核电用不锈钢应力腐蚀电化学检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国能源发展战略中,核能占有重要的地位。今后十几年内,我国要兴建大批大型的核电站,但核电设备的腐蚀问题始终是核电发展的重大课题。尤其是核电关键材料的应力腐蚀开裂问题,直接影响着核电站的服役寿命和人员安全。核电站关键材料应力腐蚀在线检测的研究工作,对于设备延寿,腐蚀损伤检修和材料安全性评估等均具有重要的意义。因此,本文主要针对不锈钢应力腐蚀的电化学检测开展研究。
     在实验室条件下建立了慢应变速率拉伸(SSRT)及恒载荷应力腐蚀电化学噪声测试系统,并与多种测试手段相结合,从测试方法确定、数据解析、电化学噪声方法适用性等方面开展了工作。
     应用零阻电流计(ZRA)模式电化学噪声方法(EN)研究了核电用超低碳控氮304NG及敏化304SS慢应变速率拉伸下的应力腐蚀过程,采用电流和电位时域谱、频域谱、小波分析等多种方法,初步得到了应力腐蚀过程的电化学电位与电流噪声的特征,探讨了应力腐蚀过程中Rn的变化,提出了定性判断应力腐蚀萌生与扩展阶段的依据。
     将恒载荷EN测试与声发射方法(AE)结合研究了敏化304SS应力腐蚀过程。得到应力腐蚀过程中膜形成、膜破裂与裂纹形成、裂纹扩展等过程的电化学噪声谱及相应的声发射信号特征,结果证实两种测试方法具有较好的一致性。采用EN方法研究了不同预制疲劳裂纹试样未加载与SSRT下的腐蚀行为,提出预制疲劳裂纹扩展的电化学噪声特征,并应用扫描Kelvin探针技术对于慢拉伸实验前后裂纹试样的表面形貌与表面电位分布进行分析。结果表明两种测试方法均可表征裂纹的扩展。
     运用电化学电位噪声方法研究了不锈钢管焊缝区在热浓碱中的腐蚀行为,结果表明:电位PSD谱线性部分斜率K值可判断不锈钢焊缝区是否发生局部腐蚀;出现局部腐蚀裂纹时,电位PSD曲线在高频处出现白噪声;可采用特征频率fn定性判断试样表面不同的腐蚀状态。
     研究了高温高压动态水环境中EN方法的适用性。得到0-3m/s流速下304NG噪声时域谱。结果表明,流速的增加对EN测试影响较小。电化学噪声技术可用于动态高温高压水环境中,并可实现对材料腐蚀敏感性的监检测。
Nuclear Power Plant has played an important role in our national energy resource developmental strategies. Many Large Nuclear Power Stations will have been built in the past ten years. However, corrosion is still great problem of the nuclear industry affecting components especially Stress Corrosion Cracking (SCC). The corrosion of Stainless Steel (SS) which is especially used as structural materials will influence the Nuclear power plant active time and security directly. It is significant to study the corrosion behavior, timely detection and proper action would reduce the costs of damage, and in some cases even prevent the occurrence of disastrous events. Electrochemical corrosion occurred under force is the essential of SCC. In this paper, Stress Corrosion Cracking of stainless steel electrochemical technologies is studied.
     In this paper, on line detective methods based on EN technology about SCC under the SSRT and constant load were presented in lab. The testing mode, data analysis and the system used in the field were discussed.
     Electrochemical voltage and current noise were measured by ZRA simultaneously during stress corrosion cracking (SCC) process of 304NG and sensitized 304SS in SSRT test. In order to characterize the SCC processes of austenitic stainless steel, Visual records and time analysis of the current and potential data along with the spectral estimation using FFT method and Wavelet analysis gave useful information on these corrosion processes. It obtained the curve of Rn. Moreover, EN potential and current spectrum characteristics were preliminary mastered and obtained the judgment to distinguish SCC generation from development.
     Acoustic emission (AE) technique and EN were used simultaneously to study the process of SCC on sensitized 304SS. There are at lease four stage of SCC which were the films formed, film rupture and SCC Initiation and propagation process. The analysis of the AE signals in conjunction with EN showed the two testing techniques had good consistency to detection of SCC.
     The corrosion behaviors of fatigue pre-cracking 304SS with and without stress were detected by means of EN measurements in different solution. The EN characteristics of cracking propagation were obtained. Moreover, the characteristics of surface morphology image and Volta potential distribution over the surface has been studied before and after experiment with Kelvin probe. The results showed that Kelvin and EN could get the same judgment that its cracking propagated.
     Use of electrochemical potential noise to detect corrosion behavior of the weld zone of 304SS in the heat concentrate lye, and analyzed its parameter. The high frequency roll-of slop K in the PSD plot could detect whether the localized corrosion occurred or not. When localized corrosion cracking initiation, amplitude was large and termination appeared, a high frequency plateau appeared in the power spectrum by use of the Fast Fourier Transform (FFT). Moreover, the different state of specimens had been distinguished by fn the frequency of events.
     Autoclave test system had been used to study the applicability of EN at high temperature and pressure with dynamic water system. Using the same electrodes measured by ZRA obtain the current and potential electrochemical noise in time domain. The results showed EN could be used to detect local corrosion sensitivity evaluation at high temperature and pressure with dynamic water system.
引文
[1]白新德,材料腐蚀与控制,北京:清华大学出版社,2005,297,320~324
    [2]中国腐蚀与防护学会,核工业中的腐蚀与防护,北京:化学工业出版社, 1993,97~98
    [3]杨武,核电工业的发展及其对腐蚀防护技术的需求,腐蚀与防护,1998,18(3):99~107
    [4] D R Diercks, W J Shack, J Muscara, Overview of steam generator tube degradation and integrity issues, Nuclear Engineering and Design, 1999, 194: 19~30
    [5]陈鹤鸣等,核反应堆材料腐蚀及其防护,北京:原子能出版社,1984,2~5,160
    [6]陆世英,王欣增,李怌钟等,不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢,北京:原子能出版社,1985,5,51~52
    [7] Sung-Woo Kim, Hong-Pyo Kim, Electrochemical noise analysis of Pb SCC of Alloy 600 SG tube in caustic environments at high temperature, Corrosion Science, 2009, 51(1): 191-196
    [8] T V Vinoy, H Shaikh, H S Khatak,et al., Metallurgical analysis of a failed containment building door bellows of a nuclear reactor, Practical Metallography, 1997, 10(34): 527~534
    [9]丁训慎,核电站蒸汽发生器传热管二次侧晶间腐蚀和晶间应力腐蚀及防护,腐蚀与防护,2002,23(10):441~444
    [10]左景伊,应力腐蚀破裂,西安:西安交通大学出版社,1985,12,175~189
    [11]吴幼林,阿部征三郎,村田朋美,用EPR法评价奥氏体不锈钢的敏化程度——材质因素及敏化条件的影响,中国腐蚀与防护学报,1985,5(1),34~45
    [12] A Arutunow, K Darowicki D, EIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion, Electrochimica Acta 2008, 53: 4387–4395
    [13]薛锦,应力腐蚀与环境氢脆——故障分析及测试方法,西安交通大学出版社,1991,6,5~6
    [14]杨文斗,反应堆材料学,北京:原子能出版社,2000,12,126,204~222
    [15] W Ruther, W Soppet, T Kassner, Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of AISI 304 stainless stee, Corrosion, 1988, 44(11): 791~799
    [16]张宝宏,从文博,杨萍,金属电化学腐蚀与防护,北京:化学工业出版社,2005,230 ~ 257
    [17] J. Kovaˇc , M. Leban, A. Legat, Detection of SCC on prestressing steel wire by the simultaneous use of electrochemical noise and acoustic emission measurements, Electrochimica Acta, 52 (27): 2006, 18~23
    [18]聂向晖,张红,杜翠微,李晓刚,金属材料腐蚀检(监)测常用方法概述,装备环境工程,2007,4(3):105~109
    [19]黄一中,陈奇志,褚武扬,310奥氏体不锈钢应力腐蚀的投射电镜原位观测,金属学报,1996,32(1):39~44
    [20] J X Li, W Y Chu, Y B Wang, et al., In situ TEM study of stress corrosion cracking of austenitic stainless steel, Corrosion Science, 2003, 45: 1355–1365
    [21] Masayuki Kamaya, Takumi Haruna, Crack initiation model for sensitized 304 stainless steel in high temperature water, Corrosion Science, 2006, 48: 2442~2456
    [22] Masayuki Kamaya, Takumi Haruna, Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel, Corrosion Science, 2007, 49: 3303~3324
    [23] R H Jones, M A Friesel, W W Gerberich, Acoustic emission from integranular subcritical crack growth, Metall Trans A, 1989, 20: 637~648.
    [24] R H Jones, M A Friesel, R Pathania, Evaluation of stress corrosion crack initiation using acoustic emission, Corrosion, 1991, 47 105~115.
    [25] M G Alvarez, P Lapitz, J Ruzzante, AE response of type 304 stainless steel during stress corrosion crack propagation, Corrosion Science 2008, 50: 3382–3388
    [26] M Fregonese, H Idrissi, H Mazille, Initiation and propagation steps in pitting corrosion of austenitic stainless steels: monitoring by acoustic emission, Corrosion Science,2001, 43: 627~641
    [27] H Shaikh, R Amirthalingam, T Anita, et al., Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique, Corrosion Science, 2007, 49: 740~765
    [28]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002,导言
    [29] V B Miskocic-Stankovic, A Comparative study of the available electrochemical methods for the investigation of Epoxy and Fluoropolymer Coatings deterioration, Progress in organic coatings, 1994, 24(1-4): 253~262
    [30] Marta G Silva, Saloua Helali, Chihe Esseghaier, An impedance spectroscopy method for the detection and evaluation of Babesia bovis antibodies in cattle Sensors and Actuators B: Chemical, 2008, 135: 206–213
    [31] D Risovi?, S Mahovi? Polja?ek, K Furi?, Inferring fractal dimension of rough porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methods, Applied Surface Science 2008, 255(5): 3063~3070
    [32] H Ashassi-Sorkhabi, D Seifzadehand, M G Hosseini, EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1M HCl solution, Corrosion Science, 2008, 50(12): 3363~3370
    [33] T Hong, G W Walter, M Nagumo, The observation of the early stages of pitting on passivated type 304 stainless steel in a 0.5 M sodium chloride solution at low potentials in the passive region by using the AC impedance method, Corrosion Science 1996, 39(9) 1525~1533
    [34] T Hong, M Nagumo, The effect of chloride concentration on the early stages of pitting for type 304 stainless steel revealed by the AC impedance method, Corrosion Science, 1997, 39(2): 285~293
    [35] K R Trethewey, M Paton, Electrochemical impedance behaviour of type 304L stainless steel under tensile loading, Materials Letters 2004, 58: 3381~3384
    [36] R Oltra, M Keddam, Application of impedance technique to localized corrosion, Corrosion Science, 1988, 28(1): 1~5
    [37] M C Petit, M Cid, M Puiggali,et al., An impedance study of the passivity breakdown during stress corrosion cracking phenomena, Corrosion Science, 1990, 31: 491~496
    [38] J J Park, S I Pyun, K H Na, et al., Effect of Pasivity of the Oxide Film on Low-pH SCC of API 5L X-65 Pipeline Steel in Bicarbonate Solution, Corrosion, 2002, 58(4): 329~336
    [39] R W Bosch, F Moons, J H Zheng, et al., Application of electrochemical impedance spectroscopy for monitoring stress corrosion cracking, Corrosion, 2001, 57(6): 532~539
    [40] Bosch Rik-Wouter Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature, Corrosion Science, 2005, 47: 125~143
    [41] K Darowicki, Theoretical description of the measuring method of instantaneous impedance spectra, J Electroanal Chem, 2000, 486(2): 101~105
    [42] K Darowicki, G Lentka, J Orlikowski, Instantaneous impedance spectra of a non-stationary model electrical system, J. Electroanal. Chem, 2000, 486(2): 106~110
    [43] K Darowicki, P Slepski, Dynamic electrochemical impedance spectroscopy of the first order electrode reaction, J Electroanal Chem, 2003, 547(1): 1~8
    [44] K Darowicki, J Orlikowski, A Arutunow, Investigations of the passive layer cracking by means of Dynamic Electrochemical Impedance Spectroscopy, Electrochimica Acta, 2003, 48: 4189~4196
    [45] C Gabrielli, Identification of electrochemical processes by frequency response analysis, Technical Report, Farenborough, 1995, No. 004/83
    [46] D D Macdonald, Application of Electrochemical Impedance Spectroscopy in electrochemistry and corrosion science, Techniques for Characterization of Electrodes and Electrochemical Processes, Wiley, New York, 1991, 515~647.
    [47] J Ross Macdonald, W B Johnson, Fundamentals of Impedance Spectroscopy, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, Wiley, New York: 1987, 1~20
    [48] J M Le Canut, S Maximovitch, F Dalard, Electrochemical characterisation of nickel-based alloys in sulphate solutions at 320℃, Journal of Nuclear Materials, 2004, 334: 13~27
    [49] Jan Macák, Peter Sajdl, In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water, Electrochimica Acta, 2006, 51: 3566~3577
    [50] W P Iverson, Transient voltage changes produced in corroding metals and alloys, J. Electrochem. Soc, 1968, 115(6): 617~618
    [51] U Bertocci, Applications of a low noise potentiostat in electrochemical measurements, J Electrochem Soc, 1980, 127: 1931~1934
    [52] U Bertocci, separation between deterministic response and random fluctuations by means of the cross-power spectrum in the study of electrochemical noise, J. Electrochem. Soc. 1981, 128: 520~523
    [53] U Bertocci, Koike M, Leigh S, et al., Statistical analysis of the fluctuations of the passive current, J. Electrochem. Soc, 1986, 133: 1782~1786
    [54] F H Cao, J Q Zhang, Y L Cheng, et al., Electrochemical noise features of pure aluminum during pitting corrosion in neutral NaCl solution, Acta Metall. Sinica (English Letters), 2003, 16(1): 22~32
    [55] F Mansfeld, H Xiao, Y Wang, Evaluation of localized corrosion phenomena with electrochemical impedance spectroscopy (EIS) and electrochemical noise analysis (ENA), Mater Sci Forum, 1995, 192–194: 673~692
    [56] M Z Yang, M Wilmott, J L Luo, Analysis of the electrochemical noise for localized corrosion of type A516-70 carbon steel Corrosion (Houston), 1998, 54: 869~876
    [57] X Y Zhou, S N Lvov, X J Wei, et al., Quantitative evaluation of general corrosion of Type 304 stainless steel in subcritical and supercritical aqueous solutions via electrochemical noise analysis Corros. Sci, 2002, 44: 841~860
    [58] U Bertocci, Y X Ye, Examination of current fluctuations during pit initiation in fe-cr alloys, J Electrochem. Soc, 1984, 131: 1011~1017
    [59]曹楚南,石青荣,林海潮,孔蚀过程中电流噪声特征研究,中国腐蚀与防护学报,1990,1(1):22~28
    [60]曹楚南,常晓元,林海潮,孔蚀过程中的电化学噪声特征,中国腐蚀与防护学报,1989,9(1):21~28
    [61] C A Loto, R A Cottis, Electrochemical noise generation during stress corrosion cracking of the high-strength aluminum AA 7075-T6 alloy, Corrosion, 1989, 45: 136~141
    [62]乔利杰,高克玮,数学统计方法在应力腐蚀噪声中的应用,中国腐蚀与防护学报,1998,18(4):263~268
    [63] N.Pessal, C Liu., Determination of critical pitting potentials of stainless steel in aqueous chloride environments, Electrochim. Acta, 1971, 16: 1987~2003
    [64] J Hickling, D F Taylor, P L Andresen, Use of electrochemical noise to detect stress corrosion crack initiation in simulated BWR environments, Mater. Corros, 1998, 49: 651~658
    [65] L H Wang, J J Kai, C H Tsai, et al., Comparison of stress corrosion cracking susceptibility of thermally-sensitized and proton-irradiated 304 stainless steel using electrochemical noise techniques, J Nuclear Mater, 1998, 258–263: 2046~2053
    [66] H Inoue, H Iwawaki, K Yamakawa, Potential fluctuation during early-state of stress-corrosion cracking of type-304 stainless in chloride solution. Materials science and engineering, 1995, 198 (1~2): 225~230
    [67] Haruna, T Shibata, R Toyota, Initiation and propagation of stress corrosion cracks for type 304L stainless steel in chloride solutions containing thiosulfatet, Corrosion Science, 1997, 39(10): 1935~1947
    [68] Monika Gomez-Duran, Digby D Macdonald, Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulphate solution II. Dynamics of fracture, Corrosion Science, 2006, 48: 1608~1622
    [69] Zhiming Shi, Guangling Song, Chu-nan Cao, et al., Electrochemical potential noise of 321 stainless steel stressed under constant strain rate testing conditions, Electrochimica Acta, 2007, 52: 2123~2133
    [70] M Leban, ? Bajt, A Legat, Detection and differentiation between cracking processes based on electrochemical and mechanical measurements, Electrochimica Acta, 2004, 49: 2795~2801
    [71] J Stewart, D B Wells, P M Scott, et al., Electrochemical noise measurements of stress corrosion cracking of sensitized austenitic stainless steel in high-purity oxygenated water at 288℃, Corros. Sci, 1992, 33 (1): 73–88
    [72] Anita T, Pujar M G, H Shaikh, et al., Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique, Corrosion Science, 2006, 48: 2689~2710
    [73] V Kain, Y Watanabe, M Kobayashi, Electrochemical noise during exposure of alloy 600 to borated and lithiated high temperature water, Corrosion 2001, NACE, Houston (TX), US, No. 01118
    [74] J Hicking, D F Taylor, P L Andresen, Use of electrochemical noise to detect stress corrosion crack initiation in simulated bwr environment, Materials and corrosion, 1998, 49: 651~658
    [75] C R Arganis-Juarez, J M Malo, J Uruchurtu, Electrochemical noise measurements of stainless steel in high temperature waters, Nuclear Engineering and Design, 2007, 237(24): 2283~2291
    [76] M Jonsson, D Thierry, N Le Bozec, The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe, Corrosion Science, 2006, 48(5): 1193~1208
    [77] G S Frankel, M Stratmann, M Rohwerder, Potential control under thin aqueous layers using a Kelvin Probe, Corrosion Science, 2007, 49: 2021–2036
    [78] U Bertocci, F Huet, Noise analysis applied to electrochemical systems, Corrosion, 1995, 51(2): 131~144
    [79] U Bertocci, Separation between deterministic response and random fluctuations by means of the cross-power spectrum in the study of electrochemical noise, J. Electrochem Soc, 1981, 128: 520~523
    [80] E Budevski, W Obretenov, W Bostanov, et al., Noise analysis in metal deposition-expectations and limits, Electrochimical Acta, 1989, 34(8): 1023~1029
    [81] P R Roberge, Analysis of spontaneous electrochemical noise for corrosion studies, Journal of Applied Electrochemistry, 1993, 23: 1223~1231
    [82] P C Pistorius, Design aspects of electrochemical noise measurements for uncoated metals: electrode size and sampling rate, Corrosion, 1997, 53(4):273~283
    [83] H Xiao, L T Han, G C Lee, et al., Collection of electrochemical impedance and noise data for polymer - coated steel from remote test sites, Corrosion, 1997, 53(5): 412~422
    [84] S I Magaino, A Kawaguchi, A Hirata, et al., Spectrum analysis of corrosion potential fluctuations for localized corrosion of type 304 stainless steel, J . Electrochem Soc, 1987, 134(12): 2993~2997
    [85] J W Isaac, K U Hebert, Electrochemical current noise on aluminum microelectrodes, J. Electrochem Soc, 1999, 146(2): 502~509
    [86] K Hladky, J L Dawson, The measurement of localized corrosion using electrochemical noise, Corrosion Sci , 1981, 21(4): 317~322
    [87] C Monticelli, G Brunoro, A Frignani, et al. Evaluation of corrosion inhibitors by electrochemical noise analysis, .J .Electrochem. Soc, 1992, 139(3): 706~711
    [88] A Leoal, V Doleoek, Corrosion monitoring system based on measurement and analysis of electrochemical noise, Corrosion , 1995, 51(4): 295~300
    [89] Nieuwenhove R V, Electrochemical noise measurements under pressurized water reactor conditions, Corrosion, 2000, 56(2): 161~166
    [90] C B Breslin, A L Rudd, Activation of pure Al in an indium - containing electrolyte-an electrochemical noise and impedance study, Corros Sci, 2000, 42: 1023~1039
    [91] K Hladky, J L Dawson, The measurement of localized corrosion using electrochemical noise Corrosion Science 1981, 21: 317~322
    [92] K Hladky, J L Dawson, The measurement of corrosion using electrochemical 1/fn noise, Corrosion Science, 1982, 22: 231~237
    [93] A M P Simoes, M G S Ferreira, Crevice corrosion studies on stainless steel using electrochemical noise measurements, British Corrosion, 1987, 22: 21~25
    [94] J Flis, J L Dawson, J Gill, et al., Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda, Corrosion Science 1991, 32: 877~892
    [95] C Monticelli, G Brunoro, A Firgnani,et al., Evaluation of corrosion inhibitors by electrochemical noise analysis, Journal of Electrochemical Society, 1992, 139(3): 706~711
    [96]史志明,林海潮,曹楚南,吕明,不锈钢应变过程中电化学噪声的特征,中国腐蚀与防护学报,1993,13(2):156~169
    [97] Y F Cheng, M Wilmott, J L Luo, The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise. Appl. Surf . Sci, 1999, 152: 161~168
    [98] P C Pistorius, Design aspects of electrochemical noise measurements for uncoated metals :electrode size and sampling rate, Corrosion, 1997, 53(4): 273~283
    [99] J F Chen, W F Bogaerts, Electrochemical emission spectroscopy for monitoring uniform and localized corrosion, Corrosion, 1996, 52(10): 753~759
    [100]宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988,154
    [101]熊奇,金属腐蚀的电化学噪声检测电极系统及其应用[硕士论文],天津:天津大学,2007
    [102]董泽华,郭兴蓬,郑家焱,电化学噪声的分析方法,材料保护,2001,34(7):20~23
    [103]张鉴清,张昭,王建明,电化学噪声的分析与应用—Ⅰ:电化学噪声的分析原理,中国腐蚀与防护学报,2001,121(15):310~320
    [104]张鉴清,张昭,王建明,电化学噪声的分析与应用Ⅱ电化学噪声的应用,中国腐蚀与防护学报,2001,122(14):241~248
    [105] C Cuevas-Arteaga, J Porcayo-Calder′on, Electrochemical noise analysis in the frequency domain and determination of corrosion rates for SS-304 stainless, steel Materials Science and Engineering A, 2006, 435–436: 439~446
    [106] G Gusmano, G Montesperelli, S Pacetti, et al., Electrochemical noise resistance as a tool for corrosion rate prediction, Corrosion, 1997, 53(11): 860~868
    [107] U Bertocci, F Huet, R Nogueira, et al., Drift removal procedures for PSD calculation. Corrosion 2001, NACE, Houston (TX), US, 2001, paper 01291
    [108] U Bertocci, F Huet, R Nogueira, Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, 58(4): 337~347
    [109] D A Eden, K Hladky, D G John, et al., Electrochemical noise simultaneous monitoring of potential and current noise signals from corroding electrodes, Corrosion 1986, NACE, Houston(TX), US, 1986, No. 86274
    [110] J F Chen, W F Bogaerts, The physical meaning of noise resistance, Corrosion Science, 1997, 37(11): 1839~1842
    [111] C C Lee, F Mansfeld, Analysis of electrochemical noise data for a passive system in the frequency domain. Corrosion Science, 1998, 40(6): 959~962
    [112] F Mansfeld, H Xiao, Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites, Progress in Organic Coatings 1997, 30: 89~100
    [113] C Gabrielli, F Huet, M Keddam, et al., A review of the probabilistic aspects of localized corrosion, Corrosion, 1990, 46(4): 266~279
    [114] Y F Chen, J L Luo, Metastable pitting of carbon steel under potentiostatic control, Electrochemical Society, 1999, 146(3): 970~976
    [115] Tao Zhang, Yawei Shao, Guozhe Meng, et al., Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution, Electrochimica Acta, 2007, 53: 561~568
    [116] C Gabrielli, F Huet, M Keddam, et al., Review of the probabilistic aspects of localized corrosion, Corrosion, 1990, 46: 266~278
    [117] J Flis, J L Dawson, J Gill, et al., Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda, Corros. Sci, 1991, 8: 877~892
    [118] K Hladky, J L Dawson, The measurement of corrosion using electrochemical 1/f noise, Corrosion Science, 1982, 22(3): 231~237
    [119] J C Uruchurtu, J L Dawson, Noise analysis of pure aluminum under different pitting conditions, Corrosion, 1987, 43(1): 19~26
    [120] A Legat, C Zevnik, The electrochemical noise of mild and stainless steel in various water solutions, Corrosion Science, 1993, 35(5~8): 1661~1666
    [121] R A Cottis, Interpretation of Electrochemical Noise Data, Corrosion, 2001, 57(3): 265~285
    [122] U Bertocci, C Gabrielli, F Huet, et al., Noise Resistance Applied to Corrosion Measurements, J.Electrochem.Soc., 1997, 144: 31~37
    [123] U Bertocci, F Huet, Noise resistance applied to corrosion measurements III. Influence of the instrumental noise on the measurements J. Electrochem. Soc. 1997, 144(8): 2786~2793
    [124] S Turgoose, R A Cottis, in: B.C. Syrett (Ed.), Corrosion Testing Made Easy: Electrochemical Impedance and Noise, NACE International, Houston,U.S.A., 1999, No. 1
    [125] J M S′anchez-Amaya, R A Cottis, F J Botana, Shot noise and statistica parameters for the estimation of corrosion mechanisms, Corros. Sci, 2005, 47(12): 3280~3299
    [126] K Nachstedt, K E Heusler, Electrochemical noise at passive iron, Electrochim. Acta, 1988, 33 (3): 311~321
    [127] R A Cottis, M A A Al-Awadhi, H A Al-Mazeedi, et al., Measures for the detection of localized corrosion with electrochemical noise, Electrochimica Acta, 2001, 46(24): 3665~3674
    [128] H A A Al-Mazeedi, R A Cottis, A practical evaluation of electrochemical noise parameters as indicators of corrosion type Electrochimica Acta, 2004, 49(17~18): 2787~2793
    [129] A A El-Moneim, Passivity and its breakdown of sintered NdFeB-based magnets in chloride containing solution, Corros. Sci., 2004, 46: 2517~2532
    [130] A Aballe, M Bethencourt, F J Botana, et al., Wavelet transform-based analysis for electrochemical noise, Electrochemistry communication, 1999, 1: 266~270
    [131] A Aballe, M Bethencourt, F J Botana, et al., Using wavelets transform in the analysis of electrochemical noise data, Electrochimica Acta, 1999, 44: 4805~4816
    [132] G Schmitt, K Moeller, P Plagemann, Online monitoring of crevice corrosion with electrochemical noise material and corrosion, 2004, 55(10): 742~747
    [133] S Richter, R I Thorarinsdottir, F Jonsdottir, On-line corrosion monitoring in geothermal district heating systems. II. Localized corrosion, Corrosion Science, 2007, 49: 1907~1917
    [134] Y Y Chen, Y M Liou, H C Shih, Stress corrosion cracking of type 321 stainless steels in simulated petrochemical process environments containing hydrogen sulfide and chloride, Materials Science and Engineering A, 2005. 407: 114~126
    [135] M Leban, ? Bajt, A Legat, Detection and differentiation between cracking processes based on electrochemical and mechanical measurements, Electrochimica Acta, 2004, 49: 2795~2801
    [136] T Haruna, R Toyota, T Shibata, The effect of potential on initiation and propagation of stress corrosion cracks for type 304L stainless steel in a chloride solution containing thiosulfate, Corrosion Science, 1997, 39(l0-11): 1873~1882
    [137] T Shibata, T Haruna, Electrochemical Conditions for the Occurrence of SCC in Type 316L Stainless Steel in Chloride Solutions Contaning Thiosulfate Ions, Corrosion Engineering, 1992, 41(4): 259~269
    [138] Lee J K, Szklarska-Smialowska Z, Stress corrosion cracking of sensitized AISI 304 stainless steel in aqueous chloride solutions containing sulfur species at 50℃through 200℃, Corrosion, 1988, 44(8): 560~565
    [139]褚武扬、乔利杰、陈奇志、高克玮,断裂与环境断裂,科学出版社2000, 8: 195~196
    [140] S Tsujikawa, A Miyasaka, M Ueda, et al., Alternative for evaluating sour gas resistance of low-alloy steels and corrosion-resistant alloys, Corrosion, 1993, 49(5): 409~419
    [141] J J Heller, G R Prescott, Cracking of Stainless Steels in Wet Sulfidic Environments in Refinery Units, Materials Protection, 1965, 4: 14~20
    [142] P Kritzer, N Boukis, E Dinjus, Corrosion of alloy 625 in high temperature sulfate solutions, Corrosion, 1998, 54: 689~699
    [143] J M Le Canut, S Maximovitch, F Dalard, Electrochemical characterisation of nickel-based alloys in sulphate solutions at 320℃, Journal of Nuclear Materials, 2004, 334: 13~27
    [144] R C Newman, K Sieradzki, H S Isaacs, Stress-corrosion cracking of sensitized type 304 stainless steel in thiosulfate solutions, Met Trans A 13A, 1982, 2015~2026
    [145] M Gomez-Duran, D D Macdonald, Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current Corrosion Science, 2005, 45: 1455~1471
    [146] R B Newman, K Sieradzki, Electrochemical aspects of stress corrosion cracking of sensitized stainless steels corrosion Science, 1983, 23(4): 363~378
    [147] M Gomez-Duran, D D Macdonald, Stress corrosion cracking of sensitized type 304 stainless steel in thiosulphate solution. II. Dynamics of fracture, Corrosion Science, 2006, 48: 1608~1622
    [148] D B Wells, J Stewart, R Davidson, et al., The mechanism of intergranular stress corrosion cracking of sensitised austenitic stainless steel in dilute thiosulphate solution, Corrosion Science 1992, 33: 39~71
    [149] P Schmutz, G S Frankel, Characterization of AA 2024-T3 by Scanning Kelvin Probe Force Microscopy, J. Electrochem. Soc., 1998, 145: 2285~2295
    [150]邹锋,韩薇,利用Kelvin探针进行金属薄液层下电化学测量,腐蚀科学与防护技术,1995,7(3):192~195
    [151]邹峰,韩文安,韩薇,应用Kelvin探针研究不锈钢焊接区的耐蚀性,腐蚀科学与防护技术,1997,9(4):276~280
    [152]周强,谢中,黄桂芳,化学镀层的扫描开尔文力显微术(SKFM)研究,电子显微学报,2005,24(3):192~195
    [153]王燕华,张涛,王佳等,Kelvin探头参比电极技术在大气腐蚀研究中的应用,中国腐蚀与防护学报,2004,24(1):59~64
    [154]陈鉴墅,秦山核电厂主冷却剂系统超流量运行及其影响的分析,核电工程与技术,1992,5(3):21~26
    [155]金王贵,压水堆核电站二回路热力系统的设计特点,热机技术,2002,1:12~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700