多元铝合金中Al-Cr-Si、Mn-Ni-Si、Cr-Ni-Ti、Al-Fe-Mg-Ni-Si和Al-Cu-Fe-Mg-Ni体系的相图热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:Al合金由于其优良的综合性能,被广泛应用于航空航天、汽车等领域。Cu、Mg、Mn、Ni、Si、Fe、Cr、Ti等元素是Al合金中主要的合金元素或添加元素。相关体系的相图和热力学信息是研究Al合金性能的理论基础。为了提高Al合金性能、改善生产工艺以及开发新型Al合金材料,建立多元Al合金精确的相图热力学数据库是非常有必要的。
     本论文以多元商用Al合金中的五个重要体系(Al-Cr-Si、 Mn-Ni-Si、Cr-Ni-Ti、Al-Fe-Mg-Ni-Si和Al-Cu-Fe-Mg-Ni)为研究目标,通过集成关键实验、第一性原理计算和CALPHAD (CALculation of PHAse Diagram)技术的方法获得相应体系精准的热力学数据库。本工作的主要研究成果如下:
     (1)对Al-Cr-Si体系进行了详细的文献评估,同时,借助于第一性原理计算了τ1(Al13Cr4Si4)和τ2(Al9Cr3Si)两个三元化合物在0K时的形成焓。基于本工作第一性原理的结果以及文献报道的实验数据和边界二元系的热力学描述,对Al-Cr-Si三元系进行了重新优化,最终得到了一套能够准确描述Al-Cr-Si体系整个成分和温度范围内的热力学参数。此外,本工作还构筑了该体系的液相面投影图和希尔反应图。
     (2)采用XRD、SEM/EDX等实验手段,测定了Mn-Ni-Si体系1000℃等温截面。同时,借助于第一性原理计算了τ4(MnNiSi)在0K时的形成焓。基于本工作实验和第一性原理计算的结果以及可靠的文献数据,优化计算了Mn-Ni-Si三元系。首次成功地应用同一个吉布斯自由能表达式描述了该体系中的Fcc_Al/L12和Bcc_A2/Bcc_B2有序-无序转变,并获得了一套自洽的热力学参数。此外,本工作还构筑了Mn-Ni-Si体系的液相面投影图和希尔反应图。
     (3)应用CALPHAD方法,修订了Ni-Ti二元系的热力学描述,并对Cr-Ni-Ti体系进行了热力学优化。首次使用四个亚点阵模型描述三元系中的Bcc_A2/Bcc_B2有序-无序转变。基于文献报道的实验数据,获得了一套自洽的热力学参数。通过计算结果与实验结果相比可知,本工作获得的热力学参数能够准确地描述所有可靠的实验数据。
     (4)本工作重新优化了Al-Fe-Si三元系的富Al角并修正了描述Al-Fe-Ni三元系中Al9FeNi相的参数。结合本工作所获得的Al-Fe-Si和Al-Fe-Ni体系的热力学参数和文献中已报道的其他三元系的热力学参数,优化计算了Al-Fe-Ni-Si、Al-Fe-Mg-Si和Al-Cu-Fe-Ni三个四元系,并外推计算了Al-Fe-Mg-Si. Al-Cu-Fe-Mg和Al-Cu-Mg-Ni三个四元系,最后建立了Al-Fe-Mg-Ni-Si和Al-Cu-Fe-Mg-Ni五元系的热力学数据库。利用该数据库计算的相图数据、平衡凝固和Gulliver-Scheil非平衡凝固行为能很好地描述实验数据。基于显微模型计算了商用6063合金(Al-0.39Si-0.20Fe-0.43Mg,质量百分数)和2618合金(Al-2.24Cu-1.42Mg-0.9Fe-0.9Ni,质量百分数)的凝固过程中的相变序列。模型计算的凝固序列结果与实验数据符合得很好,说明本工作建立的热力学数据库具有较高的精准度。
Abstract:Al alloys are widely applied in aeronautics, astronautics and automobiles due to their excellent comprehensive properites. Cu, Fe, Mg, Mn, Ni, Si, Cr and Ti are the important alloying elements or additives in the Al alloys. Knowledge of phase diagrams and thermodynamic properties of related systems is the theoretical basis to understand the performance of Al alloys. In order to promote the properties, improve the production process and develop new Al alloys, it is essential to establish an accurate thermodynamic database of the multicomponent Al alloys.
     Five key systems (Al-Cr-Si, Mn-Ni-Si, Cr-Ni-Ti, Al-Fe-Mg-Ni-Si and Al-Cu-Fe-Mg-Ni) in the multicomponent commercial Al alloys are selected as research objectives in the present thesis. A hybrid approach of key experiments, first-principles calculations and CALPHAD (CALculation of PHAse Diagram) is employed to establish the accurate thermodynamic databases of these key systems. The major research achievements of the present work are:
     (1) The available experimental data of the Al-Cr-Si system are first critically evaluated. The enthalpies of formation of the τi (Al13Cr4Si4) and τ2(Al9Cr3Si) phases at0K are computed via the first-principles calculations. The Al-Cr-Si system is re-optimized based on the present first-principles results and the previous descriptions of the Al-Cr, Al-Si and Cr-Si systems as well as the experimental data from the literature. Finally, an optimal set of thermodynamic parameters of the Al-Cr-Si system is obtained. In addition, the liquidus projection and reaction scheme of this system are also constructed in the present work.
     (2) The isothermal section of the Mn-Ni-Si system at1000℃is determined by means of XRD and SEM/EDX. The enthalpy of formation for the τ4(MnNiSi) phase at0K is computed via the first-principles calculations. Based on the present obtained experimental data and first-principles results as well as the experimental data from the literature, the thermodynamic modeling of the Mn-Ni-Si system is performed. One single function is used to describe the Gibbs energies of both the ordered and disordered phases including L12and Fcc_A1as well as Bcc_B2and Bcc_A2. A set of self-consistent thermodynamic parameters is obtained. In addition, the liquidus projection and reaction scheme of the Mn-Ni-Si system are also constructed.
     (3) A thermodynamic assessment of the ternary Cr-Ni-Ti system together with a refined binary Ni-Ti sub-system is made using the CALPHAD method. The ordered-disordered transition between Bcc A2and Bcc_B2phases is described using a four-sublattice model for the first time. An optimal set of thermodynamic parameters for the Cr-Ni-Ti system is obtained by considering the experimental data from the literature. Comparisons between the calculated and measured phase diagrams indicate that all of the reliable experimental information is satisfactorily accounted for by the present modeling.
     (4) The Al-rich corner of the Al-Fe-Si system is re-optimized and the parameters of the Al9FeNi phase in Al-Fe-Ni system are modified in present work. Combining the thermodynamic parameters of these two systems and those of other ternary systems from literature, three quaternary systems (Al-Fe-Mg-Si, Al-Cu-Fe-Mg and Al-Cu-Mg-Ni) are extrapolated and three quaternary systems (Al-Fe-Ni-Si, Al-Fe-Mg-Si and Al-Cu-Fe-Ni) are modeled. Then, a thermodynamic database of two quinary systems (Al-Fe-Mg-Ni-Si and Al-Cu-Fe-Mg-Ni) is constructed. The established database is used to describe the solidification behaviors of6063alloy (Al-0.39Si-0.20Fe-0.43Mg, in wt.%) and2618alloy (Al-2.24Cu-1.42Mg-0.9Fe-0.9Ni, in wt.%) under equilibrium and Gulliver-Scheil non-equilibrium conditions. The reliability of the obtained thermodynamic database is verified by the good agreement between calculation and experiment.
引文
[1]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [2]郝士明.材料设计的热力学解析[M].北京:化学工业出版社,2010.
    [3]郝士明.材料热力学[M].北京:化学工业出版社,2004.
    [4]Thermo-Calc Software AB,2013; Available from:http://www.thermocalc.com.
    [5]陆学善.相图与相变[M].合肥:中国科技大学出版社,1990.
    [6]张圣弼,李道子.相图:原理、计算及其在冶金中的应用[M].北京:冶金工业出版社,1986.
    [7]Zhao J C. Methods for phase diagram determination [M]. Oxford:Elsevier Science Limited,2007.
    [8]Xu H H, Hu B, Sun W H, et al. Phase equilibria of the Ni-Si-Zn system at 600℃ [J]. Intermetallics,2011,19(8):1089-1095.
    [9]Hillert M. Phase equilibria, phase diagrams and phase transformations:their thermodynamic basis [M]. Cambridge:Cambridge University Press,2007.
    [10]徐祖耀.材料热力学[M].北京:高等教育出版社,2009.
    [11]徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [12]Lukas H, Fries S G, Sundman B. Computational thermodynamics:the CALPHAD method [M]. New York:Cambridge university press,2007.
    [13]Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams):a comprehensive guide [M]. Pergamon,1998.
    [14]Vfest'al J, Strof J, Pavlu J. Extension of SGTE data for pure elements to zero Kelvin temperature-A case study [J]. CALPHAD,2012,37:37-48.
    [15]Dinsdale A T. SGTE data for pure elements [J]. CALPHAD,1991,15(4): 317-425.
    [16]Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions [J]. Ind. Eng. Chem.,1948,40(2):345-348.
    [17]Hillert M, Staffansson L I. Regular-solution model for stoichiometric phases and ionic melts [J]. Acta Chem. Scand.,1970,24(10):3618-3626.
    [18]Hillert M, Selleby M, Sundman B. An attempt to correct the quasichemical model [J]. Acta Mater.,2009,57(17):5237-5244.
    [19]Schmid R, Chang Y A. A thermodynamic study on an associated solution model for liquid alloys [J]. CALPHAD,1985,9(4):363-382.
    [20]Inden G. Approximate description of the configurational specific heat during a magnetic order-disorder transformation. Project meeting Calphad V, Duesseldorf 1976.
    [21]Hillert M, Jarl M. A model for alloying in ferromagnetic metals [J]. CALPHAD, 1978,2(3):227-238.
    [22]Ansara I, Sundman B, Willemin P. Thermodynamic modeling of ordered phases in the Ni-Al system [J]. Acta Metall.,1988,36(4):977-982.
    [23]Hillert M. The compound energy formalism [J]. J. Alloys Compd.,2001,320: 161-176.
    [24]Ansara I, Dupin N, Lukas H L, et al. Thermodynamic assessment of the Al-Ni system [J]. J. Alloys Compd.,1997,247(1):20-30.
    [25]Crystal Lattice Structures,2008; Available from:http://cst-www.nrl.navy.mil/ lattice/.
    [26]Sundman B, Fries S G, Oates W A. A thermodynamic assessment of the Au-Cu system [J]. CALPHAD,1998,22(3):335-354.
    [27]Lu X-G, Sundman B. Thermodynamic assessments of the Ni-Pt and Al-Ni-Pt systems [J]. CALPHAD,2009,33(3):450-456.
    [28]Kim D E, Saal J E, Zhou L C, et al. Thermodynamic modeling of fcc order/disorder transformations in the Co-Pt system [J]. CALPHAD,2011,35(3): 323-330.
    [29]Yuan X M, Zhang L J, Du Y, et al. A new approach to establish both stable and metastable phase equilibria for fcc ordered/disordered phase transition: application to the Al-Ni and Ni-Si systems [J]. Mater. Chem. Phys.,2012,135: 94-105.
    [30]Dupin N, Ansara I, Sundman B. Thermodynamic re-assessment of the ternary system Al-Cr-Ni [J]. CALPHAD,2001,25(2):279-298.
    [31]Sundman B, Ohnuma I, Dupin N, et al. An assessment of the entire Al-Fe system including D03 ordering [J]. Acta Mater.,2009,57(10):2896-2908.
    [32]Hallstedt B, Kim O. Thermodynamic assessment of the Al-Li system [J]. Int. Mat. Res.,2007,98(10):961-969.
    [33]Scheil E. Darstellung von Dreistoffsystemen [J]. Arch. Eisenhuettenwesen,1936, 9:571-573.
    [34]Lukas H L, Henig E T, Petzow G.50 years reaction scheme after erich scheil [J]. Z. Metallkd.,1986,77(6):360-367.
    [35]Hoherberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136: 864-871.
    [36]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244.
    [37]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comp. Mater. Sci., 1996,6(1):15-50.
    [38]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [39]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993,47(1):558-561.
    [40]Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B,1989,40(6):3616-3621.
    [41]Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B,1994,49(23):16223-16233.
    [42]Belov N A, Eskin D G, Aksenov A A. Multicomponent phase diagrams: applications for commercial aluminum alloys [M]. Elsevier Science Limited, 2005.
    [43]陈海林.Al-Cr-Si、Al-Cr-Ti、Al-Cu-Fe、Al-Cu-Ni和Nb-Ni体系的晶体结构与相图测定及热力学模拟[D].长沙:中南大学,2008.
    [44]Gupta S P. Formation of intermetallic compounds in the Cr-Al-Si ternary system [J]. Mater. Charact.,2004,52(4):355-370.
    [45]Huang M, Li K Z, Li H J, et al. A Cr-Al-Si oxidation resistant coating for carbon/carbon composites by slurry dipping [J]. Carbon,2007,45(5):1124-1126.
    [46]Hindrichs G. Some chromium and manganese alloys [J]. Z. Anorg. Chem.,1908, 59:414-419.
    [47]Bradley A J, Lu S S. An X-ray study of the chromium-aluminium equilibrium diagram [J]. J. Inst. Met.,1937,60:319-337.
    [48]Goto M, Dogane G. On an Aluminum and Chromium Alloy [J]. Nihon Kogyokwaishi,1927,512:931-936.
    [49]Fink W L, Freche H R. Equilibrium relations in aluminum-chromium alloys of high purity [J]. Trans. AIMME, Inst. Metals Div.,1933,104:325-334.
    [50]Zoller H. The Influence of Zn, Mg, Si, Cu, Fe, Mn and Ti on the primary crystallisation of A17Cr [J]. Schweiz. Arch. Angew. Wiss. Tech.,1960,26: 437-448.
    [51]Koster W, Wachtel E, Grube K. Aufbau und magnetische eigenschaften der aluminium-chrom legierungen [J]. Z. Metallkd.,1963,54:393-401.
    [52]Murray J L. The Al-Cr (aluminum-chromium) system [J]. J. Phase Equilib.,1998, 19(4):368-375.
    [53]Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams, Second edition plus updates [CD-ROM] [M]. Materials Park, OH: ASM International,1996.
    [54]Mahdouk K, Gachon J C. Thermodynamic investigation of the aluminum-chromium system [J]. J. Phase Equilib.,2000,21(2):157-166.
    [55]Du Y, Schuster J C, Chang Y A. Experimental identification of the degenerated equilibrium in extreme Al end of the Al-Cr system [J].J. Mater. Sci.,2005,40(4): 1023-1025.
    [56]Grushko B, Kowalska-Strzeciwilk E, Przepiorzynski B, et al. Investigation of the Al-Cr y-range [J]. J. Alloys Compd.,2005,402(1):98-104.
    [57]Grushko B, Kowalska-Strzeciwilk B, Przepiorzynski E, et al. New phase in the high-Al region of Al-Cr [J]. J. Alloys Compd.,2006,420(1):L1-L4.
    [58]Grushko B, Przepiorzynski B, Pavlyuchkov D. On the constitution of the high-Al region of the Al-Cr alloy system [J]. J. Alloys Compd.,2008,454(1):214-220.
    [59]den Broeder F J A, Van Tendeloo G, Amelinckx S, et al. Microstructure of Cr100-xAlx alloys (10 at.%≤x≤33 at.%) studied by means of transmission electron microscopy and diffraction. Ⅱ. Discovery of a new phase [J]. Phys. Status Solidi A,1981,67(1):233-248.
    [60]Helander T, Tolochko O. An experimental investigation of possible B2-ordering in the Al-Cr system [J]. J. Phase Equilib.,1999,20(1):57-60.
    [61]Tokunaga T, Ohtani H, Hasebe M. Thermodynamic assessment of the Al-Cr system by combining the first-principles and CALPHAD methods [J]. Mater. Sci. Forum,2007,539-543:2407-2412.
    [62]Costa Neto J G, Gama S, Ribeiro C A. Experimental study of the Al-Cr equilibrium diagram [J]. J. Alloys Compd.,1992,182(2):271-280.
    [63]Audier M, Durand-Charre M, Laclau E, et al. Phase equilibria in the Al-Cr system [J]. J. Alloys Compd.,1995,220(1):225-230.
    [64]Liang Y, Guo C, Li C, et al. Thermodynamic modeling of the Al-Cr system [J]. J. Alloys Compd.,2008,460(1):314-319.
    [65]张炜炜Al-Cr和Fe-Ni-Si体系的相平衡测定和热力学优化[D].长沙:中南大学,2009.
    [66]Weitzer F, Chen H L, Schuster J C. Crystal-structure refinement of 13-Cr4(Al,Si)11 by full-profile Rietveld analysis [J]. Powder Diffr.,2007,22(03): 253-255.
    [67]Saunders N, Rivlin V G. Thermodynamic characterization of Al-Cr, Al-Zr, and Al-Cr-Zr alloy systems [J]. Mater. Sci. Technol.,1986,2(6):520-527.
    [68]Saunders N:Al-Cr, in COST507:Thermochemical Database for Light Metal Alloys. Vol.2. ed. by Ansara I, Dinsdale A T, Rand M H (Office for Official Publications of the European Communities, Luxembourg).1998,23-27'.
    [69]Grobner J, Lukas H L, Aldinger F. Thermodynamic calculation of the ternary system Al-Si-C [J]. CALPHAD,1996,20(2):247-254.
    [70]Svechnikov V N, Kocherzhinskii Y A, Yupko L M. Chromium-silicon phase diagram [J]. Sb. Nauchn. Tr. Inst. Metallofiz., Akad., Nauk Ukr. SSR,1964,19: 212-218.
    [71]Chang Y A. Phase relationships in the system chromium-silicon [J]. Trans. TMS-AIME,1968,242(8):1509-1515.
    [72]Gokhale A B, Abbaschian G J. The Cr-Si (Chromium-Silicon) system [J]. Bull. Alloys phase diagrams,1987,8(5):474-484.
    [73]Coughanowr C A, Ansara I, Lukas H L. Assessment of the Cr-Si system [J]. CALPHAD,1994,18(2):125-140.
    [74]Du Y, Schuster J C. Experimental reinvestigation of the CrSi-Si partial system and update of the thermodynamic description of the entire Cr-Si system [J]. J. Phase Equilib.,2000,21(3):281-286.
    [75]Chen H L, Du Y, Schuster J C. On the melting of Cr5Si3 and update of the thermodynamic description of Cr-Si [J]. CALPHAD,2009,33(1):211-214.
    [76]Mondolfo L F. Metallography of Aluminum Alloys [M]. New York:Wiley & Sons Inc.,1943.
    [77]Pratt J N, Raynor G V. The intermetallics compounds in the alloys of aluminium and silicon with Cr, Mn, Fe, Co and Ni [J]. J. Inst. Met.,1951,79:211-232.
    [78]Pratt J N, Raynor G V. Intermetallic compounds in ternary aluminium-rich alloys containing transitional metals [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1951,205(1080):103-118.
    [79]Robinson K. The structure of a(AlCrSi)-Cr4Si4Al13 [J]. Acta Crystallogr.,1953, 6(11-12):854-859.
    [80]Robinson K. The structure of β(AlCrSi) [J]. Acta Crystallogr.,1953,6(7):667.
    [81]Brukl C, Nowotny H, Benesovsky F. Investigations in the ternary systems: V-Al-Si, Nb-Al-Si, Cr-Al-Si, Mo-Al-Si, or Cr(Mo)-Al-Si [J]. Monatsh. Chem., 1961,92:967-980.
    [82]Raman A, Schubert K. The occurrence of Zn2Cu and Cr2Al-type intermetallic compounds [J]. Z. Metallkd.,1964,55:798-804.
    [83]Esslinger P, Quatrehomme F, Bleidorn H. Constitution of Al-rich Al-Cr-Si Alloys [J]. Z. Metallkd.,1965,56(10):735-739.
    [84]Schmid-Fetzer R. Aluminium-Chromiun-Silicon [J]. In:W. Martienssen, eds. Landolt-Boernstein, New Series, IV/11A1,2004,411-420.
    [85]Weitzer F, Chen H L, Du Y, et al. The crystal structure of a new triclinic ternary phase:τ3-Cr4(Al, Si)11[J]. Intermetallics,2006,14(2):224-226.
    [86]Chen H L, Weitzer F, Schuster J C, et al. The isothermal section of the Al-Cr-Si system at 800℃ and the crystal structure of τ2(Cr3Al9Si) [J]. J. Alloys Compd., 2007,436(1):313-318.
    [87]Liang Y, Guo C, Li C R, et al. A thermodynamic description of the Al-Cr-Si system [J]. J. Phase Equilib.,2009,30(5):462-479.
    [88]Villars P, Calvert L D. Pearson's handbook of crystallographic data for intermetallic phases [M]. Materials Park, OH:ASM International,1997.
    [89]Ohnishi T, Nakatani Y, Okabayashi K. Crystal structures of intermetallic 0, η and ε phases in Al-Cr system [J]. Bull. Univ. Osaka Perfect.,1975,24:183-191.
    [90]Li X Z, Sugiyama K, Hiraga K, et al. Crystal structure of orthorhombic ε-Al4Cr [J]. Z. Kristallogr.,1997,212(9):628-633.
    [91]Ellner M, Braun J, Predel B. X-ray investigations on the Cr-Al phases belonging to the Tungsten family [J]. Z. Metallkd.,1989,80(5):374-383.
    [92]Okamoto H. Cr-Si (Chromium-Silicon) [J]. J. Phase Equilib.,2001,22(5): 593-593.
    [93]Sundman B, Jansson B, Andersson J-O. The thermo-calc databank system [J]. CALPHAD,1985,9(2):153-190.
    [94]Du Y, Schmid-Fetzer R, Ohtani H. Thermodynamic assessment of the V-N system [J]. Z. Metallkd.,1997,88(7):545-556.
    [95]Spiegel F X, Bardos D, Beck P A. Ternary G and E silicides and germanides of transition elements [J]. Trans. Met. Soc. AIME,1963,227:575-579.
    [96]Yan X L, Grytsiv A, Rogl P, et al. On the crystal structure of the Mn-Ni-Si G-phase [J]. J. Alloys Compd.,2009,469(1):152-155.
    [97]Shuro I, Kuo H H, Sasaki T, et al. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion [J]. Mater. Sci. Eng. A,2012,552: 194-198.
    [98]Egorushkin V E, Kulkov S N, Kulkova S E. Electronic structure and the theory of phase transformations in NiMn [J]. Physica B+C,1983,123(1):61-68.
    [99]Buschow K H J, Van Engen P G, Jongebreur R. Magneto-optical properties of metallic ferromagnetic materials [J]. J. Magn. Magn. Mater.,1983,38(1):1-22.
    [100]Coles B R, Hume-Rothery W. The equilibrium diagram of the system nickel-manganese [J]. J. inst. Met.,1952,80:85-92.
    [101]Schwomma O, Preisinger A, Nowotny H, et al. Die Kristallstruktur von Mn11Si19 und deren Zusammenhang mit Disilicid-Typen [J]. Mh. Chem.,1964, 95(6):1527-1537.
    [102]Jorgensen J E, Rasmussen S E. Refinement of the structure of MnSi by powder diffraction [J]. Powder Diffr.,1991,6(4):194-195.
    [103]Binczycka H, Dimitrijevic Z, Gajic B, et al. Atomic and magnetic structure of manganese iron silicide (Mn5-xFexSi3) [J]. Physica Status Solidi, Sectio A: Applied Research,1973,19(1):K13-K17.
    [104]Shoemaker C B, Shoemaker D P. The crystal structure of Mn5Si2 and the 8 phase (V-Fe-Si) [J]. Acta Crystall. B,1976,32(8):2306-2313.
    [105]Babanova Y N, Sidorenko F A, Gel'd P V, et al. Ordering of iron manganese silicide (Fe1-xMnx)3Si solid solutions [J]. Fizika Metallovi Metallovedenie, 1974,38:122-126.
    [106]Shoemaker C B, Shoemaker D P. The crystal structure of the v phase, Mng1.5 Si18.5 [J]. Acta Crystall. B,1971,27(1):227-235.
    [107]Shoemaker C B, Shoemaker D P. Refinement of an R phase, Mn85.5Si14.5 [J]. Acta Crystall. B,1978,34(3):701-705.
    [108]Schubert K, Pfisterer H. Zur kristallchemie der B-metall-reichsten phasen in legierungen von Ubergangsmetallen der eisen und platintriaden mit elementen der vierten nebengruppe [J]. Z. Metallkd.,1950,41:433-441.
    [109]Toman K. The structure of NiSi [J]. Acta Crystall.,1951,4(5):462-464.
    [110]Pilstrom G. The crystal structure of Ni3Si2 with some notes on Ni5Si2 [J]. Acta Chem. Scand.,1961,15:893-902.
    [111]Toman K. The structure of Ni2Si [J]. Acta Crystall.,1952,5(3):329-331.
    [112]Cenzual K, Gelato L M, Penzo M, et al. Inorganic structure types with revised space groups. Ⅰ[J]. Acta Crystall. B,1991,47(4):433-439.
    [113]Frank K, Schubert K. Kristallstruktur von Ni31Si12 [J]. Acta Crystall. B,1971, 27(5):916-920.
    [114]Oya Y, Suzuki T. The nickel-rich portion of the Ni-Si phase diagram [J]. Z. Metallkd.,1983,74(1):21-24.
    [115]Bhan S, Kudielka H. Ordered bcc-phases at high temperatures in alloys of transition metals and B-subgroup elements [J]. Z. Metallkd.,1978,69(5): 333-336.
    [116]梁建烈.Zn-Mn-Ni-Sn-Si体系关键三元系的相平衡与晶体结构研究[D].长沙:中南大学,2011.
    [117]Kuz'ma Y B, Gladyshevskii E I, Cherkashin E E. The Mn-Ni-Si System [J]. Russ. J. Inorg. Chem.,1964,9(8):1028-1031.
    [118]Gladyshevskii E I, Kripyakevich P I, Kuz'ma Y B, et al. New representatives of structures of Mg6Cu16Si7 and Th6Mn23 [J]. Sov. Phys. Cryst.,1962,6:615-616.
    [119]Cherkashin Y Y, Gladyshevskiy Y I, Kripyakevich P I, et al. Rentgeno-strukturnoe issledovanie nekotorykh sistem perekhodnykh metallov [J]. J. Inorg.Chem. USSR,1958,3:650-653.
    [120]Jeitschko W, Jordan A G, Beck P A. V and E phases in ternary systems with transition elements and silicon or germanium [J]. Trans. Met. Soc. AIME,1969, 245(2):335-339.
    [121]Kuz'ma Y B, Cherkashin E E. Crystal structure of the compound MnNi1.55Si0.45 [J]. Dopovidi A. kad. Nauk Ukr, RSR,1960,10:1413-1416.
    [122]Kuz'ma Y B. Mn based solid solutions in the Mn-Co(Ni)-Si systems [J]. Russ. J. Inorg. Chem.,1962,7(6):691-694.
    [123]Bardos D I, Malik R K, Spiegel F X, et al. Beta-manganese phases in ternary systems of transition elements with Si, Ge or Sn [J]. Trans. Met. Soc. AIME, 1966,236(1):40-48.
    [124]Shoemaker C B, Shoemaker D P, Hopkins T E, et al. Refinement of the structure of β-manganese and of a related phase in the Mn-Ni-Si system [J]. Acta Crystall. B,1978,34(12):3573-3576.
    [125]Gokcen N A. The Mn-Ni (Manganese-Nickel) System [J]. J. Phase Equilib., 1991,12(3):313-321.
    [126]Dourdine A. On the manganese-nickel alloys [J]. Rev. Metall.,1932,29: 507-518 and 565-573.
    [127]Koster W, Rauscher W. The relation between the modulus of elasticity and chemical composition of some binary alloys [J]. Z.Metallkd.,1948,39: 111-120.
    [128]Kurnakov N N, Troneva M Y. Investigation of the system manganese-nickel [J]. Dokl. Akad. Nauk SSSR,1949,68:73-76.
    [129]Coles B R, Hume-Rothery W. The equilibrium diagram of the system nickel-manganese [J]. J. Inst. Metals,1951,80:85-88.
    [130]Eremenko V N, Shtepa T D. Equilibrium diagram of the system manganese-nickel [J]. Ukrain. Khim. Zhur,1952,18:219-231.
    [131]Eremenko V N, Skuratovoskaya V I. The effect of addition of nickel on polymorphic changes of Manganese [J]. Ukr. Khim. Zh.,1952,18:213-218.
    [132]Hellawell A, Hume-Rothery W. The constitution of alloys of iron and manganese with transition elements of the first long period [J]. Philos. Trans. R. Soc. A,1957,249(968):417-459.
    [133]Hahn R, Kneller E. Magnetic properties and order structure of nickel-manganese alloys. II. Changes of properties in single crystals by plastic deformation [J]. Z. Metallkd.,1958,49:480-488.
    [134]Tsiuplakis K E, Kneller E. Manganese-Nickel Phase Diagram [J]. Z. Metallkd., 1969,60(5):433-438.
    [135]Coles B R. The equiatomic region of the Mn-Ni system [J]. J. Phase Equilib., 1995,16(2):108-109.
    [136]Ding L, Ladwig P F, Yan X, et al. Thermodynamic stability and diffusivity of near-equiatomic Ni-Mn alloys [J]. Appl. phys. lett.,2002,80(7):1186-1188.
    [137]Ding L. Experimental Investigation of Phase Equilibria and Interdiffusion Coefficients in Ni-Mn System [D]. Wisconsin:Uniersity of Wisconsin-Madison,2001.
    [138]Miettinen J. Thermodynamic solution phase data for binary Mn-based systems [J]. CALPHAD,2001,25(1):43-58.
    [139]Guo C P, Du Z M. Thermodynamic optimization of the Mn-Ni system [J]. Intermetallics,2005,13(5):525-534.
    [140]Franke P. An assessment of the ordered phases in Mn-Ni using two-and four-sublattice models [J]. Int. J. Mat. Res.,2007,98(10):954-960.
    [141]刘树红.铝合金有序-无序相变、相图拓扑关系及其在凝固过程中的应用 [D].长沙:中南大学,2010.
    [142]Gokhale A B, Abbaschian R. The Mn-Si (Manganese-Silicon) system [J]. Bull. Alloys Phase Diagrams,1990,11(5):468-480.
    [143]Vogel R, Bedarff H. The state diagram of manganese-silicon [J]. Arch. Eisenhiittenwes.,1933-1934,7(423-425.
    [144]Wieser P F, Forgeng W D. Phase relationships in manganese-silicon alloys containing from 2 to 24 at.% Si [J]. Trans. Metall. Soc. AIME,1964,230: 1675-1681.
    [145]Batalin G I, Sudavtsova V S. Thermodynamic properties of melts of the system Mn-Si [J]. Izvest. Akad. Nauk SSSR Neorg. Mater.,1975,11(10):1782-1787.
    [146]Okamoto H. Mn-Si (Manganese-Silicon) [J]. J.phase equilib.,1991,12(4):505-507.
    [147]Zaitsev A I, Zemchenko M A, Mogutnov B M. Phase equilibria in the manganese-silicon (MnSi-Si) system [J]. Izv. Akad. Nauk SSSR, Met.,1990,1: 207-212.
    [148]Zaitsev A I, Zemchenko M A, Mogutnov B M. Phase equilibria in the manganese-silicon (Mn9Si2-MnSi) system [J]. Izv. Akad. Nauk SSSR, Met., 1990,2:193-196.
    [149]Chakraborti N, Lukas H L. Calculation and optimization of the Mn-Si phase diagram [J]. CALPHAD,1989,13(3):293-300.
    [150]Chevalier P Y, Fischer E, Rivet A. A thermodynamic evaluation of the Mn-Si system [J]. CALPHAD,1995,19(1):57-68.
    [151]Tibballs J E:in COST 507-Thermochemical Database for Light Metal Alloys [J]. Ansara I, Dinsdale A T, Rand M H, eds., European Commission, Luxembourg, 1998,2:236-240.
    [152]Krendelsberger N, Weitzer F, Schuster J C. On the constitution of the system Al-Mn-Si [J]. Metall. Mater. Trans. A,2002,33(11):3311-3319.
    [153]Du Y, Jin Z P, Huang B Y, et al. A thermodynamic description of the Al-Mn-Si system over the entire composition and temperature ranges [J]. Metall. Mater. Trans. A,2004,35(5):1613-1628.
    [154]Nash P, Nash A. The Ni-Si (Nickel-Silicon) system [J]. Bull. Alloys Phase Diagrams,1987,8(1):6-14.
    [155]Guertler W, Tammann G. The silicides of nickel [J]. Z. Anorg. Chem.,1906,49: 93-112.
    [156]Iwase K, Okamoto M. The equilibrium diagram of the system Ni-Si [J]. Sci. Rep. Tohoku Imp. Univ., K. Honda Anniv.,1936,772-779.
    [157]Okamoto M. On the nature of the transformation of the (3 phase and its solubility in a Phase in nickel-silicon alloys [J]. Nippon Kinzoku Gakkai-Shi, 1938,2:544-551.
    [158]Osawa A, Okamoto M. An X-ray analysis of alloys of the nickel-silicon system [J]. Sci. Repts,1939,27:326-347.
    [159]Forsyth A C, Dowdell R L. The cobalt-nickel-silicon system between 0 and 20 percent silicon [J]. Trans. AIME,1940,137:373-387.
    [160]Aalberts J H, Verheijke M L. The solid solubility of nickel in silicon determined by neutron activation analysis [J]. Appl. Phys. Lett.,1962,1(1):19-20.
    [161]Yamaguchi Y, Yoshida M, Aoki H. Solid solubility of nickel in silicon determined by use of 63Ni as a tracer [J]. Jpn. J. Appl. Phys.,1963,2(11): 714-718.
    [162]Badtiev E B, Petrushkova O S, Panteleimonov L A. Nickel-Silicon system alloys [J]. Vestn. Mosk. Univ., Khim.,1974,15(3):367-368.
    [163]Kaufman L. Coupled phase diagrams and thermochemical data for transition metal binary systems-VI [J]. CALPHAD,1979,3(1):45-76.
    [164]Mey S. A Thermodynamic evaluation of the Ni-Si system [J]. Z. Metallkd., 1986,77(12):805-810.
    [165]Lindholm M, Sundman B. A thermodynamic evaluation of the nickel-silicon system [J]. Metall. Mater. Trans. A,1996,27(10):2897-2903.
    [166]Du Y, Schuster J C. Experimental investigations and thermodynamic descriptions of the Ni-Si and C-Ni-Si systems [J]. Metall. Mater. Trans. A, 1999,30(9):2409-2418.
    [167]Tokunaga T, Nishio K, Ohtani H, et al. Thermodynamic assessment of the Ni-Si system by incorporating ab initio energetic calculations into the CALPHAD approach [J]. CALPHAD,2003,27(2):161-168.
    [168]Lebaili S, Thibault S H. Solid state transformations during cooling in the nickel-rich portion of the nickel-silicon system [J]. Z. Metallkd.,1984,75(10): 764-770.
    [169]Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d transition metal silicides by high temperature direct synthesis calorimetry [J]. J. Alloys Compd.,1998,267(1):128-135.
    [170]Gupta K P. The Mn-Ni-Si (Manganese-Nickel-Silicon) System [J]. J. Phase Equilib.,2006,27(5):529-534.
    [171]Zanchuk W. The use of tafaloy 45CT, an Ni-Cr-Ti alloy, as an arc sprayed corrosion barrier in high temperature sulfurous environments [J]. Surf. Coat. Technol.,1989,39:65-69.
    [172]Li S J, Zhou Y, Duan H P, et al. Joining of SiC ceramic to Ni-based superalloy with functionally gradient material fillers and a tungsten intermediate layer [J]. J. Mater. Sci.,2003,38(19):4065-4070.
    [173]Navinsek B. Ni-Cr-Ti protective coating [J]. Surf. Coat. Technol.,1993,60(1): 603-608.
    [174]Voss G. The chromium-nickel alloys [J]. Z. Anorg. Chem.,1908,57:58-61.
    [175]Nash P. The Cr-Ni (chromium-nickel) system [J]. Bull. Alloys Phase Diagrams, 1986,7(5):466-476.
    [176]Jette E R, Nordstrom V H, Queneau B, et al. X-ray studies on the nickel-chromium system [J]. Am. Inst. Mining Met. Eng., Inst. Met. Div., Tech. Pub.,1934,111:361-371.
    [177]Jenkins C H M, Bucknall E H, Austin C R, et al. Some alloys for use at high temperatures. Part IV:The constitution of the alloys of nickel, chromium and iron [J]. J. Iron and Steel Inst.,1937,136:187-220.
    [178]Baer H G. Superstructure and K-state in the Cr-Ni system [J]. Z. Metallkd., 1958,49:614-622.
    [179]Svechnikov V N, Pan V M. On Transformations in the Cr-Ni System [J]. Dop. Akad. Nauk Ukr. RSR,1960,7:917-920.
    [180]Bechtoldt C J, Vacher H C. Redetermination of the chromium and nickel solvuses in the chromium-nickel system [J]. Trans. Met. Soc. AIME,1961,221: 14-18.
    [181]Svechnikov V N, Pan V M. Characteristics of the equilibrium siagram and processes of solution and precipitation in the Cr-Ni system [J]. Sb. Nauchn. Rabot. Inst. Metallofiz., Akad. Nauk. Ukr. SSR.,1962,15:164-178.
    [182]Karmazin L. Lattice parameter studies of structure changes of Ni-Cr alloys in the region of Ni2Cr [J]. Mater. Sci. Eng.,1982,54(2):247-256.
    [183]Du Y, Schuster J C. Experimental investigation and thermodynamic modeling of the Ni-Ti-C system [J]. Z.Metallkd.,1998,89(6):399-410.
    [184]Schuster J C, Du Y. Thermodynamic description of the system Ti-Cr-C [J]. CALPHAD,1999,23(3):393-408.
    [185]Schuster J C, Du Y. Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system [J]. Metall. Mater. Trans. A,2000,31(7):1795-1803.
    [186]Du Y, Schuster J C, Seifert H J, et al. Experimental investigation and thermodynamic calculation of the titanium-silicon-carbon system [J]. J. Am. Ceram. Soc.,2000,83(1):197-203.
    [187]Du Y, Schuster J C, Perring L. Experimental investigation and thermodynamic description of the constitution of the ternary system Cr-Si-C [J]. J. Am. Ceram. Soc.,2000,83(8):2067-2073.
    [188]Du Y, Schuster J C. Experimental investigation and thermodynamic description of the Cr-Si-Ti system [J]. Scand. J. Metall.,2002,31(1):25-33.
    [189]Lee B J. On the stability of Cr carbides [J]. CALPHAD,1992,16(2):121-149.
    [190]Murray J L. The Cr-Ti (chromium-titanium) system [J]. Bull. Alloys phase diagrams,1981,2(2):174-181.
    [191]Murray J L. The Cr-Ti (chromium-titanium) system [J]. in Phase Diagrams of Binary Titanium Alloys, J.L. Murray, ed., ASM International, Metals Park, OH, 1987,68-78.
    [192]Molokanov V V, Budberg P B, Alisova S P. Phase diagram of the Ti-Cr system [J]. Dokl. Akad. Nauk SSSR,1975,223(5):1184-1186.
    [193]Kaufman L, Nesor H. Coupled phase diagrams and thermochemical data for transition metal binary systems-I [J]. CALPAHD,1978,2(1):55-80.
    [194]Saunders N. System Cr-Ti [J]. in Thermochemical database for light metal alloys, I. Ansara, ed., European Commission, Brussels,1994,103-105.
    [195]Lee J Y, Kim J H, Park S I, et al. Phase equilibrium of the Ti-Cr-V ternary system in the non-burning β-Ti alloy region [J]. J. Alloys Compd.,1999, 291(1):229-238.
    [196]Zhuang W D, Shen J Y, Liu Y Q, et al. Thermodynamic optimization of the Cr-Ti system [J]. Z. Metallkd.,2000,91(2):121-127.
    [197]Ghosh G. Thermodynamic and kinetic modeling of the Cr-Ti-V system [J]. J. Phase Equilib.,2002,23(4):310-328.
    [198]Pavlu J, Vrestal J, Sob M. Thermodynamic modeling of Laves phases in the Cr-Hf and Cr-Ti systems:Reassessment using first-principles results [J]. CALPHAD,2010,34:215-221.
    [199]Murray J L. Ni-Ti (nickel-titanium) [J]. in:P. Nash (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International,1991,342-355.
    [200]Kaufman L, Nesor H. Coupled phase diagrams and thermochemical data for transition metal binary systems-II [J]. CALPHAD,1978,2(1):81-108.
    [201]Murray J L. Phase diagrams of binary titanium alloys [M]. ASM International, 1987.
    [202]Liang H Y, Jin Z P. A reassessment of the Ti-Ni system [J]. CALPHAD,1993, 17(4):415-426.
    [203]Saunders N. Ni-database [J]. Thermo Tech Ltd, Guildford,1995,
    [204]Bellen P, Hari Kumar K C, Wollants P. Thermodynamic assessment of the Ni-Ti phase diagram [J]. Z. Metallkd.,1996,87(12):972-978.
    [205]Tang W, Sundman B, Sandstrom R, et al. New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system [J]. Acta Mater., 1999,47(12):3457-3468.
    [206]De Keyzer J, Cacciamani G, Dupin N, et al. Thermodynamic modeling and optimization of the Fe-Ni-Ti system [J]. CALPHAD,2009,33(1):109-123.
    [207]De Keyzer J. Thermodynamic modeling of the Fe-Ni-Ti system:a multiple sublattice approach [D]. Belgium:Katholieke Universiteit Leuven,2008.
    [208]Taylor A, Floyd R W. The constitution of nickel-rich alloys of the nickel-chromium-titanium system [J]. J. Inst. Metals,1951-1952,80:577-587.
    [209]Kornilov I I, Kosmodem'yansky V V. [J]. Izv. Akad. Nauk SSSR,1955,90-97.
    [210]Kaufman L, Nesor H. Calculation of superalloy phase diagrams. I [J]. Met. Trans.,1974,5(7):1617-1621.
    [211]Nartova T T, Mogutova T V, Volkova M A, et al. Phase equilibriums and corrosion stability of Ti-Ni-Cr alloys [J]. Izv. Akad. Nauk SSSR, Metall.,1988, 3:182-184.
    [212]Xu H H, Jin Z P. The determination of the isothermal section at 1200 K of the Cr-Ni-Ti phase diagram [J]. Scripta Mater.,1997,37(2):147-150.
    [213]Tan Y H, Xu H H, Du Y. Isothermal section at 927℃ of Cr-Ni-Ti system [J]. Nonferrous Met. Soc. China,2007,17(4):711-714.
    [214]van Beek J A, Kodentsov A A, Van Loo F J J. Phase equilibria in the Ni-Cr-Tii system at 850℃[J]. J. Alloys Compd.,1998,270(1):218-223.
    [215]Haour G, Mollard F, Lux B, et al. New eutectics based on Fe, Co and Ni.Ⅲ-Results obtained for Ni-base alloys [J]. Z. Metallkd.,1978,69:149-154.
    [216]Krendelsberger N, Weitzer F, Du Y, et al. Constitution of the ternary system Cr-Ni-Ti [J]. J. Alloys Compd.,2013,575:48-53.
    [217]Isomaki I, Hamalainen M, Gasik M. Thermodynamic assessment of the ternary Ni-Ti-Cr system [J]. J. Alloys Compd.,2012,543:12-18.
    [218]Kusoffsky A, Dupin N, Sundman B. On the compound energy formalism applied to fee ordering [J]. CALPHAD,2001,25(4):549-565.
    [219]Dupin N, Sundman B, Modeling of the bcc ordering using the sublattice formalism, in thermodynamics of alloys TO FA.2004, Sep.12-17, Austria.
    [220]Vogel R, Wallbaum H S. [J]. Z. Metallkd.,1941,33:376.
    [221]Margolin H, Ence E, Nielsen J P. Titanium-nickel phase diagram [J]. Trans. AIME,1953,197:243-247.
    [222]Poole D M, Hume-Rothery W. The equilibrium diagram of the system nickel-titanium [J]. J. Inst. Met.,1955,83:473-480.
    [223]Purdy E R, Gordon Parr J. [J]. Trans. AIME,1961,221:636-639.
    [224]Bastin G F, Rieck G D. Diffusion in the titanium-nickel system:I. occurrence and growth of the various intermetallic compounds [J]. Metall. Mater. Trans. B, 1974,5(8):1817-1826.
    [225]Jia C C, Ishida K, Nishizawa T. Partition of alloying elements between y (Al), γ'(L12), and β(B2) phases in Ni-Al base systems [J]. Metall. Mater. Trans. A, 1994,25(3):473-485.
    [226]Colinet C, Pasturel A. Thermodynamics of the nickel-titanium system:A tight-binding-bond approach [J]. Physica B,1993,192(3):238-246.
    [227]Gachon J C, Notin M, Hertz J. The enthalphy of mixing of the intermediate phases in the systems FeTi, CoTi, and NiTi by direct reaction calorimetry [J]. Thermochim. Acta,1981,48(1):155-164.
    [228]Kubaschewski O, Villa H, Dench W A. The reaction of titanium tetrachloride with hydrogen in contact with various refractories [J]. Trans. Faraday Soc., 1956,52:214-222.
    [229]Gomozov P A, Zasypalov Y V, Mogutnov B M. Enthalpies of formation of intermetal compounds with the CsCl (CoTi, CoZr, CoAl, NiTi) structure [J]. Russ. J. Phys. Chem.,1986,60:1122-1124.
    [230]Gulliver G H. The quantitative effect of rapid cooling upon the constitution of binary alloys [J]. J. Inst. Met.,1913,9(1):120-157.
    [231]Scheil E. Unbroken series of solid solutions in the binary systems of the elements [J]. Z. Metallkd.,1942,34:242-246.
    [232]Du Y, Schuster J C, Liu Z K, et al. A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments [J]. Intermetallics,2008,16(4): 554-570.
    [233]Eleno L, Vezely J, Sundman B, et al. Assessment of the Al corner of the ternary Al-Fe-Si system [J]. Mater. Sci. Forum,2010,649:523-528.
    [234]Ansara I, Dinsdale A T, Rand M H:Thermochemical Database for Light Metal Alloys. Vol.2. ed. (Office for Official Publications of the European Communities, Luxembourg).1998.
    [235]Seierstein M:Al-Fe, in COST 507-Thermochemical Database for Light Metal Alloys. Vol.2. ed. by Ansara I, Dinsdale A T, Rand M H (Office for Official Publications of the European Communities, Luxembourg).1998,34-39.
    [236]Liang P, Su H L, Donnadieu P, et al. Experimental investigation and thermodynamic calculation of the central part of the Mg-Al phase diagram [J]. Z. Metallkd.,1998,89(8):536-540.
    [237]Tibballs J:Fe-Mg, in COST 507-Thermochemical Database for Light Metal Alloys. Vol.2. ed. by Ansara I, Dinsdale A T, Rand M H (Office for Official Publications of the European Communities, Luxembourg).1998,195-196.
    [238]Servant C, Sundman B, Lyon O. Thermodynamic assessment of the Cu-Fe-Ni system [J]. CALPHAD,2001,25(1):79-95.
    [239]Lacaze J, Sundman B. An assessment of the Fe-C-Si system [J]. Metall. Mater.Trans. A,1991,22(10):2211-2223.
    [240]Jacobs M H G, Spencer P J. A critical thermodynamic evaluation of the system Mg-Ni [J]. CALPHAD,1998,22(4):513-525.
    [241]Kevorkov D, Schmid-Fetzer R, Zhang F. Phase equilibria and thermodynamics of the Mg-Si-Li system and remodeling of the Mg-Si system [J]. J. Phase Equilib.,2004,25(2):140-151.
    [242]Zhang L J, Wang J, Du Y, et al. Thermodynamic properties of the Al-Fe-Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD [J]. Acta Mater.,2009,57(18):5324-5341.
    [243]Du Y, He C Y. Thermodynamic modeling of the Al-Mg-Ni system [J]. unpublised work,2008,
    [244]Feufel H, Godecke T, Lukas H L, et al. Investigation of the Al-Mg-Si system by experiments and thermodynamic calculations [J]. J. Alloys Compd.,1997, 247(1):31-42.
    [245]Xiong W, Du Y, Hu R X, et al. Construction of the Al-Ni-Si phase diagram over the whole composition and temperature ranges:thermodynamic modeling supported by key experiments and first-principles calculations [J]. Int. J. Mater. Res.,2008,99(6):598-612.
    [246]Wang P S, Zhao J R, Du Y, et al. Experimental investigation and thermodynamic calculation of the Fe-Mg-Mn and Fe-Mg-Ni systems [J]. Int. J. Mater. Res.,2011,102(1):6-16.
    [247]Du Y, Zhao J R, Zhang C, et al. Thermodynamic modeling of the Fe-Mg-Si system [J]. J. Min. Metall. Sect. B-Metall.,2007,43(1):39-56.
    [248]潘竹.多元铝合金相图拓扑关系的理论和实验研究[D].长沙:中南大学,2007.
    [249]Belov N A, Aksenov A A, Eskin D G. Iron in aluminum alloys:impurity and alloying element [M]. Taylor & Francis,2002.
    [250]Wang F, Xiong B Q, Zhang Y G, et al. Microstructure characterization of an Al-Cu-Mg alloys containing Fe and Ni [J]. J. Alloys Compd.,2009,487:445-449.
    [251]Gusev A Y. Moscow Institute of Steels and Alloys [D]. Russian:1994.
    [252]Belov N A. Moscow Institute of Steels and Alloys [D]. Russian:1995.
    [253]Hao D, Hu B, Zhang K, et al. The quaternary Al-Fe-Ni-Si phase equilibria in Al-rich corner:Experimental measurement and CALPHAD modeling [J]. J. Mater. Sci.,2013, under review.
    [254]Phillips H W L. The constitution of alloys of aluminum with magnesium, silicon and iron [J]. J. Inst. Met.,1946,72:151-227.
    [255]Guldin I T, Dokukina N V. The aluminum-magnesium-iron-silicon system [J]. Zhur. Neorg. Khim.,1958,3:799-814.
    [256]Barlock J G, Mondolfo L F. Structure of some aluminum-iron-magnesium-manganese-silicon alloys [J]. Z. Metallkd.,1975,66(10):605-611.
    [257]Backerud L, Chai G, Tamminen J. Solidification characteristics of aluminum alloys. Vol.2, Foundry Alloys [M]. Sweden:American Foundrymen's Society, Inc.,1990.
    [258]Krendelsberger R, Rogl P, Leithe-Jasper A, et al. Refinement of the crystal structure π-Al9FeMg3Si5 [J]. J.Alloys Compd.,1998,264(1):236-239.
    [259]Foss S, Olsen A, Simensen C J, et al. Determination of the crystal structure of the π-AlFeMgSi phase using symmetry-and site-sensitive electron microscope techniques [J]. Acta Cryst. B,2003,59(1):36-42.
    [260]Daniel S L. Thermodynamic modeling and experimental investigation of the aluminum-iron-magnesium-silicon quaternary alloy system [D]. USA: University of Wisconsin-Madison,2001.
    [261]Du Y, Chang Y A, Liu S H, et al. Thermodynamic description of the Al-Fe-Mg-Mn-Si system and investigation of microstructure and microsegregation during directional solidification of an Al-Fe-Mg-Mn-Si alloy [J]. Z.Metallkd.,2005,96(12):1351-1362.
    [262]Belov N A. Structure and mechanical properties of eutectic alloys [J]. Russ. Metall.,1993,5:101-105.
    [263]Tathgar H S. Solubility of nickel in Mg-Al, Mg-Al-Fe, and Mg-Al-Mn systems [D]. Norwegian:Norwegian University of Science and Technology,2001.
    [264]Kula A, Blaz L, Sugamata M. Microstructure and mechanical properties of rapidly solifified Al-Fe-Ni-Mg alloys [J]. Mater. Sci. Forum,2011,674: 165-170.
    [265]Belov N A, Eskin D G, Avxentieva N N. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys [J]. Acta Mater.,2005,53(17):4709-4722.
    [266]Pontevichi S, Bosselet F, Barbeau F, et al. Solid-liquid phase equilibria in the Al-Fe-Si system at 727℃[J]. J. Phase Equilib.,2004,25(6):528-537.
    [267]Pontevichi S, Bosselet F, Peronnet M, et al. Stabilite thermique de la phase βAlFeSi dans le systeme ternaire Al-Fe-Si [J]. J. Phys. IV France,2004,113: 81-84.
    [268]Pontevichi S, Bosselet F, Dezellus O, et al. Chimie d'interface du couple fer/alliage Al-Si (13.5% Si):aspects theoriques et appliques [J]. J. Phys. IV France,2004,122:75-80.
    [269]Krendelsberger N, Weitzer F, Schuster J C. On the reaction scheme and liquidus surface in the ternary system Al-Fe-Si [J]. Metall. Mater. Trans. A,2007,38(8): 1681-1691.
    [270]Stefaniay V, Griger A, Turmezey T. Intermetallic phases in the aluminium-side corner of the AlFeSi-alloy system [J]. J. Mater. Sci.,1987,22(2):539-546.
    [271]Zakharov A M, Gul'din I T, Arnol'd A A, et al. Phase diagram of the aluminum-silicon-iron system in the concentration range 10-14% Si and 0-3% Fe [J]. Russ. Metall.,1988,3:178-181.
    [272]Gilgien P. [D]. Lausanne:EPFL,1996.
    [273]Liu Z K, Chang Y A. Thermodynamic assessment of the Al-Fe-Si system [J]. Metall. Mater. Trans. A,1999,30(4):1081-1095.
    [274]Takeda S, Mutuzaki K. The equilibrium diagram of the Fe-Al-Si system [J]. Tetsu to Hagane,1940,26:335-361.
    [275]Chumak I, Richter K W, Ipser H. The Fe-Ni-Al phase diagram in the Al-rich (> 50 at.% Al) corner [J]. Intermetallics,2007,15(11):1416-1424.
    [276]Schrader A, Haneman H. The aluminium-rich region of the system aluminium-iron-nickel [J]. Aluminium,1943,25(10):339-342.
    [277]Phillips H W L. The constitution of the aluminium rich alloys of the aluminium-nickel-iron and aluminium-nickel-silicon systems [J]. J. Inst. Met., 1942,68:27-46.
    [278]Zhang L J, Du Y, Xu H H, et al. Phase equilibria of the Al-Fe-Si system at 850 ℃ and 627℃ [J]. J. Alloys Compd.,2008,454(1):129-135.
    [279]Mondolfo L F. Aluminum alloys:structure and properties [M]. Butterwoths, London:1976.
    [280]Saunders N:Al-Cu, in COST 507-Thermochemical Database for Light Metal Alloys. Vol.2. ed. by Ansara I, Dinsdale A T, Rand M H (Office for Official Publications of the European Communities, Luxembourg).1998,28-33.
    [281]Ansara I, Jansson A:Cu-Fe, in COST 507-Thermochemical Database for Light Metal Alloys. Vol.2. ed. by Ansara I, Dinsdale A T, Rand M H (Office for Official Publications of the European Communities, Luxembourg).1998, 165-167.
    [282]Coughanowr C A, Ansara I, Luoma R, et al. Assessment of the Cu-Mg system [J]. Z. Metallkd.,1991,82(7):574-581.
    [283]an Mey S, Aachen R W T H. Thermodynamic re-evaluation of the Cu-Ni system [J]. CALPHAD,1992,16(3):255-260.
    [284]Chen H L, Du Y, Xu H H, et al. Experimental investigation and thermodynamic modeling of the ternary Al-Cu-Fe system [J]. J. Mater. Res,2009,24(10): 3154-3164.
    [285]Jantzen T, Fries S G, Hurtado I, et al.:in COST 507-Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys. Vol.1. ed. by Ansara I, Effenberg G (Office for Official Publications of the European Communities, Luxembourg).1997, 73-82.
    [286]Xiong W, Du Y, Zhang W W, et al. Thermodynamic reassessment of the Cu-Mg-Ni system with brief comments on the thermodynamic modeling of the sub-systems [J]. CALPAHD,2008,32(4):675-685.
    [287]Raynor G V, Ward B J. Aluminium-rich alloys of the quateranry system aluminium-iron-coper-nickel [J]. J. Inst. Met.,1957,86:135-144.
    [288]Watanabe H, Sato E. Phase diagrams of Aluminum-base systems [J]. J. Jpn. Inst. Light Met.,1969,19(11):499-535.
    [289]Nishimura H. Properties and aging of Y alloy [J]. Japan Nickle Review,1940, 8(1):8-21.
    [290]Oguocha I N A, Yannacopoulos S. Precipitation and dissolution kinetics in Al-Cu-Mg-Fe-Ni alloy 2618 and Al-alumina particle metal matrix composite [J]. Mater. Sci. Eng. A,1997,231(1):25-33.
    [291]Yu K, Li S R, Li W X. Recrystallization behavior in an Al-Cu-Fe-Mg-Ni alloys with trace scandium and zirconium [J]. Mater. Trans., JIM,2000,41(2): 358-361.
    [292]Yan M, Luo W, Wu Z T. Microstructure of as-melt spun Al-Cu-Mg-Fe-Ni alloy and its variation in continuous heat treatment [J]. J. Zhejiang University-Science A,2001,2(2):121-127.
    [293]Wang J H, Yi D Q, Wang B. Microstructural and properties of 2618-Ti heat resistant aluminum alloy [J]. Trans. Nonferr. Met. Soc. China,2003,13: 590-594.
    [294]Wang J H, Yi D Q. Preparation and properties of alloy 2618 reinforced by submicron AlN particles [J]. J. Mater. Eng. Perform.,2006,15(5):596-600.
    [295]Wang G J, Xiong B Q, Zhang Y A, et al. Elevated temperature endurance and creep properties of extruded 2D70 Al alloy rods [J]. Rare Met.,2011,30(3): 310-315.
    [296]Wang G J, Xiong B Q, Zhang Y A. Microstructural evolution during creep of a hot extruded 2D70Al-alloy [J]. J. Mater. Sci.,2011,46(15):5090-5096.
    [297]Du Z W, Wang G J, Han X L, et al. Microstructural evolution after creep in aluminum alloy 2618 [J]. J. Mater. Sci.,2012,47:2541-2547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700