合到水稻基因组中。Northern blot和Western blot结果表明超量表达株系Oscyp71Z2的转录本和蛋白量较野生型高,RNAi株系中Oscyp71Z2的蛋白量较野生型低,而转录本却都未检测到。GUS活性实验表明该基因主要在叶片、节、主根和颖片中表达。本研究表明,Oscyp71Z2超量表达株系在孕穗期减少了白叶枯病菌的病斑面积,并抑制了白叶枯病菌在水稻叶片中的定殖。同时,随着植保素合成相关基因的表达量升高,超量表达株系的植保素迅速、大量地积累。进一步分析活性氧清除能力的升高,导致超量表达株系的H202产生受到抑制。另一方面,Oscyp71Z2RNAi株系对白叶枯病菌抗性与野生型没有显著差异,但部分抑制了植保素积累。这些结果表明,Oscyp71Z2可能通过调控植保素和H202生物合成通路从而在水稻白叶枯病菌不亲合互作中起到重要作用。
Bacterial blight is one of the most destructive rice diseases, which caused by Xanthomonas oryzae pv. oryzae (Xoo), and results in10%to80%yield losses, endangering worldwide food security. Presently heavily application of chemical pesticides for controling disease has seriously damaged ecological environment. Meanwhile, easy lost of rice variety resistance to disease posed higher demond for rice breeding. An economically effective and environmentally sound approach to control disease is the utilization of cultivars that possessed durable, broad-spectrum resistance to disease by biotechnology. Identification of rice resistance-related genes is the base to cultivate the new rice disease-resistant varieties. The exploration of gene code elicitor protein with potential application value provides available resource for controlling disease by inducing multiple defense responses.
     Harpinxoo proteins from the Xoo stain JXOIII increase plant disease resistance by activating multiple defense responses in plants, such as systemic acquired resistance and hypersensitive response. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpinxoo protein in rice. In preliminary studies, our group showed some hrfl (code harpinxoo protein)-transformed rice T3homozygote increased resistance to Xoo. On the basis, in this article hrfl-transformed rice T3homozygote NJH12has been choiced for analyzing the resistance mechanism to Xoo. In this article, ectopic expression of hrfl in rice enhanced resistance to bacterial blight. Accompanying the activation of genes related to the phytoalexin biosynthesis pathway in hrfl-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrfl-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H2O2) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between Xoo and hrf1-transformed plants. The data also supply an opportunity for generating nonspecific resistance to pathogens.
     Based on the transcriptome profile of the transgenic rice line NJH12expressing hrfl from Xoo, a resistance-related gene showing114.6-fold increase of expression level was identified. The gene is the cytochrome P450gene, named as Oscyp71Z2analyzed by bioinformation, which belongs to the CYP71Z subfamily. Oscyp71Z2CDS, Oscyp71Z2RNAi target fragment and promoter sequence have cloned from rice cultivar Nipponbare transcript and genome, respectively make transformation vectors for overexpression, RNAi and Oscyp71Z2expression pattern, then transformed into rice Nipponbare genome mediated by Agrobacterium tumefaciens. The results from normal PCR and Southern blot showed T-DNA has inserted into rice genome. The data from Northern blot and Western blot showed the transcript and protein level in Oscyp71Z2-overexpressiong plant was higher than that in wild type Nipponbare. On the contrary, the protein level in Oscyp71Z-RNAi plant was lower than that in wild type, the tanscript hasa no detected in both. A strong GUS signal was detected mainly in the leaves, nodes, primary roots and glume. Overexpression of Oscyp71Z2enhanced resistance to Xoo at the booting stage, and inhibited multiplication of Xoo PXO99A. The accumulation of phytoalexins was rapidly and strongly induced in Oscyp71Z2-overexpressing plants, and the transcript levels of genes related to the phytoalexin biosynthesis pathway were elevated. The H2O2concentration in Oscyp71Z2-overexpressing plants was reduced in accordance with the increase in ROS-scavenging ability due to the induction of superoxide dismutase (SOD) as well as peroxidase (POD) and catalase (CAT) activation. We also showed that suppression of Oscyp71Z2had no significantly effect on disease resistance to Xoo in rice, although inhibited part phytoalexin production. These results demonstrated that Oscyp71Z2plays an important role for bacterial blight resistance by regulating the diterpenoid phytoalexin biosynthesis and H2O2generation.
引文
1. Akatsuka T, Kodama O, Kato H, Kono Y, Takeuchi S.3-Hydroxy-7-oxo-sandaracopim-aradiene (Oryzalexin A), a new phytoalexin isolated from rice blast leaves. Agric Biol Chem,1983,47: 445-447.
    2. Akatsuka T, Kodama O, Sekido H, Kono Y, Takeuchi S. Novel phytoalexins (Oryzalexins A, B, and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I:Isolation, characterization and biological activities of oryzalexins. Agric Biol Chem,1985,49:1689-1694.
    3. Alfano JR, Collmer A. Type III secretion system effector proteins:double agents in bacterial disease and plant defense. Annu Rev Phytopathol,2004,42:385-414.
    4. Amy OC, James RA, Gail P, et al. The syringae pv. tomato HrpW has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol, 1998,180:5211-5217.
    5. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399.
    6. Apostol I, Heinstein PF, Low PS. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells:Role in defense and signal transduction. Plant Physiol,1989,90:109-116.
    7. Atkinson P, Blakeman JP. Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol,1982,92:63-74.
    8. Bailey JA, Mansfield JW. eds. Phytoalexins. Glasgow:Blackie.1982, pp 334.
    9. Bak S, Feyereisen R. The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol,2001,127:108-118.
    10. Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell, 2001,13:101-111.
    11. Baker CJ, Oriandi EW. Active oxygen in plant pathogenesis. Annu Rev Phytopathol,1995,33, 299-321.
    12. Baker CJ, Orlandi EW, Mock NM. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol, 1993,102:1341-1344.
    13. Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA,2000,97:14819-14824.
    14. Bohman S, Staal J, Thomma BP, Wan, M, Dixelius C. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem:Resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J, 2004,37(1):9-20.
    15. Bottcher C. Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell,2009, 21:1830-1845.
    16. Bozak KR, Yu H, Sirevag R, Christoffersen RE. Sequence analysis of ripening-related cytochrome P450 cDNAs from avocado fruit. Proc Natl Acad Sci USA,1990,87:3904-3908.
    17. Broekaert WF, Delaure SL, De Bolle MF. Cammue BP. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol,2006,44:393-416.
    18. Cai KZ, Gao D, Luo SM, Zeng RS, Yang JY, Zhu XY. Physiological and cytological mechanisms silicon-induced resistance in rice against blast disease. Physiologia Plantarum,2008,134:324-333.
    19. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP. Chemical activation of host defence mechanisms as a basis for crop protection. Nature,1977,267:511-513.
    20. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry,1981,20:535-537.
    21. Chappie C. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol,1998,49:311-343.
    22. Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, et al. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology,2008a,98 (7):781-791.
    23. Chen L, Zhang SJ, Zhang SS, Qu S, Ren X, Long J, Yin Q, Qian J, Sun F, Zhang C, et al. A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGxooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology,2008b,98 (7):792-802.
    24. Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. MPMI, 2005,18 (6):511-520.
    25. Cho EM, Okada A, Kenmoku H, Otomo K, Toyomasu T, Mitsuhashi W, Sassa T, Yajima A, Yabuta G, Mori K, et al. Molecular cloning and characterization of a cDNA encoding ent-cassa-12, 15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J,2004,37:1-8.
    26. Cruickshank IAM. Phytoalexins. Annu Rev Phytopathol,1963,1:351-374.
    27. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature, 2001,411:826-833.
    28. Davidson SE, Reid JB, Helliwell CA. Cytochromes P450 in gibberellin biosynthesis. Phytochem Rev,2006,5:405-419.
    29. Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, et al. Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinPss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol,2003,51:913-924.
    30. Desikan R, Hancock JT, Ichimura K, Shinozalci K, Neill SJ. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol,2001, 126:1579-1587.
    31. Dillon VM, Overton J, Grayer RJ, Harborne JB. Difference in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry,1997,44:599-603.
    32. Dixon RA. The phytoalexin response:elicitation, signaling and control of host gene expression. Biol Rev,1986,61:239-291.
    33. Dong H, Delaney TP, Bauer DW, Beer SV. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J,1999,20:207-215.
    34. Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong HS. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol,2004,136:3628-3638.
    35. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,2005,221: 313-327.
    36. Durrant WE. Dong XN. Systemic acquired resistance. Annu Rev Phytopathol,2004,42:185-209.
    37. Durst F, Nelson DR. Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact,1995,12:189-206.
    38. Fang L, Lou HX. Advance study on phytolalexins. Nat Prod Res Dev,2006,18:1033-1040.
    39. Fang ZD. Technique of Plant Pathology. Beijing:China Agricultural Press,1996.
    40. Fawe A, Abou-Zaid M, Mebzies JG, Belanger RR. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology,1998,88:396-401.
    41. Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J,2003,35:193-205.
    42. Frank MR, Deyneka JM, Schuler MA. Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol,1996,110:1035-1046.
    43. Frear DS, Swanson HR, Tanaka FS. N-Demethy-lation of substituted 3-(phenyl)-1-methylureas-isolation and characterization of a microsomal mixed function oxidase from cotton. Phytochemistry,1969,8:2157-2169.
    44. Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol,2003,54:137-164.
    45. George HL, Van Etten HD. Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol,2001,33:37-48.
    46. Glawischnig E, Hansen BG, Olsen CE, Halkier BA. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA,2004,101:8245-8250.
    47. Glazebrook J, Ausubel F. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterisation of their interactions with bacterial pathogens. Proc Nat Acad Sci USA,1994,91: 8955-8959.
    48. Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics,1997,146: 381-392.
    49. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp Japonica). Science,2002, 296:92-100.
    50. Grayer RJ, Harborne JB. A survey of antifungal compounds from higher plants,1982-1993. Phytochemistry,1994,37:19-42.
    51. Grayer RJ, Kokubun T. Plant-fungal interactions:the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry,2001,56:253-263.
    52. Gupta A, Chattoo BB. Functional analysis of a novel ABC transporter ABC4 from Magnaprthe grisea. FEMS (Fed Eur Microbiol Soc) Microbiol Lett,2008,278:22-28.
    53. Hain R, Reif HJ, Krause E, Langebartels R, Kndle H. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature,1993,361:153-156.
    54. Hammerschmidt R, Schultz J. Multiple defenses and signals in plant defense against pathogens and herbivores. Recent Adv Phytochem,1996,30:121-154.
    55. Hammerschmidt R. Phytoalexins:What have we learned after 60 years? Ann Rev Phytopathol, 1999,37:285-306.
    56. Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y. Phytoalexin accumulation in the interaction between rice and the blast fungus. MPMI,2010,8:1000-1011.
    57. Hayasaka T, Fujii H. Ishiguro K. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology,2008,9:1038-1044.
    58. He SY, Huang HC. Collmer A. Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted by the hrp pathway and elicits the hypersensitive response in plants. Cell,1993,73: 1255-1266.
    59. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA,2001,98:2065-2070.
    60. Helliwell CA, Poole A, Peacock WJ, Dennis ES. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol,1999,119:507-510.
    61. Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JAD, Peacock WJ, Dennis ES. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci USA,1998, 95:9019-9024.
    62. Hemm MR, Ruegger MO, Chapple C. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell, 2003,15:179-194.
    63. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell,2003,15:2900-2910.
    64. Hou X, Xie K, Yao J, Qi Z, Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA,2009,106:6410-6415.
    65. Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L. Hydrogen Peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent maimer. J Exp Bot,2001,52:1721-1730.
    66. Hoyos AE, Stanley CM, He SY, Pike S, Pu XA, Novacky A. The interaction of harpinPss with Plant cell walls. MPMI,1996,9:608-616.
    67. Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA,2000,97: 2379-2384.
    68. Huo R, Wang Y, Ma LL, Qiao JQ, Shao M, Gao XW. Assessment of inheritance pattern and agronomic performance of transgenic rapeseed having harpinXooc-encoding hrf2 gene. Transgenic Res,2010,19 (5):841-847.
    69. Ingham JL. Disease resistance in higher plants. The concept of pre-infectional and post-infec-tional resistance. Phytopathologische Zeitschrift,1973,78:314-335.
    70. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol,2004,54:533-547.
    71. Jang YS, Sohn SI, Wang MH. The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta,2006,223:449-456.
    72. Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol,2001,42:1265-1273.
    73. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA,1999,96:13583-13588.
    74. Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, et al. Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell,2001,105:625-636.
    75. Kariola T, Palomaki TA, Brader G, Palva ET. Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. MPMI,2003,16:179-187.
    76. Kato H, Kodama O, Akatsuka T. Oryzalexin E, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry,1993,33:79-81.
    77. Kato H, Kodama O, Akatsuka T. Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry,1994,36:299-301.
    78. Kato T, Kabuto C, Sasaki N, Tsunagawa M, Aizawa H, Fujita K, Kato Y, Kitahara Y, Takahashi N. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Letters,1973,3861-3864.
    79. Kato-Noguchi H, Ino T, Rice seedlings release momilactone B into the environment. Phytochemistry,2003,63:551-554.
    80. Kato-Noguchi H, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant,2002,115:401-405.
    81. Kenji U, Noriko O, Masaru S, Jinichiro K, Hideki U, Toshiaki K. Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biosci Biotechnol Biochem,2003,67:899-902.
    82. Kim JA, Cho K, Singh R, Jung YH, Jeong SH, Kim SH, Lee JE, Cho YS, Agrawal GK, Rakwal R, et al. Rice OsACDR1(Oryza sativa Accelerated Cell Death and Resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells,2009,8:431-439.
    83. Kim JF, Beer SV. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. Journal of Bacteriology,1998,180:5203-5210.
    84. Kliebenstein DJ, Rowe HC, Denby KJ. Secondary metabolites influence ArabidopsislBotrytis interactions:Variation in host production and pathogen sensitivity. Plant J,2005,44:25-36.
    85. Kodama O, Li WX, Tamogami S, Akatsuka T. Oryzalexin S, a novel stermarane-type diterpene rice phytoalexin. Biosci Biotechnol Biochem,1992a,56:1002-1003.
    86. Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry,1992b,31:3807-3809.
    87. Koga J, Ogawa N, Yamauchi T, Kikuchi N, Ogasawara N, Shimura M. Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry,1997,44: 249-253.
    88. Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N. Phytocassanes A, B, C, and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron,1995,51:7907-7918.
    89. Kono Y, Takeuchi S, Kodama O, Akatsuka T. Absolute configuration of oryzalexin A and structures of its related phytoalexins isolated from rice blast leaves infected with Pyricularia oryzae. Agric Biol Chem,1984,48:253-255.
    90. Kono Y, Takeuchi S, Kodama O, Sekido H, Akatsuka T. Novel phytoalexins (Oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part Ⅱ:Structural studies of oryzalexins. Agric Biol Chem,1985,49:1695-1701.
    91. Kuc J. Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol, 1995,33:275-297.
    92. Kuc J. Phytoalexins:perspectives and prospects. In:Sharma RP, Salunkhe DK. (Eds.), Mycotoxins and Phytoalexins. CRC Press, Boca Raton,1991, pp.595-603.
    93. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism. EMBO J,2004,23:1647-1656.
    94. Lam E, Kato N. Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature,2001,411:848-853.
    95. Lee CW, Yoneyama K, Takeuchi Y, Konnai M, Tamogami S, Kodama O. Momilactones A and B in rice straw harvested at different growth stages. Biosci Biotechnol Biochem,1999,63: 1318-1320.
    96. Lee J, Klessig DF, Nurnberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell,2001,13:1079-1093.
    97. Levin A, Termaken R, DixonR, Lamb C. H2O2 from the oxidative burst or chestrates the plant hypersensitive disease resistance response. Cell,1994,79:583-593.
    98. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, et al. Cytochrome P450 family member CYP704B2 catalyzes the omega-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell,2010,22:173-190.
    99. Littlefield LJ. Histological evidence for diverse mechanisms of resistance to flax rust, Melampsora lini(Ehrenb.). Physiol Plant Pathol,1973,3:241-247.
    100. Long M, Barton-Willis P, Staskawicz BJ, Dahlbeck D, Keen NT. Further studies on the relationship between glyceollin accumulation and the resistance of soybean leaves to Pseudomonas syringae pv. glycinea. Phytopathology,1985,75:235-239.
    101. Ma L, Huo R, Gao X, He D, Shao M, Wang Q. Transgenic rape with hr/2 gene encoding HarpinXooc, resistant to Sclerotinia sclerotinorium. Agricul Sci China,2008,7 (4):455-461.
    102. Malnoy M, Venisse JS, Chevreau E. Expression of a bacterial effector, harpinN, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes,2005,1:41-49.
    103. Mayama S, Bordin APA, Morikawa T, Tanpo H, Kato H. Association between avenalumin accumulation, infection hypha length and infection type in oat crosses segregating for resistance to Puccinia coronata f.sp. avenae race 226. Physiol Mol Plant Pathol,1995,46:255-262.
    104. McKinnon RA. Cytochrome P450 (I)-multiplicity and function. Aust J Hosp Pharm,2000,30: 54-56.
    105. Mert-Turk F, Bennett MH, Glazebrook J, Mansfield J, Holub E. Biotic and abiotic elicitation of camalexin in Arabidopsis thaliana.7th International Congress of Plant Pathology. Edinburgh, Scotland, UK,1998.
    106. Mew TW, Alvarez AM, Leach JE. Swings J. Focus on bacterial blight of rice. Plant Disease,1993, 77:5-12.
    107. Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaxoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol,2010a,10:67.
    108. Miao W, Wang X, Song C, Wang Y, Ren Y, Wang J. Transcriptome analysis of HpalXoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. J Exp Bot,2010b,61 (15):4263-4275.
    109. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetal-doxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem,2000,275:33712-33717.
    110. Mikkelsen MD, Naur P, Halkier BA. Arabidopsis mutants in the C-S lyase of glucosenolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J,2004, 37:770-777.
    111. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7: 405-410.
    112. Mohan RS, Yee NKN, Coates RM, Ren YY, Stamenkovic P, Mendez I, West CA. Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions:conversion of 9,10-syn-la-bda-8 (17),13-dienyl diphosphate to 9β-pimara-7,15-diene and stemar-13-ene. Arch Biochem Biophys, 1996,330:33-47.
    113. Moore RC, Purugganan MD. The early stages of duplicate gene evolution. Proc Natl Acad Sci USA,2003,100:15682-15687.
    114. Muller KO, Boger H. Experimentelle untersuchungen uber die Phytophthora-resistenz der kartoffel. Arb Biol Reichsasnstalt Landw Forstw Berlin,1940,23:189-231.
    115. Muller KO. Studies on phytoalexins:I. The formation and the immunological significance of phytoalexin produced by Phaseolus vulgaris in response to infections with Sclerotinia fructicola and phytophthora infestans. Aust J Biol Sci,1958,11:275-300.
    116.Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell,2007,19:2039-2052.
    117. Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol,2003,133 (1):63-72.
    118. Nelson DR, Koymans L, Kamataki T. P450 superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics,1996,6 (1):1-42.
    119. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol,2004,135 (2):756-772.
    120. Nemoto T, Cho EM, Okada A, Okada K, Otomo K, Kanno Y, Toyomasu T, Mitsuhashi W, Sassa T, Minami E, et al. Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett,2004,571:182-186.
    121. Ogawa S, Toyomasu T, Yamane H, Murofushi N, Ikeda R, Morimoto Y, Nishimura Y, Omori T. A step in the biosynthesis of gibberellins that is controlled by the mutation in the semi-dwarf rice cultivar Tan-ginbozu. Plant Cell Physiol,1996,37:363-368.
    122. Osbourn AE. Antimicrobial phytoprotectants and fungal pathogens:a commentary. Fungal Genet Biol,1999,26:163-168.
    123. Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, Oikawa H, Toshima H, Itoh H, Matsuoka M, et al. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem,2004a,68: 2001-2006.
    124. Otomo K, Kenmoku H, Oikawa H, Konig WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T. Biological functions of ent-and syn-copalyl diphosphate synthases in rice:key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J,2004b,39 (6): 886-893.
    125. Ou SH. Rice Disease. Second Edition in 1985. By E.M.I.
    126. Panstruga R, Parker JE. Schulze-Lefert P. Snapshot:plant immune response pathways. Cell,2009, 136(5):978.e1-3.
    127. Paquette SM, Bak S, Feyereisen R. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes Arabidopsis thaliana. DNA Cell Biol,2000,19 (5): 307-317.
    128. Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F. Identification of PAD2 as a y-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J,2007,49 (1):159-172.
    129. Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to Rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One,2011,6:e17306.
    130. Paxton JD. A new working definition of the term "phytoalexin". Plant Disease,1980,64:734.
    131. Paxton JD. Phytoalexins-a working redefinition. Phytopathol Z,1981,101:106-109.
    132. Pedras MS, Ahiahonu PW. Probing the phytopathogenic stem rot fungus with phytoalexins and analogues:unprecedented glucosylation of camalexin and 6-methoxycamalexin. Bioorg Med Chem, 2002,10:3307-3312.
    133. Pedras MS, Khan AQ. Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry,2000,53:59-69.
    134. Pedras MSC, Ahiahonu PWK, Hossain M. Detoxification of the cruciferous phytoalexin brassinin in Sclerotinia sclerotiorum requires an inducible glucosyltransferase. Phytochemistry,2004,65: 2685-2694.
    135. Pedras MSC, Khan AQ. Unprecedented detoxification of the cruciferous phytoalexin camalexin by a root phytopathogen. Bioorg Med Chem Lett,1997,7:2255-2260.
    136. Pedras MSC, Seguin-Swartz G. The black-leg fungus:phytotoxins and phytoalexins. Can J Plant Pathol,1992,14:67-75.
    137. Peng J, Bao Z, Ren H, Wang J, Dong H. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive response. Phytophathology,2004, 94:1048-1055.
    138. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera JM, Beer SV. Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. Physiol Mol Plant Pathol, 2003,62:317-326.
    139. Peters RJ. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry,2006,67:2307-2317.
    140. Pueppke SG, Van Etten HD. The relation between pisatin and the development of Aphanomyces eluteiches in diseased Pisum sativum. Phytopathol,1976,66:1174-1185.
    141. Qiu D, Wei ZM, Bauer DW, Beer SV. Treatment of tomato seeds with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology,1997, 87:S80.
    142. Rakwal R, Agrawal GK, Yonekura M, Kodama O. Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Science,2000,155 (2):213-221.
    143. Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J. Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxy-lase from tobacco (Nicotiana tabacum). Arch Biochem Biophys,2001,393:222-235.
    144. Ren X, Liu F, Bao Z, Zhang C, Wu X, Chen L, Liu R, Dong H. Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol Biol Rep,2008,26:225-240.
    145. Rodrigues FA, Francisco XRM, Datnoff LE. Effect of rice growth stage and silicon on sheath blight development. Phytopathol J,2003,93 (3):256-261.
    146. Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Belanger RR. Silicon enhances the accumulation of diterpenoid phytoalexins in rice:a potential mechanism for blast resistance. Phytopathology,2004,94 (3):177-183.
    147. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB. Belanger RR. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology,2003,93:535-546.
    148. Rogers EE, Glazebrook J, Ausubel FM. Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. MPMI,1996,9:748-757.
    149. Rossall S, Mansfield JW. Relationships between germ-tube growth by Botrytis cinerea and B. fabae and their metabolism of the phytoalexins wyerone, wyerone acid and wyerone epoxide. Transactions of the British Mycological Society,1984,82:571-576.
    150. Rupasinghe S, Schuler MA. Homology modeling of plant cytochrome P450s. Phytochem Rev, 2006,5:473.
    151. Ryals JA, Neuenschwander UH, Willits M, Molina A, Steiner HY. Hunt MD. Systemic acquired resistance. Plant Cell,1996,8:1809-1819.
    152. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol,2004,134:1642-1653.
    153. Schopfer CR, Ebel J. Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Mol Gen Genet,1998,258:315-322.
    154. Schuhegger R, Nafisi M, Mansourova M, Petersen BL,Olsen CE, Svatos A, Halkier BA, Glawischnig E. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol,2006,141 (4):1248-1254.
    155. Schuhegger R, Rauhut T, Glawischnig E. Regulatory variability of camalexin biosynthesis. J Plant Physiol,2007,164:636-644.
    156. Schuler MA, Werck-Reichhart D. Functional genomics of P450s. Annu Rev Plant Biol,2003,54: 629-667.
    157. Sekido H, Endo T, Suga R, Kodama O, Akatsuka T, Kono Y, Takeuchi S. Oryzalexin D (3, 7-dihydroxy-(+)-sandaracopima-radiene), a new phytoalexin isolated from blast-infected rice leaves. J Pestic Sci,1986,11:369-372.
    158. Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J,2008a,6 (1): 73-81
    159. Shao M, Wu ZD, Chen BJ, Luo S, Li L. Resistance of hrfl transgenic rice to Ustilaginoidea virens. Chinese journal of biological control,2008b,23:335-338.
    160. Shen X, Liu H, Yuan B, Li X, Xu C. Wang S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ,2010,34 (2):179-191.
    161. Shimizu T, Jikumaru Y, Okada A, Okada K, Koga J, Umemura K, Minami E, Shibuya N, Hasegawa M, Kodama O, et al. Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry,2008,69:973-981.
    162. Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, et al. Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem,2007,282 (11):34013-34018.
    163. Siminszky B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev,2006,5: 445-458.
    164. Singh GP, Srivastaba MK, Singh RV. Singh RM. Variation and qualitative losses caused by bacterial blight in different rice varieties. Indian Phytopathol,1977,30:180-185.
    165. Sinha AK. Possible role of phytoalexin inducer chemicals in plant disease control. In:Daniel, M., Purkayastha, R.P. (Eds.), Handbook of Phytoalexin Metabolism and Action. Marcel Dekker, New York,1994, pp.555-591.
    166. Smith JA and Metraux JP. Pseudomonas syringae pv. Syringae induces systemic resistance to Pyricularia oryzae in rice. Physiol Mol Plant Path,1991,39:451-461.
    167. Sohn SI, Kim YH, Kim BR, Lee SY, Lim CK, Hur JH, Lee JY. Transgenic tobacco expressing the gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. Mol Cell, 2007,24:232-239.
    168. Stefanato FC, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Metraux J-P, Schoonbeek H-J. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J,2009,58 (3):499-510.
    169. Stoessl A, Arditti J, Orchid phytoalexins. In:Arditti, J. (Ed.), Orchid Biology. Reviews and Perspectives, III. Cornell University Press, Ithaca,1984.
    170. Strobel RN, Gopalan JS, Kuc JA, He SY. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZpss protein. Plant J,1996,9 (4):431-439
    171. Subba Rao PV, Strange RN. Chemistry, biology, and role of groundnut phytoalexins in resistance to fungal attack. In:Daniel M, Purkayastha RP. (Eds.), Handbook of Phytoalexin Metabolism and Action. Marcel Dekker, New York,1994. pp.199-227.
    172. Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H. Biochemical analyses of indole-3-acetaldoxime dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA,2009,106 (13):5430-5435.
    173. Suge H, Murakami Y. Occurrence of a rice mutant deficient in gibberellin-like substances. Plant Cell Physiol,1968,9:411-414.
    174. Sun CB, Suresh A, Deng YZ, Naqvi NI. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell,2006,18 (12): 3686-3705.
    175. Sun WC, Zhang J, Fan QH, Xue GF, Li ZJ, Liang YC. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Eur J Plant Pathol, 2010,128 (1):39-49.
    176. Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. CYP76M7 is an ent-cassadiene C11a-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell,2009,21 (10):3315-3325.
    177. Szczesna-Skorupa E, Straub P, Kemper B. Deletion of a conserved tetrapeptide, PPGP, in P450 2C2 results in loss of enrymatic activity without a change in its cellular location. Arch Biochem Biophys,1993,304:170-175.
    178. Takakura Y, Ishida Y, Inoue Y, Tsutsumi F, Kuwata S. Induction of a hypersensitive response-like reaction by powdery mildew in transgenic tobacco expressing harpinpss. Physiol Mol Plant P,2004, 64:83-89.
    179. Talbot NJ. On the trail of a cereal killer:exploring the biology of Magnaporthe grisea. Annu Rev Microbiol,2003,57:177-202.
    180. Tampakaki AP, Panopoulos NJ. Elicitation of hypersensitive cell death by extracellularly HrpZpsph produced in planta. MPMI,2000,13(12):1366-1374.
    181. Templeton MD, Lamb CJ. Elicitors and defence gene activation. Plant Cell Environ,1988,11 (5): 395-401.
    182. Thomma BP, Nelissen I, Eggermont K, Broekaert WF. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J,1999,19(2):163-171.
    183. Tierens KF, Thomma BP, Bari RP, Garmier M, Eggermont K, Brouwer M, Penninckx IA, Broekaert WF, Cammue BP. Esal, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant J,2002,29 (2):131-140.
    184. Su TB, Xu J, Li Y, Lei L, Zhao L, Yang HL, Feng JD, Liu GQ, Ren DT. Glutathione-Indole-3-Acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell,2011,23 (1): 364-380.
    185. Toyomasu T. Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci Biotechnol Biochem,2008,72:1168-1175.
    186. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol,1992,98:1304-1309.
    187. Tsuji J, Zook M, Hammerschmidt R, Somerville S, Last R. Evidence that tryptophan is not a direct biosynthetic intermediate of camalexin in Arabidopsis thaliana. Physiol Mol Plant Pathol,1993,43: 221-229.
    188. Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J. Cerebroside elicitor found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physoil,2000,41: 676-683.
    189. Umemura K, Ogawa N, Shimura M, Koga J, Usami H, Kono T. Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biosci Biotechnol Biochem,2003,67:899-902.
    190. Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO (Eur Mol Biol Organ) J,1999,18:512-521.
    191. Van Etten HD, Matthews DE, Matthews PS. Phytoalexin detoxification:importance for pathogenicity and practical implications. Annual Review of Phytopathology,1989,27:143-164.
    192. Van Etten HD, Mansfield JW, Bailey JA, Farmer EE. Two classes of plant antibiotics: phytoalexins versus "phytoanticipins". Plant Cell,1994,6 (9):1191-1192.
    193. Van Etten HD, Temporini E, Wasmann C. Phytoalexin (and phytoanticipin) tolerance as a virulence trait:why is it not required by all pathogens? Physiol Mol Plant P,2001,59:83-93.
    194. Van Etten HD, Pueppke SK, Kelsey TC.3,6a-Dihydroxy-8,9-methylenedioxy pterocarpan as a metabolite of pisatin produced by Fusarium solani f. sp. pisi. Phytochemistry,1975,14:1103-1105.
    195. Wang Q, Hillwig ML, Peters RJ. CYP99A3:functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J,2011,65 (1):87-95.
    196. Wei ZM, Beer S. Harpin from Erwinia amylovora induces plant resistance. Acta Hortic,1996,411: 223-225.
    197. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,1992,257 (5066):85-88.
    198. Wen WG, Shao M, Chen GY, Wang JS. Defense response in plants induced by harpinxoo, an elicitor of hypersensitive response from Xanthomonas oryzae pv. oryzae. Journal of Agricultural Biotechnology,2003,11 (2):192-197.
    199. Wen WG, Wang JS. Cloning and expressing a harpin gene from Xanthomonas oryzae pv. oryzae. Acta Phytopathologica Sinica,2001,31 (4):295-300.
    200. Werck-Reichhart D, Batard Y, Kochs G, Lesot A, Durst F. Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus. Immunopurification, immunoquantitation, and interspecies cross-reactivity. Plant Physiol,1993,102 (4):1291-1298.
    201. Wickham KA, West CA. Biosynthesis of rice phytoalexins:identification of putative diterpene hydrocarbon precursors. Arch Biochem Biophys,1992,293:320-332.
    202. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Microsomal cytochrome P450 2C5:comparison to microbial P450s and unique features. Journal of inorganic biochemistry, 2000,81:183-190.
    203. Wittstock U. Halkier BA. Glucosinolate research in the Arabidopsis era. Trends Plant Sci,2002,7 (6):263-270.
    204. Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ,2002,25 (2):131-139.
    205. Yajima A, Mori K, Yabuta G. Total synthesis of ent-cassa-12,15-diene, a putative precursor of rice phytoalexins, phytocassanes A-E. Tetrahedron Lett,2004,45:167-169.
    206. Yamazaki S, Sato K, Suhara K,Sakaguchi M, Mihara K, Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P450s. J Biochem,1993,114:652-657.
    207. Yean HC, Atong M. Chong KP. Lettucenin A and its role against Xanthomonas Campestris. J Agric Science,2009,1:87-93.
    208. Yu J, Hu S, Wang J, Wong GK, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science,2002,296 (5565):79-92.
    209. Yuan B, Shen X, Li X, Xu C, Wang S. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta,2007,226 (4):953-960.
    210. Zhang C, Qian J, Bao Z, Hong X, Dong H. The induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a harpin protein. Plant Mol Biol Rep,2007,25:98-114.
    211. Zhang GL, Dai QG, Zhang HC. Silicon application enhances resistance to sheath blight (Rhizoctonia solani) in rice. J Plant Physiol Mol Biol,2006,32:600-606.
    212. Zhang L, Xiao SS, Li WQ, Feng W, Li J, Wu ZD, Gao XW, Liu FQ, Shao M. Overexpression of a Harpin-encoding gene hrfl in rice enhances drought tolerance. J Exp Bot,2011,62 (12):4229-4238.
    213. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL. Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev,2002,16 (23):3100-3112.
    214. Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell,1998,10:1021-1030.
    215. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell,2006,18 (2):442-456.
    216. Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, et al. Genetic diversity and disease control in rice. Nature,2000,406 (6797):718-722.
    217. Zook M, Hammerschmidt R. Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol,1997,113 (2):463-468.
    218. Zook M. Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis. Plant Physiol,1998,118(4):1389-1393.
    219.董宏平.Harpin促进植物生长和诱导抗虫抗旱的信号传导解析.博士学位论文[M].南京农业大学.2003.
    220.纪兆林.水稻黄单胞菌HpalXoo及其截短多肽的结构与功能研究.博士学位论文[M].南京农业大学.2010.
    221.李平,陆徐忠,邵敏,龙菊英,王金生.水稻黄单胞细菌Harpin蛋白的遗传多样性及其诱导烟草过敏反应和抗病性功能.中国科学(C辑),2004,34:136-143.
    222.李平.水稻黄单胞菌(Xanthomonas oryzae)无毒基因vrXa3的克隆与鉴定以及过敏性反应激发子Hrf蛋白遗传多样性和功能域的研究.博士学位论文[M].南京农业大学.2002.
    223.李汝刚,范云六.表达harpin蛋白的转基因马铃薯降低晚疫病斑生长率.中国科学(C辑),1999,29(1):56-61.
    224.缪卫国.转hpalxoo基因棉花抗病虫防卫反应与全基因组转录谱分析及棉花角斑病菌hpaXm基因的功能.博士学位论文[M].南京农业大学.2009.
    225.彭建令.两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析.博士学位论文[M].南京农业大学.2003.
    226.任海英.生物激发子与氧化还原相关信号对植物生长和抗病性的调控作用.博士学位论文[M].南京农业大学.2006.
    227.邵敏,李林,穆东升,肖姗姗,杨秀玲,王宏乐,刘新民,王金生.HarpinXoo在水稻中表达提高对白叶枯病不同小种抗性.中国生物防治.2006,22(2):133-136.
    228.邵敏,王金生.转hrfAXoo基因水稻对白叶枯病的抗性.南京农业大学学报,2004,27(4):36-40.
    229.邵敏,吴智丹,陈宝君,落桑次仁,李林.转hrf1基因水稻对稻曲病抗性分析.中国生物防治,2008,4:335-338.
    230.邵敏.转hrf1基因水稻抗病性与机理及水稻中hrf1同源序列研究.博士学位论文[M].南京农业大学.2004.
    231.孙万春.硅对提高水稻对稻瘟病抗性的生理与分子机理.博士学位论文[M].中国农业科学院.2008.
    232.王煜,李文新,盛桂莲.水稻植保素的诱导生成及其特性.武汉植物学研究,1999,17(增刊):105-109.
    233.闻伟刚,邵敏,陈功友,王金生.水稻白叶枯病蛋白质激发子诱导植物的防卫反应.农业生物技术学报,2003,11:192-197
    234.闻伟刚,王金生.水稻白叶枯病菌harpin基因的克隆与表达.植物病理学报,2001,31:295-300.
    235.冷欣夫,邱星夫.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    236.钟兰,王凯,谭军,李蔚,李松刚.籼稻细胞色素P450超基因家族成员及其EST证据.中国科学(C辑),2002,32:500-504.
    237.谭放军,徐泽安,尹文雅,丁杏芝.Harpin蛋白研究及其应用.湖南农业科学,2003,6:38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700