黄芩苷对Ⅱ型核糖体失活蛋白活性的抑制作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核糖体失活蛋白家族是一类广泛存在于植物和细菌中的蛋白毒素,从蓖麻中提取的蓖麻毒素是一种蛋白类毒素,与大肠杆菌分泌的志贺样毒素都隶属于核糖体失活蛋白(RIPs)家族,是存在于自然界中的最强的毒素之一。它们都由两个亚基组成,A亚基具有N-糖苷酶活性,能从第4324位腺嘌呤处切断RNA,导致蛋白质翻译的停止从而引起细胞死亡;B亚基参与蛋白与细胞受体的结合。蓖麻毒素提取工艺简单、中毒剂量低,是一种潜在的生物恐怖武器,对公众的安全存在潜在的威胁。
     产志贺毒素大肠杆菌(STEC)是一种常见的革兰氏阴性致病菌,是一种重要的人兽共患致病菌,可以导致动物和人的多种疾病。肠出血性大肠杆菌(EHEC)O157:H7是典型代表菌株,可以引起多种严重疾病,如出血性肠炎(HC)、急性溶血性尿毒综合征(HUS)等,严重威胁人类健康。尽管O157:H7感染不推荐用抗生素进行治疗,但临床中分离的菌株对多种抗生素有耐药性,尤其对磺胺类和四环素类抗菌药物的耐药较为常见。由于受到耐药性的限制和抗生素治疗的局限性导致临床中对O157:H7感染的治疗面临无药可用的局面,因此,临床急需开发新的抗O157:H7感染的药物。志贺样毒素(Stxs)是STEC分泌的主要毒力因子,其中II型志贺毒素(Stx2)毒性较强,是引起人HC和HUS的物质基础。传统抗生素以杀菌或抑菌为目的,作用后导致菌体裂解大量的毒素释放到体内,不仅对疾病没有治疗作用还会加重患者的症状,提高死亡的风险。因此,近年来对抗STEC感染的药物研发从抑菌转变为抑制菌体主要毒力因子表达和活性,Stx2作为STEC最重要的毒力因子,有望成为抗大肠杆菌感染药物开发的靶标。
     由于Stxs和蓖麻毒素的强毒性,因此研究中和Stxs和蓖麻毒素活性的化合物或抗体成为目前的研究热点。目前抗体研究已经取得了显著的进展,已经研发出有20余种可以中和志贺毒素和蓖麻毒素活性的抗体,然而小分子抑制剂却没有太大进展,多数小分子对动物模型没有保护作用。中草药的使用在我国有悠久的历史,在治疗感染性疾病和中毒性疾病中也有广泛的应用。尤其在近年来细菌耐药性高发的后抗生素时代,中草药治疗感染性疾病的应用将丰富感染性疾病治疗的内容。我国中草药资源丰富,所含化学成分复杂多样,是未来药物开发的天然宝库。
     本研究以金葡菌α-溶血素为靶标,筛选能抑制其活性的小分子,发现千层纸素A能通过抑制寡聚化而抑制α-溶血素的活性,进一步应用分子对接技术发现千层纸素A和类似物黄芩苷能与EHEC O157:H7分泌的Stx2结合。因此以Stx2和蓖麻种子中分离的蓖麻毒素为靶标,从清热解毒类中药主要化学成分中筛选能抑制两种毒素的天然化合物。首先通过基因克隆、原核表达和纯化得到了纯度高的重组II型志贺毒素,通过硫酸铵沉淀和亲和层析从蓖麻种子中提取到了蓖麻毒素蛋白;将得到的蛋白分别通过对Hela细胞的毒性作用、对体外蛋白质翻译的抑制作用和对小鼠的致死作用评价了其生物学活性。从细胞水平研究了9种受试化合物对Stx2和蓖麻毒素引起的Hela细胞的细胞毒性的保护作用,结果发现从中药黄芩中提取的黄芩苷对Stx2和蓖麻毒素引起的Hela细胞死亡有保护作用。进一步通过无细胞蛋白质翻译系统研究发现,黄芩苷对由两种毒素引起的萤火虫荧光素酶合成的抑制有恢复作用,且呈现剂量依赖性,该结果提示黄芩苷可能直接抑制了毒素的活性而发挥作用。
     通过腹腔注射纯化的重组Stx2和蓖麻毒素建立了小鼠急性溶血性尿毒综合征模型和小鼠蓖麻毒素中毒模型,考察给予黄芩苷后对小鼠模型的治疗作用。结果显示,黄芩苷治疗后两个小鼠模型的存活率显著提高;对由Stx2引起的小鼠体重下降有显著的恢复作用;小鼠血清中尿素和肌酐的含量显著下降,提示对肾功能下降有改善作用;组织病理学研究发现小鼠给予黄芩苷后肾小球肿胀减轻,没有管型出现,肾小管上皮细胞脱落减轻;肾组织细胞因子分析发现,黄芩苷治疗后小鼠肾组织中的主要炎性因子IL-1β、IL-4、IL-6、TNF-α和IFN-γ的含量显著降低。
     为了阐明黄芩苷抑制Stx2和蓖麻毒素活性的机制,我们应用结构生物学方法得到了蓖麻毒素A亚基和黄芩苷的复合物晶体,通过X射线衍射技术解析了分辨率为2.2复合物的晶体结构。根据结构信息分析发现黄芩苷促进蓖麻毒素A亚基形成聚合而失去功能,主要结合位点为R189, T190, R193, Y194, R235和R258,通过比对蓖麻毒素A亚基和II型志贺毒素A亚基的蛋白序列发现其可能的结合位点为R179, Q180, S183, E184和V218。
     为了验证结构生物学得到的结合位点,我们应用QuikChange点突变方法将结合位点做了相应的点突变,应用分析超速离心技术和体外无细胞蛋白翻译系统研究了突变体蛋白与黄芩苷的作用。结果发现,野生型蓖麻毒素A亚基加入黄芩苷后可形成大量多聚体,而突变体蛋白形成多具体显著减少。结合体外蛋白质翻译试验发现蓖麻毒素与黄芩苷的主要结合位点为R189、T190和R193;Stx2突变体与黄芩苷的主要结合位点为R179、E184和V218。
     综上所述,黄芩苷可以直接作用于Stx2和蓖麻毒素A亚基,诱导其形成寡聚体,从而抑制其活性的发挥,对Stx2引起的小鼠急性溶血性尿毒综合征和蓖麻毒素引起的中毒有治疗作用。本研究通过结构生物学阐明了黄芩苷抗Stx23和蓖麻毒素活性的作用机制,为制备抗EHEC感染和蓖麻毒素中毒药物的研发提供依据。
Ricin extracted from Ricinus communis and Stx2belong to type II ribosomeinactivating proteins (RIPs II), which is one of the most toxic toxins in the world.Both toxins are composed of A and B subunits, A subunit has N-glycosidase activitythat can cut off ribosome on the28S rRNA at the position of4324, which leads to celldeath. Ricin is easy to extract and has high toxicity, making it a potential bioterroristweapon, which can cause severe threat to the public.
     Shiga toxin-producing Escherichia Coli (STEC) is a gram-negative bacterium,which also is an important zoonotic pathogen that can cause a variety of diseases bothin animals and human. Enterohemorrhage E.Coli (EHEC) O157:H7is a typical strainof STEC that can cause severe diseases, such as hemorrhagic colitis (HC) andhemolytic uremic syndrome (HUS). EHEC O157:H7infections is becoming a seriousthreat to human health, which can cause public health problems in the world.Antibiotics are not recommended for the treatment of O157:H7infections, butantibiotics resistance was observed from strains isolated from clinic, particularresistance to tetracyclines and sulfonamides are more common. Due to the limit oftreatment with antibiotics and antibiotics resistance, there is an urgent need to identifynew antimicrobial agents to combat with these lethal infections associated withO157:H7. Shiga like toxins (Stxs) are the major virulence factors secreted by STEC.Furthermore, shiga like toxin2(Stx2) is about1000times more toxic than shiga liketoxin1(Stx1), which is considered that associated with HC and HUS. Purpose oftraditional antibiotics is bactericidal or bacteriostatic, however treatment with theseagents can increase symptoms and raise the risk of death. The strategy of developingnovel drugs against STEC infections is tuned to inhibit the expression or activity ofvirulence factors. Stx2, the major virulence factor produced by STEC, is expected tobe target of anti-STEC infections.
     Because of the high toxicity of ricin and Stxs, there is an urgent need for the development of small-molecule inhibitors or antibodies against these lethal toxins.There are more than20antibodies have been reported that can neutralize the toxicityof ricin and Stxs. Nevertheless, there is only few small-molecular inhibitors that wasdiscovered, and most of these inhibitors showed little activity in animal models.Chinese traditional herbs have been applied for thousands of years in China, whichalso play an important role in the treatment of infectious diseases. Particularly, in theage of post-antibiotic, usage of Chinese herbs can abundant the treatment of infectiousdiseases. There are thousands of herbs in our country which contain multi naturalcompounds, and therefore can be a natural source for the drug discovery in the future.
     In this study, we screened oroxylin A that can inhibit the activity of α-hemolysinsecreted by S. aureusvia inhibiting formation of oligomers. Furthermore, moleculardocking was performed and identified that oroxylin A could bind on the surface ofStx2. Then Stx2and ricin were used as target of novel drug discovery from Chineseherbs. We amplified stx2gene from EHEC O157:H7and overexpressed recombinantStx2(rStx2) using prokaryotic expression system in E. coli and isolated ricin fromcastor beans. Firstly, the biological activity of the purified toxins was evaluated byHela cells, cell-free translation assays and lethal effect to mice both in vitro and invivo.9compounds were tested for the protection of Hela cells induced by rStx2andricin, the results showed that baicalin, a flavonoid compound extracted fromScutellaria baicalensis Georgi, could protect Hela cells against rStx2and ricin,oroxylin A and baicalein only showed the activity on inhibiting the activity ofhemolysin secreted by Staphylococcus aureus. Furthermore, we found that baicalincould recover suppress of luciferase expression in a dose-dependent manner. Theseresults indicated that baicalin could inhibit the activity of thses toxins directly.
     Mice model of HUS and ricin toxication was established by injection of purifiedtoxins intraperitoneally to evaluate the therapeutical effect to these toxins. The resultsshowed that treatment with baicalin could significantly increase the survival rate ofmice in both model. Baicalin could recover the body weight loss caused by theinjection of rStx2; it could also reduce the level of blood urea nitrogen and creatininewhich indicate that can improve the renal function. Histopathological study found thatbaicalin could decrease the damage in tubules and glomerulus. Analysis of cytokines in renal tissue showed that mice treated with baicalin could significantly reduce theexpression of IL-1β, IL-4, IL-6, TNF-α and IFN-γ.
     We obtained the crystal of ricin A chain (RTA) and baicalin complex to clarify themechanism of baicalin inhibiting the activity of ricin and Stx2. The structure of thecomplex was solved by X-ray crystallography to2.2, and according to the structurebaicalin could bind to RTA and promote oligomerization of RTA which led to loss ofactivity. The main binding site was R189, T190, R193, Y194, R235and R258.Furthermore, we superimposed the structure of RTA and Stx2, and found that thepotential binding site of baicailin and Stx2which is composed of R179, Q180, S183,E184and V218.
     We performed QuikChange site Mutagenesis to obtain mutant proteins of the toxinsto verify the binding site. Then analytical ultracentrifugation and cell free translationassays were performed to investigate the effect of baicalin on mutant toxins. Theresults showed that wild type RTA could form large amount of oligomer in thepresence of baicalin compared to those mutations. Furthermore, the cell freetranslation assay showed that mutations of R189A, T190A and R193A with baicalincould still inhibit the expression of luciferase. And Stx2revealed the same tendency,R179, E184, V218served as the main binding site.
     In summary, baicalin can inhibit the activity of RTA and Stx2A by formingoligomer, baicalin can protect mice against HUS induced by Stx2and ricin toxication.Furthermore, we solved the structure of RTA-baicalin complex and clarified themechanism of baicalin. Our study will lay the development of innovative drugsofanti-EHEC infections and ricin.
引文
[1] Nielsen K., Boston R. S. RIBOSOME-INACTIVATING PROTEINS: A PlantPerspective [J]. Annu Rev Plant Physiol Plant Mol Biol,2001,52(785-816.
    [2] Olsnes S. The history of ricin, abrin and related toxins [J]. Toxicon,2004,44(4):361-70.
    [3] Stirpe F., Battelli M. G. Ribosome-inactivating proteins: progress and problems[J]. Cell Mol Life Sci,2006,63(16):1850-66.
    [4] Olsnes S., Pappenheimer A. M., Jr., Meren R. Lectins from Abrus precatorius andRicinus communis. II. Hybrid toxins and their interaction with chain-specificantibodies [J]. J Immunol,1974,113(3):842-7.
    [5] Calderwood S. B., Auclair F., Donohue-Rolfe A., et al. Nucleotide sequence ofthe Shiga-like toxin genes of Escherichia coli [J]. Proc Natl Acad Sci U S A,1987,84(13):4364-8.
    [6] Fraser M. E., Chernaia M. M., Kozlov Y. V., et al. Crystal-Structure of theHolotoxin from Shigella-Dysenteriae at2.5-Angstrom Resolution [J]. Nat StructBiol,1994,1(1):59-64.
    [7] Fraser M. E., Fujinaga M., Cherney M. M., et al. Structure of shiga toxin type2(Stx2) from Escherichia coli O157:H7[J]. J Biol Chem,2004,279(26):27511-7.
    [8] Audi J., Belson M., Patel M., et al.Ricin poisoning: a comprehensive review [J].JAMA,2005,294(18):2342-51.
    [9] Pennington H. Escherichia coli O157[J]. Lancet,2010,376(9750):1428-35.
    [10]Bielaszewska M., Mellmann A., Zhang W., et al. Characterisation of theEscherichia coli strain associated with an outbreak of haemolytic uraemicsyndrome in Germany,2011: a microbiological study [J]. Lancet InfectiousDiseases,2011,11(9):671-6.
    [11] Frank C., Werber D., Cramer J. P., et al.Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4outbreak in Germany [J]. N Engl J Med,2011,365(19):1771-80.
    [12]Obrig T. G. Escherichia coli Shiga Toxin Mechanisms of Action in Renal Disease[J]. Toxins (Basel),2010,2(12):2769-94.
    [13]Lemley P. V., Amanatides P., Wright D. C. Identification and characterization of amonoclonal antibody that neutralizes ricin toxicity in vitro and in vivo [J].Hybridoma,1994,13(5):417-21.
    [14]Maddaloni M., Cooke C., Wilkinson R., et al. Immunological characteristicsassociated with the protective efficacy of antibodies to ricin [J]. J Immunol,2004,172(10):6221-8.
    [15]Mukherjee P. K., Chandra J., Yu C., et al. Characterization of fusarium keratitisoutbreak isolates: contribution of biofilms to antimicrobial resistance andpathogenesis [J]. Invest Ophthalmol Vis Sci,2012,53(8):4450-7.
    [16]Neal L. M., O'hara J., Brey R. N.,3rd, et al.A monoclonal immunoglobulin Gantibody directed against an immunodominant linear epitope on the ricin A chainconfers systemic and mucosal immunity to ricin [J]. Infect Immun,2010,78(1):552-61.
    [17]O'hara J. M., Neal L. M., Mccarthy E. A., et al. Folding domains within the ricintoxin A subunit as targets of protective antibodies [J]. Vaccine,2010,28(43):7035-46.
    [18]Roche J. K., Stone M. K., Gross L. K., et al. Post-exposure targeting of specificepitopes on ricin toxin abrogates toxin-induced hypoglycemia, hepatic injury, andlethality in a mouse model [J]. Lab Invest,2008,88(11):1178-91.
    [19]Smith M. J., Melton-Celsa A. R., Sinclair J. F., et al. Monoclonal Antibody11E10,Which Neutralizes Shiga Toxin Type2(Stx2), Recognizes Three Regions on theStx2A Subunit, Blocks the Enzymatic Action of the Toxin In Vitro, and Alters theOverall Cellular Distribution of the Toxin [J]. Infection and Immunity,2009,77(7):2730-40.
    [20]Tzipori S., Sheoran A., Akiyoshi D., et al. Antibody therapy in the managementof shiga toxin-induced hemolytic uremic syndrome [J]. Clin Microbiol Rev,2004,17(4):926-41, table of contents.
    [21]Bitzan M., Poole R., Mehran M., et al. Safety and pharmacokinetics of chimericanti-Shiga toxin1and anti-Shiga toxin2monoclonal antibodies in healthyvolunteers [J]. Antimicrob Agents Chemother,2009,53(7):3081-7.
    [22]Dowling T. C., Chavaillaz P. A., Young D. G., et al. Phase1safety andpharmacokinetic study of chimeric murine-human monoclonal antibody c alphaStx2administered intravenously to healthy adult volunteers [J]. AntimicrobAgents Chemother,2005,49(5):1808-12.
    [23]Orsi R. H., Stoppe N. C., Sato M. I., et al. Genetic variability and pathogenicitypotential of Escherichia coli isolated from recreational water reservoirs [J]. ResMicrobiol,2007,158(5):420-7.
    [24]Stechmann B., Bai S. K., Gobbo E., et al.Inhibition of retrograde transportprotects mice from lethal ricin challenge [J]. Cell,2010,141(2):231-42.
    [25]Roday S., Amukele T., Evans G. B., et al. Inhibition of ricin A-chain withpyrrolidine mimics of the oxacarbenium ion transition state [J]. Biochemistry-Us,2004,43(17):4923-33.
    [26]Sturm M. B., Roday S., Schramm V. L. Circular DNA and DNA/RNA hybridmolecules as scaffolds for ricin inhibitor design [J]. J Am Chem Soc,2007,129(17):5544-50.
    [27]Katzin B. J., Collins E. J., Robertus J. D. Structure of Ricin a-Chain at2.5-A [J].Proteins,1991,10(3):251-9.
    [28]Montfort W., Villafranca J. E., Monzingo A. F., et al.The three-dimensionalstructure of ricin at2.8A [J]. J Biol Chem,1987,262(11):5398-403.
    [29]Robertus J. D., Piatak M., Ferris R., et al.Crystallization of Ricin a ChainObtained from a Cloned Gene Expressed in Escherichia-Coli [J]. Journal ofBiological Chemistry,1987,262(1):19-20.
    [30]Rutenber E., Robertus J. D. Structure of Ricin B-Chain at2.5-a Resolution [J].Proteins,1991,10(3):260-9.
    [31]Monzingo A. F., Robertus J. D. X-ray analysis of substrate analogs in the ricinA-chain active site [J]. J Mol Biol,1992,227(4):1136-45.
    [32]Weston S. A., Tucker A. D., Thatcher D. R., et al. X-ray structure of recombinantricin A-chain at1.8A resolution [J]. J Mol Biol,1994,244(4):410-22.
    [33]Robertus J. D., Yan X., Ernst S., et al. Structural analysis of ricin andimplications for inhibitor design [J]. Toxicon,1996,34(11-12):1325-34.
    [34]Olson M. A., Cuff L. Molecular docking of superantigens with class II majorhistocompatibility complex proteins [J]. J Mol Recognit,1997,10(6):277-89.
    [35]Ready M. P., Kim Y. S., Robertus J. D. Site-Directed Mutagenesis of Ricina-Chain and Implications for the Mechanism of Action [J]. Proteins,1991,10(3):270-8.
    [36]Yan X., Hollis T., Svinth M., et al. Structure-based identification of a ricininhibitor [J]. J Mol Biol,1997,266(5):1043-9.
    [37]Ready M. P., Kim Y., Robertus J. D. Site-directed mutagenesis of ricin A-chainand implications for the mechanism of action [J]. Proteins,1991,10(3):270-8.
    [38]Kim Y., Robertus J. D. Analysis of Several Key Active-Site Residues of Ricin-aChain by Mutagenesis and X-Ray Crystallography [J]. Protein Eng,1992,5(8):775-9.
    [39]Kozlov Y. V., Chernaia M. M., Fraser M. E., et al. Purification and crystallizationof Shiga toxin from Shigella dysenteriae [J]. J Mol Biol,1993,232(2):704-6.
    [40]Labhsetwar P., Cole J. A., Roberts E., et al.Heterogeneity in protein expressioninduces metabolic variability in a modeled Escherichia coli population [J]. ProcNatl Acad Sci U S A,2013,110(34):14006-11.
    [41]Kozlov Yu V., Kabishev A. A., Lukyanov E. V., et al. The primary structure of theoperons coding for Shigella dysenteriae toxin and temperature phage H30shiga-like toxin [J]. Gene,1988,67(2):213-21.
    [42]Olsnes S., Reisbig R., Eiklid K. Subunit structure of Shigella cytotoxin [J]. J BiolChem,1981,256(16):8732-8.
    [43]Suh J. K., Hovde C. J., Robertus J. D. Shiga toxin attacks bacterial ribosomes aseffectively as eucaryotic ribosomes [J]. Biochemistry-Us,1998,37(26):9394-8.
    [44]Fraser M. E., Cherney M. M., Marcato P., et al. Binding of adenine to Stx2, theprotein toxin from Escherichia coli O157:H7[J]. Acta Crystallogr Sect F StructBiol Cryst Commun,2006,62(Pt7):627-30.
    [45]Deresiewicz R. L., Calderwood S. B., Robertus J. D., et al. Mutations affectingthe activity of the Shiga-like toxin I A-chain [J]. Biochemistry-Us,1992,31(12):3272-80.
    [46]Shoichet B. K. Virtual screening of chemical libraries [J]. Nature,2004,432(7019):862-5.
    [47]Lee M. S., Olson M. A. Calculation of absolute ligand binding free energy to aribosome-targeting protein as a function of solvent model [J]. J Phys Chem B,2008,112(42):13411-7.
    [48]Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism ofaction of the toxic lectin ricin on eukaryotic ribosomes [J]. J Biol Chem,1987,262(17):8128-30.
    [49]Iordanov M. S., Pribnow D., Magun J. L., et al. Ribotoxic stress response:activation of the stress-activated protein kinase JNK1by inhibitors of the peptidyltransferase reaction and by sequence-specific RNA damage to thealpha-sarcin/ricin loop in the28S rRNA [J]. Mol Cell Biol,1997,17(6):3373-81.
    [50]Pierce M., Kahn J. N., Chiou J., et al. Development of a quantitative RT-PCRassay to examine the kinetics of ribosome depurination by ribosome inactivatingproteins using Saccharomyces cerevisiae as a model [J]. RNA,2011,17(1):201-10.
    [51]Fujimori H., Sasaki T., Hibi K., et al. Direct Injection of Blood-Samples into aHigh-Performance Liquid-Chromatographic Adenine Analyzer to MeasureAdenine, Adenosine and the Adenine-Nucleotides with Fluorescence Detection[J]. J Chromatogr,1990,515(363-73.
    [52]Zamboni M., Brigotti M., Rambelli F., et al.High-Pressure-Liquid-Chromatographic and Fluorimetric Methods for the Determination of AdenineReleased from Ribosomes by Ricin and Gelonin [J]. Biochem J,1989,259(3):639-43.
    [53]Sturm M. B., Schramm V. L. Detecting ricin: sensitive luminescent assay for ricinA-chain ribosome depurination kinetics [J]. Anal Chem,2009,81(8):2847-53.
    [54]Bai Y., Monzingo A. F., Robertus J. D. The X-ray structure of ricin A chain with anovel inhibitor [J]. Arch Biochem Biophys,2009,483(1):23-8.
    [55]Wahome P. G., Bai Y., Neal L. M., et al. Identification of small-moleculeinhibitors of ricin and shiga toxin using a cell-based high-throughput screen [J].Toxicon,2010,56(3):313-23.
    [56]Saenz J. B., Doggett T. A., Haslam D. B. Identification and characterization ofsmall molecules that inhibit intracellular toxin transport [J]. Infect Immun,2007,75(9):4552-61.
    [57]Zhao L. H., Yan F., Yang L. L., et al.Chromatographic separation of (-)-ephedrineand (+)-Pseudoephedrine in the traditional Chinese medicinal preparation Jiketinggranule [J]. Chem Pharm Bull,2005,53(11):1494-7.
    [58]Miller D. J., Ravikumar K., Shen H., et al. Structure-based design andcharacterization of novel platforms for ricin and shiga toxin inhibition [J]. J MedChem,2002,45(1):90-8.
    [59]Bai Y., Watt B., Wahome P. G., et al. Identification of new classes of ricin toxininhibitors by virtual screening [J]. Toxicon,2010,56(4):526-34.
    [60]Jandhyala D. M., Ahluwalia A., Obrig T., et al. ZAK: a MAP3Kinase thattransduces Shiga toxin-and ricin-induced proinflammatory cytokine expression[J]. Cell Microbiol,2008,10(7):1468-77.
    [61]Saenz J. B., Sun W. J., Chang J. W., et al.Golgicide A reveals essential roles forGBF1in Golgi assembly and function [J]. Nat Chem Biol,2009,5(3):157-65.
    [62]Taylor S. T., Menzel R. The creation of a camptothecin-sensitive Escherichia colibased on the expression of the human topoisomerase I [J]. Gene,1995,167(1-2):69-74.
    [63]Cobbold R., Desmarchelier P. A longitudinal study of Shiga-toxigenicEscherichia coli (STEC) prevalence in three Australian diary herds [J]. VetMicrobiol,2000,71(1-2):125-37.
    [64]Escherich T. The intestinal bacteria of the neonate and breast-fed infant.1884[J].Rev Infect Dis,1988,10(6):1220-5.
    [65]Escherich T. The intestinal bacteria of the neonate and breast-fed infant.1885[J].Rev Infect Dis,1989,11(2):352-6.
    [66]WHO launches the World Health Statistics2012[J]. Euro Surveill,2012,17(20):
    [67]Dobrowksy P. H., Van Deventer A., De Kwaadsteniet M., et al. Prevalence ofvirulence genes associated with pathogenic Escherichia coli strains isolated fromdomestically harvested rainwater during low and high rainfall periods [J]. ApplEnviron Microbiol,2013,
    [68]Dowd S. E., Ishizaki H. Microarray based comparison of two Escherichia coliO157:H7lineages [J]. BMC Microbiol,2006,6(30.
    [69]Luna-Gierke R. E., Griffin P. M., Gould L. H., et al. Outbreaks of non-O157Shiga toxin-producing Escherichia coli infection: USA [J]. Epidemiol Infect,2014,1-11.
    [70]Meng Q., Bai X., Zhao A., et al.Characterization of Shiga toxin-producingEscherichia coli isolated from healthy pigs in China [J]. BMC Microbiol,2014,14(1):5.
    [71]Dunn J. R., Keen J. E., Thompson R. A. Prevalence of Shiga-toxigenicEscherichia coli O157:H7in adult dairy cattle [J]. J Am Vet Med Assoc,2004,224(7):1151-8.
    [72]Zhang Y., Tan C., Fei R., et al.Sensitive Chemiluminescence Immunoassay for E.coli O157:H7Detection with Signal Dual-Amplification Using Glucose Oxidaseand Laccase [J]. Anal Chem,2014,
    [73]Xu J.[Epidemiology of Shiga-like-toxin producing infection in China and itsprevention and control][J]. Zhonghua Yi Xue Za Zhi,1998,78(5):325-6.
    [74]Commun E. European Centre for Disease Prevention and Control publishesAnnual epidemiological report2011[J]. Eurosurveillance,2011,16(45):17-.
    [75]Parry S. M., Salmon R. L. Sporadic STEC O157infection: secondary householdtransmission in Wales [J]. Emerg Infect Dis,1998,4(4):657-61.
    [76]Rubino S., Cappuccinelli P., Kelvin D. J. Escherichia coli (STEC) serotype O104outbreak causing haemolytic syndrome (HUS) in Germany and France [J]. JInfect Dev Ctries,2011,5(6):437-40.
    [77]Tarr P. I., Gordon C. A., Chandler W. L. Shiga-toxin-producing Escherichia coliand haemolytic uraemic syndrome [J]. Lancet,2005,365(9464):1073-86.
    [78]Wagner P. L., Acheson D. W., Waldor M. K. Isogenic lysogens of diverse shigatoxin2-encoding bacteriophages produce markedly different amounts of shigatoxin [J]. Infect Immun,1999,67(12):6710-4.
    [79]Siegler R. L., Obrig T. G., Pysher T. J., et al.Response to Shiga toxin1and2in ababoon model of hemolytic uremic syndrome [J]. Pediatr Nephrol,2003,18(2):92-6.
    [80]Hunt J. M. Shiga toxin-producing Escherichia coli (STEC)[J]. Clin Lab Med,2010,30(1):21-45.
    [81]Kojio S., Zhang H., Ohmura M., et al.Caspase-3activation and apoptosisinduction coupled with the retrograde transport of shiga toxin: inhibition bybrefeldin A [J]. FEMS Immunol Med Microbiol,2000,29(4):275-81.
    [82]Bauer M. E., Welch R. A. Characterization of an RTX toxin fromenterohemorrhagic Escherichia coli O157:H7[J]. Infect Immun,1996,64(1):167-75.
    [83]Ashkenazi S., Larocco M., Murray B. E., et al. The adherence ofverocytotoxin-producing Escherichia coli to rabbit intestinal cells [J]. J MedMicrobiol,1992,37(5):304-9.
    [84]Barrett T. J., Kaper J. B., Jerse A. E., et al.Virulence factors in Shiga-liketoxin-producing Escherichia coli isolated from humans and cattle [J]. J Infect Dis,1992,165(5):979-80.
    [85]Law D., Kelly J. Use of Heme and Hemoglobin by Escherichia-Coli O157andOther Shiga-Like-Toxin-Producing Escherichia-Coli Serogroups [J]. Infectionand Immunity,1995,63(2):700-2.
    [86]Buvens G., Bogaerts P., Glupczynski Y., et al. Antimicrobial resistance testing ofverocytotoxin-producing Escherichia coli and first description of TEM-52extended-spectrum beta-lactamase in serogroup O26[J]. Antimicrob AgentsChemother,2010,54(11):4907-9.
    [87]Prado V., Basualdo W., Arellano C., et al.[In vitro susceptibility ofenterohemorrhagic Escherichia coli to11antimicrobials. Relationship betweenantibiotic resistance and toxigenic genotype][J]. Rev Med Chil,1995,123(9):1085-90.
    [88]Donnenberg M. S., Tzipori S., Mckee M. L., et al. The role of the eae gene ofenterohemorrhagic Escherichia coli in intimate attachment in vitro and in aporcine model [J]. J Clin Invest,1993,92(3):1418-24.
    [89]Woods J. B., Schmitt C. K., Darnell S. C., et al.Ferrets as a model system forrenal disease secondary to intestinal infection with Escherichia coli O157: H7and other Shiga toxin-producing E-coli [J]. Journal of Infectious Diseases,2002,185(4):550-4.
    [90]Ahn C. K., Holt N. J., Tarr P. I. Shiga-toxin producing Escherichia coli and thehemolytic uremic syndrome: what have we learned in the past25years?[J]. AdvExp Med Biol,2009,634(1-17.
    [91]Gallien P., Richter H., Klie H., et al. Detection of STEC and epidemiologicalinvestigations in surrounding of a HUS patient [J]. Berl Munch TierarztlWochenschr,1997,110(9):342-6.
    [92]Johannes L., Romer W. Shiga toxins--from cell biology to biomedicalapplications [J]. Nat Rev Microbiol,2010,8(2):105-16.
    [93]Louise C. B., Obrig T. G. Specific interaction of Escherichia coliO157:H7-derived Shiga-like toxin II with human renal endothelial cells [J]. JInfect Dis,1995,172(5):1397-401.
    [94]Alberti M., Valoti E., Piras R., et al.Two patients with history of STEC-HUS,posttransplant recurrence and complement gene mutations [J]. Am J Transplant,2013,13(8):2201-6.
    [95]Kielstein J. T., Beutel G., Fleig S., et al.Best supportive care and therapeuticplasma exchange with or without eculizumab in Shiga-toxin-producing E. coliO104:H4induced haemolytic-uraemic syndrome: an analysis of the GermanSTEC-HUS registry [J]. Nephrol Dial Transplant,2012,27(10):3807-15.
    [96]Noris M., Mescia F., Remuzzi G. STEC-HUS, atypical HUS and TTP are alldiseases of complement activation [J]. Nat Rev Nephrol,2012,8(11):622-33.
    [97]Alves-Rosa F., Beigier-Bompadre M., Fernandez G., et al. Tolerance tolipopolysaccharide (LPS) regulates the endotoxin effects on Shiga toxin-2lethality [J]. Immunol Lett,2001,76(2):125-31.
    [98]Lee S. Y., Cherla R. P., Caliskan I., et al. Shiga toxin1induces apoptosis in thehuman myelogenous leukemia cell line THP-1by a caspase-8-dependent, tumornecrosis factor receptor-independent mechanism [J]. Infect Immun,2005,73(8):5115-26.
    [99]Youn M., Lee K. M., Kim S. H., et al.Escherichia coli O157:H7LPS O-sidechains and pO157are required for killing Caenorhabditis elegans [J]. BiochemBiophys Res Commun,2013,436(3):388-93.
    [100] Yoon J. W., Lim J. Y., Park Y. H., et al. Involvement of the Escherichia coliO157:H7(pO157) ecf operon and lipid A myristoyl transferase activity inbacterial survival in the bovine gastrointestinal tract and bacterial persistence infarm water troughs [J]. Infect Immun,2005,73(4):2367-78.
    [101] Lim J. Y., La H. J., Sheng H., et al. Influence of plasmid pO157on Escherichiacoli O157:H7Sakai biofilm formation [J]. Appl Environ Microbiol,2010,76(3):963-6.
    [102] Fagan P. K., Hornitzky M. A., Bettelheim K. A., et al. Detection of shiga-liketoxin (stx1and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli(EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR [J].Appl Environ Microbiol,1999,65(2):868-72.
    [103] Beutin L., Aleksic S., Zimmermann S., et al. Virulence Factors andPhenotypical Traits of Verotoxigenic Strains of Escherichia-Coli Isolated fromHuman Patients in Germany [J]. Med Microbiol Immun,1994,183(1):13-21.
    [104] Ge B., Larkin C., Ahn S., et al. Identification of Escherichia coli O157:H7andother enterohemorrhagic serotypes by EHEC-hlyA targeting, stranddisplacement amplification, and fluorescence polarization [J]. Mol Cell Probes,2002,16(2):85-92.
    [105] Tobe T., Beatson S. A., Taniguchi H., et al. An extensive repertoire of type IIIsecretion effectors in Escherichia coli O157and the role of lambdoid phages intheir dissemination [J]. Proc Natl Acad Sci U S A,2006,103(40):14941-6.
    [106] Mellies J. L., Barron A. M., Carmona A. M. Enteropathogenic andenterohemorrhagic Escherichia coli virulence gene regulation [J]. Infect Immun,2007,75(9):4199-210.
    [107] Campellone K. G. Cytoskeleton-modulating effectors of enteropathogenic andenterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly[J]. FEBS J,2010,277(11):2390-402.
    [108] Brunder W., Khan A. S., Hacker J., et al.Novel type of fimbriae encoded by thelarge plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coliO157:H(-)[J]. Infect Immun,2001,69(7):4447-57.
    [109] Tarr P. I., Bilge S. S., Vary J. C., Jr., et al.Iha: a novel Escherichia coli O157:H7adherence-conferring molecule encoded on a recently acquired chromosomalisland of conserved structure [J]. Infect Immun,2000,68(3):1400-7.
    [110] Bulgin R., Arbeloa A., Goulding D., et al. The T3SS effector EspT defines anew category of invasive enteropathogenic E. coli (EPEC) which formintracellular actin pedestals [J]. PLoS Pathog,2009,5(12): e1000683.
    [111] Hoffmann H., Hornef M. W., Schubert S., et al.Distribution of the outermembrane haem receptor protein ChuA in environmental and human isolates ofEscherichia coli [J]. Int J Med Microbiol,2001,291(3):227-30.
    [112] Nagy G., Dobrindt U., Kupfer M., et al. Expression of hemin receptor moleculeChuA is influenced by RfaH in uropathogenic Escherichia coli strain536[J].Infect Immun,2001,69(3):1924-8.
    [113] Rohde H., Qin J., Cui Y., et al. Open-source genomic analysis ofShiga-toxin-producing E. coli O104:H4[J]. N Engl J Med,2011,365(8):718-24.
    [114] Cowan L. A., Hertzke D. M., Fenwick B. W., et al. Clinical andclinicopathologic abnormalities in greyhounds with cutaneous and renalglomerular vasculopathy:18cases (1992-1994)[J]. J Am Vet Med Assoc,1997,210(6):789-93.
    [115] Hertzke D. M., Cowan L. A., Schoning P., et al.Glomerular ultrastructurallesions of idiopathic cutaneous and renal glomerular vasculopathy ofgreyhounds [J]. Vet Pathol,1995,32(5):451-9.
    [116] Gomez S. A., Fernandez G. C., Vanzulli S., et al. Endogenous glucocorticoidsattenuate Shiga toxin-2-induced toxicity in a mouse model of haemolyticuraemic syndrome [J]. Clin Exp Immunol,2003,131(2):217-24.
    [117] Stearns-Kurosawa D. J., Collins V., Freeman S., et al. Distinct physiologic andinflammatory responses elicited in baboons after challenge with Shiga toxintype1or2from enterohemorrhagic Escherichia coli [J]. Infect Immun,2010,78(6):2497-504.
    [118] Macleod D. L., Gyles C. L., Wilcock B. P. Reproduction of edema disease ofswine with purified Shiga-like toxin-II variant [J]. Vet Pathol,1991,28(1):66-73.
    [119] Aarestrup F. M., Jorsal S. E., Ahrens P., et al. Molecular characterization ofEscherichia coli strains isolated from pigs with edema disease [J]. J ClinMicrobiol,1997,35(1):20-4.
    [120] Dean-Nystrom E. A., Pohlenz J. F., Moon H. W., et al.Escherichia coliO157:H7causes more-severe systemic disease in suckling piglets than incolostrum-deprived neonatal piglets [J]. Infect Immun,2000,68(4):2356-8.
    [121] Francis D. H., Collins J. E., Duimstra J. R. Infection of gnotobiotic pigs with anEscherichia coli O157:H7strain associated with an outbreak of hemorrhagiccolitis [J]. Infect Immun,1986,51(3):953-6.
    [122] Tzipori S., Gunzer F., Donnenberg M. S., et al. The role of the eaeA gene indiarrhea and neurological complications in a gnotobiotic piglet model ofenterohemorrhagic Escherichia coli infection [J]. Infect Immun,1995,63(9):3621-7.
    [123] Tzipori S., Karch H., Wachsmuth K. I., et al. Role of a60-megadalton plasmidand Shiga-like toxins in the pathogenesis of infection caused byenterohemorrhagic Escherichia coli O157:H7in gnotobiotic piglets [J]. InfectImmun,1987,55(12):3117-25.
    [124] Yamagami S., Motoki M., Kimura T., et al. Efficacy of postinfection treatmentwith anti-Shiga toxin (Stx)2humanized monoclonal antibody TMA-15in micelethally challenged with Stx-producing Escherichia coli [J]. J Infect Dis,2001,184(6):738-42.
    [125] Sheoran A. S., Chapman S., Singh P., et al. Stx2-specific human monoclonalantibodies protect mice against lethal infection with Escherichia coli expressingStx2variants [J]. Infect Immun,2003,71(6):3125-30.
    [126] Mukherjee J., Chios K., Fishwild D., et al. Human Stx2-specific monoclonalantibodies prevent systemic complications of Escherichia coli O157:H7infection [J]. Infect Immun,2002,70(2):612-9.
    [127] Mukherjee J., Chios K., Fishwild D., et al. Production and characterization ofprotective human antibodies against Shiga toxin1[J]. Infect Immun,2002,70(10):5896-9.
    [128] Strockbine N. A., Marques L. R., Holmes R. K., et al.Characterization ofmonoclonal antibodies against Shiga-like toxin from Escherichia coli [J]. InfectImmun,1985,50(3):695-700.
    [129] Peterson F. J., Mason R. P., Hovsepian J., et al. Oxygen-sensitive and-insensitive nitroreduction by Escherichia coli and rat hepatic microsomes [J]. JBiol Chem,1979,254(10):4009-14.
    [130] Feldman M. W., Laland K. N. Gene-culture coevolutionary theory [J]. TrendsEcol Evol,1996,11(11):453-7.
    [131] Palumbi S. R. Evolution-Humans as the world's greatest evolutionary force [J].Science,2001,293(5536):1786-90.
    [132] Clatworthy A. E., Pierson E., Hung D. T. Targeting virulence: a new paradigmfor antimicrobial therapy [J]. Nat Chem Biol,2007,3(9):541-8.
    [133] Andersson D. I., Levin B. R. The biological cost of antibiotic resistance [J].Curr Opin Microbiol,1999,2(5):489-93.
    [134]王恩江,丁奇峰,王珏.感染性疾病应用中药的必要性与可行性[J].河北中医,2009,05):746-8.
    [135]张远光.抗菌药物的应用现状及存在问题[J].中国中医药现代远程教育,2008,12):1625-6.
    [136] Patel R. Biofilms and antimicrobial resistance [J]. Clin Orthop Relat Res,2005,437):41-7.
    [137] Andersson D. I., Hughes D. Persistence of antibiotic resistance in bacterialpopulations [J]. FEMS Microbiol Rev,2011,35(5):901-11.
    [138] Davies J., Davies D. Origins and evolution of antibiotic resistance [J]. MicrobiolMol Biol Rev,2010,74(3):417-33.
    [139] Saradamma R. D., Higginbotham N., Nichter M. Social factors influencing theacquisition of antibiotics without prescription in Kerala State, south India [J].Soc Sci Med,2000,50(6):891-903.
    [140] Nathan C. Antibiotics at the crossroads [J]. Nature,2004,431(7011):899-902.
    [141] Hung D. T. Anti-virulence appraoches to antimicrobial therapy [J]. Faseb J,2007,21(5): A94-A.
    [142]Projan S. J. Whither antibacterial drug discovery?[J]. Drug Discov Today,2008,13(7-8):279-80.
    [143]戴卫红,林剑梅,范丽萍.中药在抗感染治疗中的应用与研究概况[J].中国药业,2004,02):76-7.
    [144]张丽美,李贵海.黄连解毒汤的药理及临床研究进展[J].时珍国医国药,2007,07):1635-7.
    [145]毛利东.临床不合理应用抗生素分析及对策[J].中国实用医药,2010,14):152-3.
    [146] Recent trends in antimicrobial resistance among Streptococcus pneumoniae andStaphylococcus aureus isolates: the French experience [J]. Euro Surveill,2008,13(46):
    [147] Miranda J. M., Vazquez B. I., Fente C. A., et al. Comparison of antimicrobialresistance in Escherichia coli, Staphylococcus aureus, and Listeriamonocytogenes strains isolated from organic and conventional poultry meat [J].J Food Prot,2008,71(12):2537-42.
    [148] Goldsmith R. S., Schur P. M. Use of subtherapeutic antibiotics in livestock (assupplements or feed additives) with the induction of resistance in humanbacterial pathogens, the magnitude and complexity of the problem becomeincreasingly clear [J]. J Environ Health,2002,65(3):7,21.
    [149] Kumarasamy K. K., Toleman M. A., Walsh T. R., et al. Emergence of a newantibiotic resistance mechanism in India, Pakistan, and the UK: a molecular,biological, and epidemiological study [J]. Lancet Infect Dis,2010,10(9):597-602.
    [150] Couce A., Blazquez J. Side effects of antibiotics on genetic variability [J].FEMS Microbiol Rev,2009,33(3):531-8.
    [151] Beceiro A., Tomas M., Bou G. Antimicrobial resistance and virulence: asuccessful or deleterious association in the bacterial world?[J]. Clin MicrobiolRev,2013,26(2):185-230.
    [152] Roemer T., Boone C. Systems-level antimicrobial drug and drug synergydiscovery [J]. Nat Chem Biol,2013,9(4):222-31.
    [153] Lohan S., Bisht G. S. Recent approaches in design of peptidomimetics forantimicrobial drug discovery research [J]. Mini Rev Med Chem,2013,13(7):1073-88.
    [154]姜林嵩,刘青.试论中药抗感染的优势[J].甘肃科技纵横,2008,02):175.
    [155]杨宏静.五味消毒饮抗感染作用的研究[D];湖南中医药大学,2011.
    [156]张丁华,王艳丰,曹智高, et al.清热解毒类中药拮抗细菌内毒素作用研究;proceedings of the纪念《元亨疗马集》付梓400周年中国畜牧兽医学会中兽医学分会2008年学术年会华东区第十八次中兽医科研协作与学术研讨会暨兽药发展论坛,中国安徽黄山, F,2008[C].
    [157]仇微红,郭世宁,李志华, et al.中药免疫调节作用的研究进展[J].广东畜牧兽医科技,2008,02):9-13.
    [158]李晶,景立,刘洋, et al.国内抗菌中药的研究进展及前景; proceedings of the第六次全国中西医结合中青年学术研讨会,中国湖南长沙, F,2008[C].
    [159]刘亚光.从分子生物学角度探讨中药的作用原理[J].江苏中医杂志,1980,02):39-42.
    [160]王春娟,左国营,韩峻, et al.21种中药的体外抗菌活性筛选[J].华西药学杂志,2013,05):479-82.
    [161] Cowan M. M. Plant products as antimicrobial agents [J]. Clin Microbiol Rev,1999,12(4):564-+.
    [162]周柳如,彭青.四种中药单体对耐甲氧西林金黄色葡萄球菌的体外抗菌作用研究[J].现代医院,2011,06):34-5.
    [163]陈毕峰. A型肉毒毒素抑制剂的设计、合成与评价[D];沈阳药科大学,2009.
    [164]刘鑫.以细菌主要致病因子为靶标的脓毒症防治策略及措施研究[D];第三军医大学,2010.
    [165]邱家章.黄芩苷抗金黄色葡萄球菌α-溶血素作用靶位的确证[D];吉林大学,2012.
    [166]郑筱雯.中药乙醇提取液干预幽门螺杆菌分泌空泡毒素的研究[D];南昌大学,2007.
    [167]聂爱国.黄芩的研究进展[J].内蒙古中医药,2010,12):119-20.
    [168]郭少英,程发峰,钟相根, et al.黄芩苷的体外抗氧化研究[J].时珍国医国药,2011,01):9-11.
    [169] Novy P., Urban J., Leuner O., et al.In vitro synergistic effects of baicalin withoxytetracycline and tetracycline against Staphylococcus aureus [J]. J AntimicrobChemother,2011,66(6):1298-300.
    [170]张喜平,周田美,董晓勤, et al.黄芩苷注射液体外抗菌作用实验研究[J].医学研究杂志,2006,08):39-41.
    [171]赖翔宇,杨自豪.黄芩苷及其系列配合物抗HIV的研究进展[J].中国医药指南,2012,11):88-90.
    [172]高雷,陈鸿珊.黄芩苷体外对流感病毒、单纯疱疹病毒和柯萨奇病毒的抑制作用[J].中国新药杂志,2008,06):474-8.
    [173]周智兴,傅颖媛.黄芩苷对白色念珠菌酶活性的影响[J].时珍国医国药,2007,11):2639-40.
    [174]洪铁,杨振,绳娟, et al.黄芩苷抗肿瘤作用及机制的研究[J].中国药理学通报,2008,12):1676-8.
    [175]汪晓军,马赟,张奉学, et al.黄芩苷对刀豆蛋白A致肝损伤小鼠肝组织NO含量的影响[J].中西医结合肝病杂志,2006,02):93-5.
    [176]崔岚,袁静,王平全.黄芩苷药理作用研究进展[J].中国医院药学杂志,2000,11):45-6.
    [177] Nicolson G. L., Blaustein J. The interaction of Ricinus communis agglutininwith normal and tumor cell surfaces [J]. Biochim Biophys Acta,1972,266(2):543-7.
    [178]闫妍.蓖麻毒素和相思子毒素的提取纯化及基于生物质谱技术鉴定方法的建立[D];中国人民解放军军事医学科学院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700