吸着·解吸过程中水分与木材之间的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了考察吸着与解吸过程中水分与木材之间的相互作用机理,本论文分别从介电弛豫和吸附热力学两个领域对木材中的水分进行了研究。
     其中在介电弛豫研究中,通过对水分吸着过程(绝干状态→20℃,40,60,80,90,100%RH平衡态)及解吸过程(25℃,100%RH→80%RH→60%RH→20%RH)中西藏云杉(Picea spinulosa Griff.)试材的介电常数和介电损耗因子的测定,得到了吸着及解吸过程中水分介电弛豫的变化信息。应用Cole-Cole圆弧则对试材的介电性质进行分析后,可以进一步得到水分吸着或解吸过程中木材的静介电常数εs,光介电常数ε∞,弛豫强度(εs-ε∞)及衡量弛豫时间分布宽窄的系数α(或β)的变化。以绝干状态→20℃,60%RH平衡态的吸湿过程为例,将基于吸着水分子回转取向运动的介电弛豫与基于木材无定形区中伯醇羟基回转取向运动的介电弛豫进行分离,并在Eyring的绝对速度反应论的基础上,求得了与吸着水分子进行回转取向运动相关连的热力学量,得到了在吸着过程中吸着水分子与木材吸着点之间的氢键结合随着水分吸着进程的变化情况。
     在吸附热力学研究中,测定了25,50,75℃三个温度下西藏云杉试材在水分吸着过程(绝干状态到某一恒温恒湿平衡态)及水分解吸过程(从纤维饱和点到某一恒温恒湿平衡态)的各个阶段的水分吸着与解吸等温线。应用基于Clausius-Clapeyron公式的热力学公式得到了木材中吸着水在各个阶段的微分吸着热QL,自由能变化⊿G和微分吸着熵⊿S(用T⊿S进行比较)等热力学量。通过考察在水分吸着与解吸过程中这些热力学量的变化规律,得到了有关水分吸着和解吸过程中吸着水分子与木材实质之间相互作用变化的信息。
     本研究结果归纳如下:
     1.在低频域出现的介电弛豫过程Ⅱ是由两部分引起的,其一是由于吸着水在木材内部的分布不均匀而引起的界面极化,其二是由于水分中含有杂质离子而引起的直流电导。在低湿度域的吸湿过程中,弛豫过程Ⅱ在吸湿初期有一个很大的增量,随着吸湿过程的进行逐渐降低;与此对应,在低湿度域的解吸过程中,弛豫过程Ⅱ没有出现单调递减,而是在解吸中期出现了增加的变化趋势。这些现象都与吸着水在木材内的分布不均匀有关,因此在低湿度域,界面极化占主导作用。在高湿度域,弛豫过程Ⅱ随着吸湿(或解吸)的进行始终呈单调递增(或递减)的趋势,这时直流电导是引起弛豫过程Ⅱ的主要原因。
     2.在水分吸着(或解吸)过程中,出现在高频域的由基于吸着水回转取向运动的介电弛豫过程和基于无定形区中伯醇羟基回转取向运动的弛豫过程叠加而成的弛豫过程Ⅲ随着吸着(或解吸)的进行逐渐增大(或减小)。
     3.在测定的温度和频率范围内,介电常数ε′和介电损耗因子ε″可以用两组Cole-Cole圆弧则来描述。
     4.从绝干状态→20℃,60%RH平衡态的水分吸着过程中,吸着水分子在回转取向过程中的活化焓随着吸湿时间呈线性增加,这说明一个吸着水分子与周围木材吸着点之间的氢键结合数的平均值随着吸湿过程的进行逐渐增多,直至达到平衡状态。
     5.应用局部平衡假设,可以证明基于Clausius-Clapeyron公式的热力学公式同样适用于水分吸着与解吸过程中的木材-水分非平衡系统。对于初始状态为绝干状态的水分吸着过程,热力学公式的对象是某时刻木材中所有的水分;对于初始状态为纤维饱和点的水分解吸过程,热力学公式的对象是某时刻与周围环境达到平衡的那部分木材中的水分。
     6.在水分吸着过程中, QL,⊿G和T⊿S都随着吸湿的进行逐渐增大。在吸湿初期,和都出现了负值。这说明在这个阶段,水分与木材之间的结合能很弱,低于液态水分子之间的相互结合能,并且木材中水分子的排列也比液态水分子无规则。
     7.在水分解吸过程的任意阶段,在V1区域(即与目标湿度达到平衡的那部分水分所占的木材区域)中的水分子的QL,⊿G和T⊿S随着含水率的增大基本呈下降趋势,除了在8~12%的含水率区域QL和T⊿S值出现了轻微的增大。在某一温湿度条件的解吸过程中,Q和T⊿S都随着解吸时间下降,而⊿G基本保持不变。
     8.木材的吸着滞后包括水分吸着滞后和热力学吸着滞后两个方面。在较低温度条件下,水分吸着滞后表现明显,而在较高温度条件下,吸着滞后主要表现为热力学吸着滞后。有效羟基说可以同时解释水分吸着滞后现象和热力学吸着滞后现象。
In order to investigate the interaction between adsorbed water and wood during moisture adsorption and desorption processes, the dielectric approach and thermodynamic approach are respectively applied in this study.
     In the research by dielectric approach, the dielectric constant and dielectric loss factor of Sikkim spruce (Picea spinulosa Griff.) specimens were measured during various moisture adsorption processes (from oven-dry state to the equilibrium state in 20℃,40,80,90,100%RH environments, respectively) and desorption processes (25℃,100%RH→80%RH→60%RH→20%RH). Thus, the change of dielectric relaxation during moisture adsorption and desorption processes can be clarified. After analyzing the dielectric properties of wood by use of Cole-Cole plots, the static dielectric constantεs, optic dielectric constantε∞, relaxation strength (ε_s-ε_∞), and the coefficientα(orβ) describing the distribution of relaxation times during adsorption and desorption processes could be obtained. Moreover, taking the adsorption process from oven-dry state to the equilibrium state in 20℃,60%RH environment as an example, the dielectric relaxation based on the reorientation of adsorbed water molecules was separated out from that based on the methylol groups in the amorphous region of wood cell wall. Further the thermodynamic quantities of adsorbed water were calculated based on Eyring’s absolute rate reaction theory. As a result, the change of hydrogen bonding between adsorbed water molecules and wood adsorption sites during adsorption process was obtained.
     In the research by thermodynamic approach, the moisture sorption isotherms of Sikkim spruce were determined at different stages of various adsorption processes (initiated from oven-dry state) and desorption processes (initiated from fiber saturation point) for three temperatures of 25, 50, and 75℃. On the basis of these isotherms, the differential thermodynamic properties including differential sorption heat QL, free energy change⊿G and differential entropy T⊿S of adsorbed water in wood can be worked out by using the Clausius-Clapeyron equation. From the change of these thermodynamic properties during adsorption and desorption processes, some information concerning the interaction between wood and adsorbed water could be obtained.
     The results from both dielectric and thermodynamic approaches were summarized as follows:
     19. The mechanism of dielectric relaxation processⅡin lower frequency region includes two parts, one of which is the interfacial polarization resulted from the inhomogeneous distribution of adsorbed water in wood and the other is the electric conduction caused by the impurity ions in adsorbed water. During the adsorption process at low humidity level, there is an abrupt increase at the initial stage of adsorption. It decreases with adsorption process. Correspondingly, during the desorption process at low humidity level, dielectric relaxation processⅡdoes not decrease monotonously with desorption time but appears increasing trend at the medium stage. These phenomena are all concerned with the inhomogeneous distribution of adsorbed water in wood. Therefore, it can be concluded that the interfacial polarization is predominant at low humidity level. While at high humidity level, relaxation processⅡincreases (or decreases) monotonously with adsorption (or desorption) process. In this case, the electric conduction can account for the dielectric relaxation processⅡ.
     20. The dielectric relaxation processⅢin higher frequency region, which is composed by the relaxation process based on the reorientation of adsorbed water molecules and relaxation processⅠbased on methylol groups, increases (or decreases) with the developing adsorption (or desorption) during moisture adsorption (or desorption) process.
     21. The dielectric properties in the measured temperature and frequency region can be described by two groups of Cole-Cole plots.
     22. During the moisture adsorption process from oven-dry state to the equilibrium state in 20℃,60%RH environment, the activation enthalpy of adsorbed water during reorientation increases linearly with adsorption time. It suggests that the average number of hydrogen bonds formed between each water molecule and its surrounding adsorption sites increases with adsorption process until the equilibrium state is reached.
     23. If the water molecules accessible to phase transition during adsorption or desorption process were taken as the research subject, the Clausius-Clapeyron equation was proved to be valid at non-equilibrium state.
     24. The analysis for the thermodynamic properties during adsorption process produces following results. At the initial stage of adsorption, some water molecules at lower temperatures (for example, 25℃) can not swell into wood cell wall directly. For higher temperatures (for example, 75℃), most of water molecules entered into wood cell wall directly, but at this moment the hydrogen bonding effect between water molecules and wood adsorption sites is very weak and also these molecules are in an inferior order even to that of liquid water molecules. Therefore, the water in wood during this period, if strictly speaking, can not be called as adsorbed water. With the development of adsorption, the hydrogen bonding effect strengthens gradually and the regularity of water molecules also increases. When the equilibrium state is reached, the average hydrogen bonds between adsorbed water molecules and wood adsorption sites and the regularity of adsorbed water molecules both achieved maximum.
     25. The analysis for the thermodynamic properties during desorption process produces following results. During desorption process, the region accessible to phase transition extends from the wood surface to the center. Therefore, at the initial stage of desorption, the activated water molecules are less and they require much energy to escape from the bonds from other molecules. At this stage, the water molecules are in a good order since most of them have not been activated. With the development of desorption, the activated water molecules become more and more, which results in a lower bonding effect and a worse regularity. The bonding effect from the surrounding molecules and the regularity of water molecules both decline to minimum while reaching equilibrium state, because all the water molecules at this moment are subjected to activated condition.
     26. The sorption hysteresis of wood includes two respects, that is, moisture sorption hysteresis and thermodynamic sorption hysteresis. At lower temperatures, moisture sorption hysteresis is very obvious; at higher temperatures, the sorption hysteresis is mainly represented by thermodynamic sorption hysteresis. The effective hydrogen bonding theory seems reasonable in explaining the mechanism of both moisture sorption hysteresis and thermodynamic sorption hysteresis.
引文
1 Armstrong L. D. and Christensen G. N. 1961. Influence of moisture change on deformation of wood under stress. Nature. 196: 869-870
    2 Grossman P. U. A. 1976. Requirements for a model that exhibits mechano-sorptive behavior. Wood Sci. Technol. 10: 163-168
    3 Hearmon R. F. S. and Paton J. M. 1964. Moisture content changes and creep of wood. Forest Prod. J. 14:357-359
    4 Gibson E. J. 1965. Creep of wood: Role of water and effect of a changing moisture content. Nature. 206: 213-215
    5 Takemura T. 1966. Plastic properties of wood in relation to the non-equilibrium states of moisture content. Mem. Coll. Agric . Kyoto Univ. No.88: 31-48 (日)
    6 Takemura T. 1967. Plastic properties of wood in relation to the non-equilibrium states of moisture content (continued). Mokuzai Gakkaishi. 13: 77-81 (日)
    7 Takemura T. 1968. Plastic properties of wood in relation to the non-equilibrium states of moisture content (re-continued). Mokuzai Gakkaishi. 14: 406-410 (日)
    8 Leister R. H. 1971. A rheological model for mechno-sorptive deflections of beams. Wood Sci. Technol. 5: 211-220
    9 Mukudai Yata. 1986. Modeling and simulation of viscoelastic behavior (tensile strain) of wood under moisture change. Wood Sci. Technol. 20:335-348
    10 Mukudai Yata. 1987. Modeling and simulation of viscoelastic behavior (bending deflection) of wood under moisture change. Wood Sci. Technol. 21:49-63
    11 Mukudai Yata. 1988. Verification of Mukudai’s mechno-sorptive model. Wood Sci. Technol. 22:43-58
    12 Van der Put T. A. C. M. 1994. Theoretical explanation of the mechno-sorptive effect in wood. Wood & Fiber Sci. 21:219-230
    13 Nakano T. 1994. Mechanism of thermoplasticity for chemically modified wood. Holzforschung. 48:318-324
    14 Nakano T. 1996. Viscosity and entropy change in creep during water desorption for wood. Wood Sci. Technol. 30:117-125
    15 Halsey H., White Jr H. J. and Eyring H. 1945. Mechanical properties of textilesⅠ.Textile Research J. 15: 295-311
    16 Halsey H. and Eyring H. 1945. Mechanical properties of textilesⅡ.Textile Research J. 15: 451-459
    17 Eyring H. and Halsey H. 1946. Mechanical properties of textiles.Ⅲ.Textile Research J. 16:13-25
    18 Doolittle A. K. and Doolittle D. B. 1957. Studies in Newtonian Flow. V. J. Appl. Phys. 28: 901-905
    19 Cao Jinzhen, Zhao Guangjie and Lu Zhenyou. 1998. Mechano-sorptive creep of wood. J. Beijing Forestry Univ. 20: 94-100 (中)
    20 Raddish W. 1950. The dielectric properties of polyethylene terephthalate. Trans. Farady Soc. 46: 459-475
    21 Davidson D. W. and Cole R. H. 1951. Dielectric relaxation in Glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19(12): 1 484-1 490
    22 Kurosaki Shigehiko. 1958. The dielectric behavior of sorbed water on silica gel. J Phys. Chem. 58: 320-324
    23 Windle J. J. and Shaw T. M. 1954. Dielectric properties of wool-water systems at 3000 and 9300 megacycles. J. Chemical Physics. 22(10): 1 752-1 757
    24 Kamiyoshi D. and Ripoche J. 1958. Dielectric dispersions of water adsorbed on silica gel Ⅱ. J. East-northern Univ. Sci. Report. 8: 239-246 (日)
    25 Kamiyoshi D. and Ripoche J. 1960. Dielectric dispersions of water adsorbed on starch. J. East-northern Univ. Sci. Report. 23: 219-224 (日)
    26 Ono S., Kuge T. and Koizumi N. 1958. Dielectric properties of starch. Ⅰ. Audio frequency region. 31(1): 34-40
    27 Ono S., Kuge T. and Koizumi N. 1958. Dielectric properties of starch. Ⅱ. Audio frequency region. 31(1): 40-46
    28 Makino Teruo and Taneya Shin-ichi. 1963. Dielectric properties of powdered food Ⅰ. Hygroscopicity of skimmed milk powder. Applied Physics. 32(1): 10-16 (日)
    29 McCafferty E. and Zettlemoyer A. C. 1970. Calculation of the molar polarization of adsorbed water vapour on α-Fe2O3. Trans. Farady Soc. 66: 1 732-1 740
    30 Stamm A.J. 1927. The electric resistance of wood as a measure of its moisture content. Ind. Eng.Chem. 19: 1 021-1 025
    31 Stamm A.J. 1929. The fiber saturation point of wood as obtained from electrical conductivity measurement. Ind.Eng.Chem.Anal. 1: 94-97
    32 Takeda M. 1949. Wood and microwave. Science. 18: 21-29 (日)
    33 Takeda M. 1951. Studies on dielectric behavior of bound water in timber in the high frequency region. Bull. Chem. Soc. Japan. 24(4): 169-173
    34 James W. J. and Hamill D. W. 1965. Dielectric properties of Douglas-fir measured at microwave frequencies. Forest Products J. 15(2): 51-56
    35 Tsutsumi J. and Watanabe H. 1966. Studies on dielectric behavior of wood.Ⅱ. Effect of moisture content on dielectric constant ε′and dielectric loss factorε″. Mukuzai Gakkaishi. 12(3): 115-118 (日)
    36 Tsutsumi J. 1967. Studies on dielectric properties of wood. Effects of frequency, moisture content and temperature on dielectric constant and dielectric loss factor. Bull. Kyushu Univ. Forests. Japan 41:109-169
    37 Trapp W. and Pungs L. 1956. Einfluβ von Temperatur und Feuchte auf das dielektrische Verhalten von Naturholz im groβer Frequenzbereich. Holzforschung. 10(2): 144~150 (德)
    38 Uemura T. 1963. The anisotropy of electric properties. Material. 12(121): 699 (日)
    39 Torgovnikov G. I. 1993. Dielectric properties of wood and wood-based materials. Springer-Verlag.
    40 Norimoto Misato and Yamada Tadashi. 1970. The dielectric properties of wood Ⅳ: On dielectric dispersions of oven-dried wood. Wood Research. No. 50: 36-49
    41 Kr?ner K. and Pungs L. 1952. Zur dielektrischen Anisotropie des Naturholzes im groβen Frequenzbereich (About the behavior of the dielectric loss factor of natural wood over a wide range of frequencies. Holzforschung. 6 (1): 13-16 (德)
    42 Nanassy A. J. 1970. Overlapping of dielectric relaxation spectra in oven-dry yellow birch at temperatures from 20 to 100℃. Wood Sci. Technol. 4: 104-121
    43 Mikhailov G.P. et al. 1968. Dielectric and NMR study of the molecular mobility of cellulose and of its derivatives. Poly. Sci. 8: 628-640
    44 Norimoto Misato and Yamada Tadashi. 1972. The dielectric properties of wood Ⅵ: On the dielectric properties of the chemical constituents of wood and the dielectric anisotropy of wood. Wood Research. No. 52: 31-42
    45 Norimoto Misato. 1976. Dielectric properties of wood. Wood Research. No. 59/60: 106-152
    46 Norimoto Misato and Yamada Tadashi. 1973. Dielectric properties of lignin. Material. 22(241): 937-942 (日)
    47 Vermaas H. F. 1974. Dielectric properties of Pinus pinaster as a function of its alcohol-benzene-soluble content. Wood Science. 6: 363-367
    48 Peyskens E. et al. 1984. Dielectric properties of softwood species at microwave frequencies. Wood Sci. Technol. 18: 267-280
    49 Handa Takashi et al. 1982. The effect of moisture on the dielectric relaxations in wood. J. Appl. Polymer Sci. 27: 439-453
    50 Maeda Hideatsu and Fukada Eiichi. 1987. Effect of bound water on piezoelectric, dielectric, and elastic properties of wood. J. Appl. Polym. Sci. 33: 1 187-1 198
    51 Zhao Guangjie et al. 1990. Dielectric relaxation of water adsorbed on wood. Mukuzai Gakkaishi. 36(4): 257-263 (日)
    52 Obataya Eiichi, Yokoyama Misao and Norimoto Misato. 1996. Mechanical and dielectric relaxations of wood in a low temperature range Ⅰ. Relaxations due to methylol groups and adsorbed water. Mukuzai Gakkaishi. 42(3): 243-249 (日)
    53 Yokoyama M., Obataya Eiichi and Norimoto Misato. 1999. Mechanical and dielectric relaxations of wood in a low temperature range Ⅱ. Relaxations due to adsorbed water. Mukuzai Gakkaishi. 45(2): 95-102 (日)
    54 Glasstone S., Laidler K. J. and Eyring H. 1941. The theory of rate processes. McGraw Hill, New York and London. 544-551 pp.
    55 Yokoyama M. and Norimoto M. 1997. Cole-Cole plots for dielectric properties of absolutely-dried spruce wood. Wood Research 33: 71-82
    56 Norimoto M. and Yamada T. 1971. The dielectric properties of wood Ⅴ.On the dielectric anisotropy of wood. Wood Research. 51: 12-31
    57 Norimoto M. and Yamada T. 1975. Dielectric properties of cellulose irradiated with γ-Rays. Mokuzai Gakkaishi. 21: 151-156 (日)
    58 Zhao G., Norimoto M. and Tanaka F. et al. 1987. Structure and properties of acetylated wood Ⅰ. Changes in the degree of crystallinity and dielectric properties by acetylation. Mokuzai Gakkaishi. 33(2): 136-146 (日)
    59 Zhao G., Nishino Y. and Nakao T. et al. 1994a. Dielectric relaxation of water adsorbed on formaldehyde-treated wood. Mokuzai Gakkaishi. 40: 258-262 (日)
    60 Zhao G., Nishino Y. and Nakao T. et al. 1994b. Dielectric relaxation of water adsorbed on acetylated wood. Mokuzai Gakkaishi 40: 571-576 (日)
    61 Zhao G., Nishino Y. and Nakao T., Tanaka C. et al. 1995. Dielectric relaxation of water adsorbed on formaldehyde-treated cellulose. Mokuzai Gakkaishi. 41: 677-682 (日)
    62 Yokoyama M., Kanayama K. and Furuta Y. et al. 2000. Mechanical and dielectric relaxations of wood in a low temperature range Ⅲ. Application of sech law to dielectric properties due to adsorbed water. Mukuzai Gakkaishi. 46(3): 173-180 (日)
    63 Takemura Tomio and Mibayashi Susumu. Effect of desorption of water on dielectric properties of wood. Mem. Coll. Agric. Kyoto Univ. 1966. 38: 200-205 (日)
    64 Skaar C. 1972. Water in wood. Syracuse university press, Syracuse, New York.
    65 Volbehr, B. 1896. Thesis, University of Kiel, Germany,
    66 Kelsey K. E. and Clarke L. N. 1956. The heat of sorption of water by wood. Aust. J. Applied Sci. 7: 160-175
    67 Stamm A. J. and Loughborough W. K. 1935. Thermodynamics of the swelling of wood. J.Phys. Chem. 39: 121-132
    68 Weichert L. 1963. Investigations on sorption and swelling of spruce, beech, and compressed beech wood between 20℃and 100℃. Holz als Roh-und Werkstoff. 21(8): 290-300
    69 Norimoto M. and Yamada T. 1977. Dielectric behavior of water adsorbed on MWL. Mokuzai Gakkaishi. 23: 99-106 (日)
    70 Fushitani et al. Experimental manual of wood science (Part 1), Physics and Engineering, Japan, 48pp. (日)
    71 Brown J. H., Davidson R.W. and Skaar C. 1963. Mechanism of electrical conduction in wood. J. Forest Products. 32: 455-459
    72 Cao Jinzhen and Zhao Guangjie. 2000. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state.1. Holzforschung. 54: 321-326
    73 Cole K. S. and Cole R. H. 1941. Dispersion and absorption in dielectrics Ⅰ. Alternating current characteristics. J. Chem. Phys. 9: 341-351
    74 Taniguchi T., Harada H. and Nakato K. 1978. Determination of water adsorption sites in wood by a hydrogen-deuterium exchange. Nature. 272: 230-231
    75 Norimoto M. and Zhao G. 1993. Dielectric relaxation of water adsorbed on wood Ⅱ. Mokuzai Gakkaishi. 39: 249-257 (日)
    76 Kadita S. 1960. Studies on the water sorption of wood. Wood Res. 23: 1-61
    77 Stamm A.J. 1964. Wood and Cellulose science. Ronald, New York, 549pp.
    78 Simpson W. 1980. Sorption theories applied to wood. Wood and Fiber 12(3): 183-195
    79 Skaar C. 1988. Wood-water relations. Springer-verlag, New York, 283pp.
    80 Stamm, A. J. and R. M. Nelson. 1961. Comparison between measured and theoretical drying diffusion coefficients for Southern pine. Forest Products J. 11(11): 536-543.
    81 Choong, E. T. 1963. Movement of moisture through a softwood in the hygroscopic range. Forest Procucts J. 13(11): 489-498.
    82 Choong, E. T. 1965. Diffusion coefficients of softwoods by steady-state and theoretical methods. Forest Products J. 15: 21-27.
    83 Nakano T. 1994a. Non-steady state water adsorption of wood. PartⅠ. Wood Sci. Technol. 28: 359-363.
    84 Nakano T. 1994b. Non-steady state water adsorption of wood. PartⅡ. Wood Sci. Technol. 28: 450-456.
    85 Kübler H. 1962. Shrinkage and swelling of wood by coldness. Holz als Roh-und Workstoff. 20 (9): 364-368 (德)
    86 Li R. 1986. Non-equilibrium thermodynamics and dissipation Structure. TsinghuaUniversity Press, Beijing, P. R. China, 51pp. (中)
    87 Skaar, C. 1968. Thermodynamics of water sorption by wood. Forest Products J. 18(7): 49-58.
    88 Spalt H. A. 1957. The sorption of water vapor by domestic and tropical woods. For. Prod. J. 7(10): 331-335
    89 Kelsey K. E. 1957. The sorption of water vapor by wood. Australian J. Appl. Sci. 8(1): 42-54
    90 Urquhart A. R. 1929. The mechanism of the adsorption of water by cotton. J. Text. Inst. 20: T125-T132
    91 Fushitani et al. 1985. Wood Physics. Wood Science 2, Japan.
    92 Chen C. and Wangaard F. F. 1968. Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci. Technol. 2: 177-187
    93 Wangaard F. F. and Granados L. A. 1967. The effect of extractives on water-vapor sorption by wood. Wood Sci. Technol. 1(4): 253-277
    94 Armstrong L. D. and Christensen G. N. 1961. Influence of moisture change on deformation of wood under stress. Nature. 196: 869-870
    95 Grossman P. U. A. 1976. Requirements for a model that exhibits mechano-sorptive behavior. Wood Sci. Technol. 10: 163-168
    96 Hearmon R. F. S. and Paton J. M. 1964. Moisture content changes and creep of wood. Forest Prod. J. 14:357-359
    97 Gibson E. J. 1965. Creep of wood: Role of water and effect of a changing moisture content. Nature. 206: 213-215
    98 Takemura T. 1966. Plastic properties of wood in relation to the non-equilibrium states of moisture content. Mem. Coll. Agric . Kyoto Univ. No.88: 31-48
    99 Takemura T. 1967. Plastic properties of wood in relation to the non-equilibrium states of moisture content (continued). Mokuzai Gakkaishi. 13: 77-81
    100 Takemura T. 1968. Plastic properties of wood in relation to the non-equilibrium states of moisture content (re-continued). Mokuzai Gakkaishi. 14: 406-410
    101 Leister R. H. 1971. A rheological model for mechno-sorptive deflections of beams. Wood Sci. Technol. 5: 211-220
    102 Mukudai Yata. 1986. Modeling and simulation of viscoelastic behavior (tensile strain) of wood under moisture change. Wood Sci. Technol. 20:335-348
    103 Mukudai Yata. 1987. Modeling and simulation of viscoelastic behavior (bending deflection) of wood under moisture change. Wood Sci. Technol. 21:49-63
    104 Mukudai Yata. 1988. Verification of Mukudai’s mechno-sorptive model. Wood Sci. Technol. 22:43-58
    105 Van der Put T. A. C. M. 1994. Theoretical explanation of the mechno-sorptive effect in wood. Wood & Fiber Sci. 21:219-230
    106 Nakano T. 1994. Mechanism of thermoplasticity for chemically modified wood. Holzforschung. 48:318-324
    107 Nakano T. 1996. Viscosity and entropy change in creep during waterdesorption for wood. Wood Sci. Technol. 30:117-125
    108 Halsey H., White Jr H. J. and Eyring H. 1945. Mechanical properties of textilesⅠ.Textile Research J. 15: 295-311
    109 Halsey H. and Eyring H. 1945. Mechanical properties of textilesⅡ.Textile Research J. 15: 451-459
    110 Eyring H. and Halsey H. 1946. Mechanical properties of textiles.Ⅲ.Textile Research J. 16:13-25
    111 Doolittle A. K. and Doolittle D. B. 1957. Studies in Newtonian Flow. V. J. Appl. Phys. 28: 901-905
    112 Cao Jinzhen, Zhao Guangjie and Lu Zhenyou. 1998. Mechano-sorptive creep of wood. J. Beijing Forestry Univ. 20: 94-100
    113 Raddish W. 1950. The dielectric properties of polyethylene terephthalate. Trans. Farady Soc. 46: 459-475
    114 Davidson D. W. and Cole R. H. 1951. Dielectric relaxation in Glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19(12): 1 484-1 490
    115 Kurosaki Shigehiko. 1958. The dielectric behavior of sorbed water on silica gel. J Phys. Chem. 58: 320-324
    116 Windle J. J. and Shaw T. M. 1954. Dielectric properties of wool-water systems at 3000 and 9300 megacycles. J. Chemical Physics. 22(10): 1 752-1 757
    117 Kamiyoshi D. and Ripoche J. 1958. Dielectric dispersions of water adsorbed on silica gel Ⅱ. J. East-northern Univ. Sci. Report. 8: 239-246 (In Japanese)
    118 Kamiyoshi D. and Ripoche J. 1960. Dielectric dispersions of water adsorbed on starch. J. East-northern Univ. Sci. Report. 23: 219-224 (In Japanese)
    119 Ono S., Kuge T. and Koizumi N. 1958. Dielectric properties of starch. Ⅰ. Audio frequency region. 31(1): 34-40
    120 Ono S., Kuge T. and Koizumi N. 1958. Dielectric properties of starch. Ⅱ. Audio frequency region. 31(1): 40-46
    121 Makino Teruo and Taneya Shin-ichi. 1963. Dielectric properties of powderedfood Ⅰ. Hygroscopicity of skimmed milk powder. Applied Physics. 32(1): 10-16 (In Japanese)
    122 McCafferty E. and Zettlemoyer A. C. 1970. Calculation of the molar polarization of adsorbed water vapour on α-Fe2O3. Trans. Farady Soc. 66: 1 732-1 740
    123 Stamm A.J. 1927. The electric resistance of wood as a measure of its moisture content. Ind. Eng.Chem. 19: 1 021-1 025
    124 Stamm A.J. 1929. The fiber saturation point of wood as obtained from electrical conductivity measurement. Ind.Eng.Chem.Anal. 1: 94-97
    125 Takeda M. 1949. Wood and microwave. Science. 18: 21-29 (In Japanese)
    126 Takeda M. 1951. Studies on dielectric behavior of bound water in timber in the high frequency region. Bull. Chem. Soc. Japan. 24(4): 169-173
    127 James W. J. and Hamill D. W. 1965. Dielectric properties of Douglas-fir measured at microwave frequencies. Forest Products J. 15(2): 51-56
    128 Tsutsumi J. and Watanabe H. 1966. Studies on dielectric behavior of wood.Ⅱ. Effect of moisture content on dielectric constant ε′and dielectric loss factorε″. Mukuzai Gakkaishi. 12(3): 115-118 (In Japanese with English abstract)
    129 Tsutsumi J. 1967. Studies on dielectric properties of wood. Effects of frequency, moisture content and temperature on dielectric constant and dielectric loss factor. Bull. Kyushu Univ. Forests. Japan 41:109-169
    130 Trapp W. and Pungs L. 1956. Einfluβ von Temperatur und Feuchte auf das dielektrische Verhalten von Naturholz im groβer Frequenzbereich. Holzforschung. 10(2): 144~150 (In Germany)
    131 Uemura T. 1963. The anisotropy of electric properties. Material. 12(121): 699 (In Japanese)
    132 Torgovnikov G. I. 1993. Dielectric properties of wood and wood-based materials. Springer-Verlag.
    133 Norimoto Misato and Yamada Tadashi. 1970. The dielectric properties ofwood Ⅳ: On dielectric dispersions of oven-dried wood. Wood Research. No. 50: 36-49
    134 Kr?ner K. and Pungs L. 1952. Zur dielektrischen Anisotropie des Naturholzes im groβen Frequenzbereich (About the behavior of the dielectric loss factor of natural wood over a wide range of frequencies. Holzforschung. 6 (1): 13-16 (In Germany)
    135 Nanassy A. J. 1970. Overlapping of dielectric relaxation spectra in oven-dry yellow birch at temperatures from 20 to 100℃. Wood Sci. Technol. 4: 104-121
    136 Mikhailov G.P. et al. 1968. Dielectric and NMR study of the molecular mobility of cellulose and of its derivatives. Poly. Sci. 8: 628-640
    137 Norimoto Misato and Yamada Tadashi. 1972. The dielectric properties of wood Ⅵ: On the dielectric properties of the chemical constituents of wood and the dielectric anisotropy of wood. Wood Research. No. 52: 31-42
    138 Norimoto Misato. 1976. Dielectric properties of wood. Wood Research. No. 59/60: 106-152
    139 Norimoto Misato and Yamada Tadashi. 1973. Dielectric properties of lignin. Material. 22(241): 937-942 (In Japanese with English abstract)
    140 Vermaas H. F. 1974. Dielectric properties of Pinus pinaster as a function of its alcohol-benzene-soluble content. Wood Science. 6: 363-367
    141 Peyskens E. et al. 1984. Dielectric properties of softwood species at microwave frequencies. Wood Sci. Technol. 18: 267-280
    142 Handa Takashi et al. 1982. The effect of moisture on the dielectric relaxations in wood. J. Appl. Polymer Sci. 27: 439-453
    143 Maeda Hideatsu and Fukada Eiichi. 1987. Effect of bound water on piezoelectric, dielectric, and elastic properties of wood. J. Appl. Polym. Sci. 33: 1 187-1 198
    144 Zhao Guangjie et al. 1990. Dielectric relaxation of water adsorbed on wood. Mukuzai Gakkaishi. 36(4): 257-263 (In Japanese with English abstract)
    145 Obataya Eiichi, Yokoyama Misao and Norimoto Misato. 1996. Mechanicaland dielectric relaxations of wood in a low temperature range Ⅰ. Relaxations due to methylol groups and adsorbed water. Mukuzai Gakkaishi. 42(3): 243-249 (In Japanese with English abstract)
    146 Yokoyama M., Obataya Eiichi and Norimoto Misato. 1999. Mechanical and dielectric relaxations of wood in a low temperature range Ⅱ. Relaxations due to adsorbed water. Mukuzai Gakkaishi. 45(2): 95-102 (In Japanese with English abstract)
    147 Glasstone S., Laidler K. J. and Eyring H. 1941. The theory of rate processes. McGraw Hill, New York and London. 544-551 pp.
    148 Yokoyama M. and Norimoto M. 1997. Cole-Cole plots for dielectric properties of absolutely-dried spruce wood. Wood Research 33: 71-82
    149 Norimoto M. and Yamada T. 1971. The dielectric properties of wood Ⅴ.On the dielectric anisotropy of wood. Wood Research. 51: 12-31
    150 Norimoto M. and Yamada T. 1975. Dielectric properties of cellulose irradiated with γ-Rays. Mokuzai Gakkaishi. 21: 151-156
    151 Zhao G., Norimoto M. and Tanaka F. et al. 1987. Structure and properties of acetylated wood Ⅰ. Changes in the degree of crystallinity and dielectric properties by acetylation. Mokuzai Gakkaishi. 33(2): 136-146
    152 Zhao G., Nishino Y. and Nakao T. et al. 1994a. Dielectric relaxation of water adsorbed on formaldehyde-treated wood. Mokuzai Gakkaishi. 40: 258-262
    153 Zhao G., Nishino Y. and Nakao T. et al. 1994b. Dielectric relaxation of water adsorbed on acetylated wood. Mokuzai Gakkaishi 40: 571-576
    154 Zhao G., Nishino Y. and Nakao T., Tanaka C. et al. 1995. Dielectric relaxation of water adsorbed on formaldehyde-treated cellulose. Mokuzai Gakkaishi. 41: 677-682
    155 Yokoyama M., Kanayama K. and Furuta Y. et al. 2000. Mechanical and dielectric relaxations of wood in a low temperature range Ⅲ. Application of sech law to dielectric properties due to adsorbed water. Mukuzai Gakkaishi.
    46(3): 173-180 (In Japanese with English abstract)
    156 Takemura Tomio and Mibayashi Susumu. Effect of desorption of water on dielectric properties of wood. Mem. Coll. Agric. Kyoto Univ. 1966. 38: 200-205 (In Japanese)
    157 Skaar C. 1972. Water in wood. Syracuse university press, Syracuse, New York.
    158 Volbehr, B. 1896. Thesis, University of Kiel, Germany,
    159 Kelsey K. E. and Clarke L. N. 1956. The heat of sorption of water by wood. Aust. J. Applied Sci. 7: 160-175
    160 Stamm A. J. and Loughborough W. K. 1935. Thermodynamics of the swelling of wood. J. Phys. Chem. 39: 121-132
    161 Weichert L. 1963. Investigations on sorption and swelling of spruce, beech, and compressed beech wood between 20℃and 100℃. Holz als Roh-und Werkstoff. 21(8): 290-300
    162 Norimoto M. and Yamada T. 1977. Dielectric behavior of water adsorbed on MWL. Mokuzai Gakkaishi. 23: 99-106
    163 Fushitani et al. Experimental manual of wood science (Part 1), Physics and Engineering, Japan, 48pp. (In Japanese)
    164 Brown J. H., Davidson R.W. and Skaar C. 1963. Mechanism of electrical conduction in wood. J. Forest Products. 32: 455-459
    165 Cao Jinzhen and Zhao Guangjie. 2000. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state.1. Holzforschung. 54: 321-326
    166 Cole K. S. and Cole R. H. 1941. Dispersion and absorption in dielectrics Ⅰ. Alternating current characteristics. J. Chem. Phys. 9: 341-351
    167 Taniguchi T., Harada H. and Nakato K. 1978. Determination of water adsorption sites in wood by a hydrogen-deuterium exchange. Nature. 272: 230-231
    168 Norimoto M. and Zhao G. 1993. Dielectric relaxation of water adsorbed on wood Ⅱ. Mokuzai Gakkaishi. 39: 249-257
    169 Kadita S. 1960. Studies on the water sorption of wood. Wood Res. 23: 1-61
    170 Stamm A.J. 1964. Wood and Cellulose science. Ronald, New York, 549pp.
    171 Simpson W. 1980. Sorption theories applied to wood. Wood and Fiber 12(3): 183-195
    172 Skaar C. 1988. Wood-water relations. Springer-verlag, New York, 283pp.
    173 Stamm, A. J. and R. M. Nelson. 1961. Comparison between measured and theoretical drying diffusion coefficients for Southern pine. Forest Products J. 11(11): 536-543.
    174 Choong, E. T. 1963. Movement of moisture through a softwood in the hygroscopic range. Forest Procucts J. 13(11): 489-498.
    175 Choong, E. T. 1965. Diffusion coefficients of softwoods by steady-state and theoretical methods. Forest Products J. 15: 21-27.
    176 Nakano T. 1994a. Non-steady state water adsorption of wood. PartⅠ. Wood Sci. Technol. 28: 359-363.
    177 Nakano T. 1994b. Non-steady state water adsorption of wood. PartⅡ. Wood Sci. Technol. 28: 450-456.
    178 Kübler H. 1962. Shrinkage and swelling of wood by coldness. Holz als Roh-und Workstoff. 20 (9): 364-368
    179 Li, R. 1986. Non-equilibrium thermodynamics and dissipation Structure. Tsinghua University Press, Beijing, P. R. China, 51pp.
    180 Skaar, C. 1968. Thermodynamics of water sorption by wood. Forest Products J. 18(7): 49-58.
    181 Spalt H. A. 1957. The sorption of water vapor by domestic and tropical woods. For. Prod. J. 7(10): 331-335
    182 Kelsey K. E. 1957. The sorption of water vapor by wood. Australian J. Appl. Sci. 8(1): 42-54
    183 Fushitani et al. 1985. Wood Physics. Wood Science 2, Japan.
    184 Chen C. and Wangaard F. F. 1968. Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci. Technol. 2: 177-187
    185 Wangaard F. F. and Granados L. A. 1967. The effect of extractives on water-vapor sorption by wood. Wood Sci. Technol. 1(4): 253-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700