典型金属材料和涂层体系自然环境腐蚀检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作结合国家自然科学基金重大项目“材料在自然环境腐蚀过程中原位实时检测新技术的基础与应用研究”(No.50499335)和国家科技支撑计划项目“海洋工程结构腐蚀与防护检/监测技术及工程应用”(No.2007BAB27B04),将数字图像处理技术以及电化学测试技术引入到自然环境材料腐蚀监检测研究中,主要研究成果如下:
     建立了适用于实验室和大气暴露现场的腐蚀形貌图像采集系统,确立合适的腐蚀形貌图像采集参数和图像预处理方法。对大气暴露现场铝合金试样的腐蚀形貌图像进行跟踪采集,建立基于小波图像分析判别金属材料大气腐蚀程度的方法。根据图像能量值的变化,实现对试样腐蚀程度定性和定量判断,实验结果与腐蚀失重数据分析所得结果基本一致。
     采用图像识别技术对LC4CS、LY12CZ铝合金周期降雨模式加速腐蚀试样的腐蚀形貌进行了研究:运用小波图像分析技术对滤波处理后的图像进行分解并提取子图像的能量值。利用典型相关技术分析图像能量值与试样腐蚀失重之间的典型相关性,提出图像特征值δ的概念。以特征值δ作为考察周期降雨试验加速性的指标,分析各试验因子对试验加速性的影响,得到加速腐蚀试验的最佳水平组合,其结论与腐蚀失重数据分析结论一致。
     结合数字图像技术和色度学相关原理,针对老化过程涂层表面出现的色彩变化,建立基于颜色特征的涂层材料老化失效性能检测方法。采用HSV颜色空间对腐蚀试样表面的变色程度进行描述,提出表征涂层材料表面色彩变化的腐蚀性能参数CP,实现对涂层试样相对老化失效程度的判别。
     构建并完善以电化学噪声(EN)技术为基础的铝合金大气腐蚀现场检测系统,考察不同电化学噪声监测系统对测试环境的敏感性,获得自然大气环境中铝合金大气腐蚀的电位电流噪声和噪声电阻变化,结果表明所构建的现场检测系统能够实现铝合金大气腐蚀的检测,实验数据也充分反映了表面薄液膜变化对铝合金腐蚀的影响。
     运用EIS和EN技术研究青岛海洋环境中暴露不同周期的环氧铁红、醇酸铁红以及环氧富锌底涂层体系在3.5%NaCl溶液中的腐蚀行为结合数字图像技术,对涂层材料表面锈蚀状况的定量评价,建立环氧富锌底涂层图像灰度值分布和电化学特征参数之间的关系模型,并具有较高的拟合精度。
Corrosion rates of metals exposed in environmental tests are often determined from the weight changes of specimens after corrosion product stripping. However, visual inspection or weight change measurements are not appropriate techniques to evaluate non-uniform corrosion and the early stage corrosion. In this paper, the digital image processing and electrochemical testing methods were used in aluminium alloy atmospheric corrosion and coating materials’corrosion detection research. The main conclusions are as follow:
     The corrosion morphology image acquisition systems were established which can be used both in the laboratory and filed. The suitable parameter to capture images and corresponding pre-processing methods were discussed and determined. In Beijing atmospheric corrosion exposure station, the image acquisition system was used to capture the early stage corrosion morphology of aluminium alloy specimens. After the denoise treatment, wavelet transformation was applied to decompose the improved images and energies of sub-images were extracted as character information. Based on the variation of image energy values, the corrosion degree of aluminium alloy specimens was qualitatively and quantitatively analyzed. The conclusion was basically identical with the result based on the corrosion weight loss.
     Periodic rain tests have been carried out for simulating atmospheric corrosion of aeronautical LC4CS and LY12CZ aluminium alloys. The digital image preprocessing and analysis method based on wavelet transformation was used to study the corrosion morphology of aluminium alloys samples. The canonical correlation analysis was used to gain the correlative coefficient between the energy values and the corrosion loss, through which an image feature parameterδwas extracted and discussed. The influences of orthogonal experiment parameters on acceleration were analyzed according to image feature parameterδwith analysis of variance (ANOVA) method, and the optimal parameters for accelerated corrosion test were also obtained. The result was shown to be consistent with that from weight loss method.
     An inspective method of corrosion surface damage of coating materials by using the digital image processing technology and correlative theories of colorimetry was discussed. The corrosion morphology image acquisition system was established, and it was used to capture the corrosion morphology of coating specimens, which were exposed in the field exposure station. To describe the discoloration of corrosion surface damages, we use the HSV color model. The Euclidean Distance between uncorroded image and corrode image was extracted as color characteristics parameter CP. This analysis develops a method for automated identification system of discoloration of corrosion damages, and is supposed to be an important step in the promising direction in corrosion inspection.
     The atmospheric corrosion field detective system of aluminium alloy based on electrochemical noise (EN) technology was presented. The environment sensitivity of different EN data acquisition systems was discussed. The electrochemical potential and current noise were acquired by aluminum alloy atmospheric corrosion sensor in natural atmosphere as well as the noise resistance. The result of simulation experiments showed that the filed detective system established was suited for detection of aluminium alloy atmospheric corrosion; the data collected were able to reflect the influence that transformation of surface thin liquid film on aluminium alloy corrosion.
     The electrochemical impedance spectroscopy (EIS) technology, electrochemical noise (EN) technology and digital image processing method were used to evaluate the degradation of the Q235 steel samples with different prime coating which have been exposed to the splash zone of Qingdao sea area with different times. The specimens’suface corrosion was quantitatively analyzed by image analysis. And with a high correlative coeddicent, 0.93, the linear relational model between the gray distribution of epoxy rich zinc primer coating specimens and electrochemical parameter-low frequency domain |Z0.01Hz| has been studied.
引文
[1]卢绮敏,石油工业中的腐蚀与防护,北京:化学工业出版社,2001,4~10
    [2]王光雍,王海江,李兴濂等,自然环境的腐蚀与防护,北京:化学工业出版社,1997,20~24
    [3]王耀南,李树淘,毛建旭,计算机图像处理与识别技术,北京:高等教育出版社,2001,1~10
    [4]夏良正,数字图像处理,南京:东南大学出版社,1999,1~9
    [5]刘榴娣,刘明奇,党长民,实用数字图像处理,北京:北京理工大学出版社,1998,198~218
    [6]王新成,高级数字图像处理技术,北京:中国科技出版社,2000,1~20
    [7] Milan Sonka, Vaclav Hlavac, Roger Boyle, et al., Image processing, analysis, and machine vision,北京:人民邮电出版社,2002,10~40
    [8]胡学龙,许开宇,数字图像处理,电子工业出版社,北京,2006.9,152
    [9] G. N. Frantziskonis, L. B. Simon, Woo Jung, et al., Multiscale characterization of pitting corrosion and application to an aluminum alloy, European Journal of Mechanics, A/Solids, 2000, 19(2): 309-318
    [10] J. W. J. Silva, A. G. Bustamante, E. N. Codaro, et al., Morphological analysis of pits formed on Al 2024-T3 in chloride aqueous solution, Applied Surface Science, 2004, 236(1-4): 356-365
    [11]纪钢,张建勋,基于图像检索技术的材料腐蚀原值监测系统,重庆建筑大学学报,2005,27(4):125-128
    [12]曲彦平,金燕利,苑玮琦等,计算机图像识别技术在镀层腐蚀外观颜色信息评定中的应用,表面技术,2005,34(4):71-72
    [13] D. Itzhak, I. Dinstein, T. Zilberberg, Pitting corrosion evaluation by computer image processing, Corrosion Science, 1981, 21: 17~22
    [14] E. N. Codaro, R. Z. Nakazato, A. L. Horovistiz, et al., An image processing method for morphology characterization and pitting corrosion evaluation, Materials Science and Engineering, 2002, 334: 298~306
    [15] M. J. Quin, M. G. Bailey, B. M. Ikeda, et al., Image-analysis techniques for investigating localized corrosion processes, Atomic Energy of Canada Limited, AECL (Report), 1993: 1~51
    [16]苏润西,宋诗哲,304不锈钢孔蚀过程原位图象采集与分析,金属学报,1998,34(9):966-970
    [17] Wang Shouyan, Tao Lei, Song Shizhe, In-situ image analysis of stainless steel pitting corrosion, 16th International Corrosion Congress, Beijing, 2005, Paper No. 9-3
    [18] S. Journaux, C. Guillaumin, P. Gouton, et al., Image analysis of corrosion pit damage, Optical Engineering, 1999, 38(8): 1312~1318
    [19] M. Kurose, A. Morikawa, M. Tsuda, et al., Image processing approach to corrosion configuration of pure copper and fractal characteristics, Journal of the Society of Materials Science, 1995, 5: 649~655
    [20]孔德英,王守琰,宋诗哲,金属材料腐蚀形貌图像与实海挂片数据相关性研究,中国腐蚀与防护学报,2001,21(6):352-356
    [21]王守琰,孔德英,宋诗哲,基于模糊模式识别的金属材料海水腐蚀形貌诊断系统,金属学报,2001,37:517-521
    [22]王守琰,宋诗哲,基于分形的金属材料海水腐蚀形貌图像分析诊断系统,金属学报,2004,40(1):94-98
    [23]宋诗哲,王守琰,高志明等,图像识别技术研究有色金属大气腐蚀早期行为,金属学报,2002,38:896-896
    [24] Wang Shouyan, Song Shizhe, Image analysis of atmospheric corrosion exposure of zinc, Materials Science and Engineering A , 2004 (38): 377-381
    [25] S. Livens, P. Scheunders, W.G. Van, et al., Classification of corrosion images by wavelet signatures and LVQ networks, Lecture Notes in Computer Science, 1995, 970 (9): 6-8
    [26]颜云辉,高金鹤,刘勇等,基于小波变换的金属断口模式识别与分类,金属学报,2002,38(3):309~314
    [27] K. Y. Choi, S. S. Kim, Morphological analysis and classification of types of surface corrosion damage by digital image processing, Corrosion Science, 2005, 47(1): 1-15
    [28]彭涛,通过图像处理诊断管道腐蚀法,现代科技译丛,2000,5:22~23
    [29] B. N. Nelson, P. Slebodnick, E. J. Lemieux, et al., Wavelet processing for image de-noising and edge detection in automatic corrosion detection algorithms used in shipboard ballast tank video inspection systems , Proceedings of SPIE-The International Society for Optical Engineering, Houston: ASTM Committee, 2001, 18~20
    [30] P. Samsonov, Nondestructive visual inspection of aging aircraft, Proceedings of SPIE-The International Society for Optical Engineering, Houston: ASTM Committee, 1995, 190~196
    [31] M. J. Palakal, R. M. V. Pidaparti, S. Rebbapragada, et al., Intelligent computational methods for corrosion damage assessment, AIAA Journal, 2001, 39(10): 1936~1943
    [32]王耀南,李树淘,毛建旭,计算机图像处理与识别技术,北京:高等教育出版社,2001,1~10
    [33] J. A. Gonzalez, M. Morcillo, E. Escudero, et al., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results, Surface and Coatings Technology, 2002, 153(2-3): 225~234
    [34] V. Lopez, J. A. Gonzalez, E. Otero, Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses, Surface and Coatings Technology, 2002, 153(2-3): 235~244
    [35] R. D. D. Vera, M. Blanca, Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part I. Aluminium and AA6201 alloy, Corrosion Science, 2006, 48(10): 2882~2900
    [36] M. Morcillo, J. Simancas, F. Corvo, et al., Behaviour of painted aluminium in Ibero-American atmospheres, Revista de Metalurgia (Madrid), 2003, SPEC: 151~156
    [37]王振尧,于国才,韩薇,3种有色金属在沈阳地区的大气腐蚀规律,中国有色金属学报,2003,13(2):367~372
    [38]王云,甘株,2024铝合金型材不同气候区的大气腐蚀行为,腐蚀科学与防护技术,1993,5(4):304~308
    [39] F. Mansfield, J. V. Kenkel, Electrochemical monitoring of atmospheric corrosion phenomen, Corrosion Science, 1976, 16: 111~124
    [40] T. Shinohara, S. O. Motada, Wataru, Evaluation of corrosivity in atmospheric environment by ACM (Atmospheric Corrosion Monitor) type corrosion sensor, Materials Science Forum, 2005, 475-479 (I, PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing): 61~64
    [41] G. W. Walter, Laboratory simulation of atmospheric corrosion by SO2 I Apparatus, electrochemical techniques, example results, Corrosion Science, 1991, 32(12): 1331~1352
    [42] G. W. Walter, Laboratory simulation of atmospheric corrosion by SO2 II Electrochemical mass loss comparisons, Corrosion Science, 1991, 32(12): 1353~1376
    [43]高耕宇,黄春晓,孙成,酸雨对大气腐蚀临界相对湿度的影响,中国腐蚀与防护学报,1990,10(2):183~186
    [44] Wang Fengping, Zhang Xueyuan, Du Yuanlong, Effect of CO2 on atmospheric corrosion of UNS G10190 steel under thin electrolyte film, Chemical Research in Chinese Universities, 2000, 16(1): 36~41
    [45] M. Jonsson, D. Thierry, N. LeBozec, The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe, Corrosion Science, 2006, 48(5): 1193~1208
    [46]王佳,水流彻,使用Kelvin探头参比电极技术进行薄液层下电化学测量,中国腐蚀与防护学报,1995,15(3):173~179
    [47]王佳,水流彻,使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响,中国腐蚀与防护学报,1995,15(3):180~188
    [48]邹锋,韩薇,线性回归法进行Kelvin电位测试,腐蚀科学与防护技术,1995,7(1):17~22
    [49]邹锋,韩薇,利用Kelvin探针进行金属薄液层下电化学测量,腐蚀科学与防护技术,1995,7(3):192~195
    [50] G. Reinhard, P. Simon, U. Rammelt, Application of corrosion inhibitors in water-borne coatings, Progress in Organic Coatings, 1992, 20(3-4): 383-392
    [51] M. C. Bernard, S. Duval, S. joiret, et al., Analysis of corrosion products beneath an epoxy-amine varnish film, Progress in Organic Coatings, 2002, 45(4): 399-404
    [52] M. Kralji?, Z. Mandi?, Lj. Dui?, Inhibition of steel corrosion by polyaniline coatings, Corrosion Science, 2003, 45(1): 181-198
    [53] M. Kralji?, K.Kvastek, V. Horvat-Rado?evi?, et al., Poly(ortho-ethoxyaniline) in corrosion protection of stainless steel, Corrosion Science, 2007, 49(6): 2567-2580
    [54] J. D. Scantlebury, K. Galic, Application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution, Progress in Organic Coatings, 1997, 31(3): 201-207
    [55] Werner Strunz, Dielectric relaxation in barrier coatings: A square root of time process, Progress in Organic Coatings, 2000, 39(1): 49-60
    [56] S. González, M. A. Gil, J. O. Hernández, et al., Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating, Progress in Organic Coatings, 2001, 41(1-3): 167-170
    [57] C. G. Oliveira, M. G. S. Ferreira, Ranking high-quality paint systems using EIS. Part I: intact coatings, Corrosion Science, 2003, 45(1): 123-138
    [58] B. Trachli, M. Keddam, H. Takenouti, et al., Protective effect of electropolymerized 2-mercaptobenzimidazole upon copper corrosion, Progress in Organic Coatings, 2002, 44(1): 17-23
    [59] C. G. Oliveira, M. G. S. Ferreira, Ranking high-quality paint systems using EIS. Part II: defective coatings, Corrosion Science, 2003, 45(1): 139-147
    [60] F. Deflorian, L. Fedrizzi, S. Rossi, et al., Organic coating capacitance measurement by EIS: Ideal and actual trends, Electrochimica Acta, 1999, 44(24): 4243-4249
    [61] F. Mansfeld, H. Xiao, L. T. Han, et al., Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites, Progress in Organic Coatings,1997, 30(1-2): 89-100
    [62] L. B. Reynolds, R. Twite, M. Khobaib, et al., Preliminary evaluation of the anticorrosive properties of aircraft coatings by electrochemical methods, Progress in Organic Coatings,1997, 32(1-4): 31-34
    [63] Q. Le Thu, G. P. Bierwagen, S. Touzain, EIS and ENM measurements for three different organic coatings on aluminum, Progress in Organic Coatings, 2001, 42(3-4): 179-187
    [64] K. M. Yin, H. Z. Wu, Electrochemical impedance study of the degradation of organic-coated copper, Surface and Coatings Technology, 1998, 106(2-3): 167-173
    [65] L. Fedrizzi, F. J. Rodriguez, S. Rossi, et al., The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films, Electrochimica Acta, 2001, 46(24-25): 3715-3724
    [66] J. G. Liu, G. P. Gong, C. W. Yan, EIS study of corrosion behaviour of organic coating/Dacromet composite systems, Electrochimica Acta, 2005, 50(16-17): 3320-3332
    [67] V. Lavaert, M. De Cock, M. Moors, et al., Influence of pores on the quality of a silicon polyester coated galvanized steel system, Progress in Organic Coatings, 2000, 38(3): 213-221
    [68] D. G. D. Mario, V. J?rg, F. Lorenzo, et al., Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy, Progress in Organic Coatings, 1999, 37(1-2): 69-81
    [69] L. Valentinelli, J. Vogelsang, H. Ochs, et al., Evaluation of barrier coatings by cycling testing, Progress in Organic Coatings, 2002, 45(4): 405-413
    [70] G. P. Bierwagen, L. He, J. Li, et al., Studies of a new accelerated evaluation method for coating corrosion resistance—thermal cycling testing, Progress in Organic Coatings, 2000, 39(1): 67-78
    [71] A. Miszczyk, K. Darowicki, Accelerated ageing of organic coating systems by thermal treatment, Corrosion Science, 2001, 43(7): 1337-1343
    [72] L. P. Christophe, L. Colette, P. Nadine, Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of fillers, Progress in Organic Coatings, 2000, 39(2-4): 167-175
    [73]曹楚南,中国材料的自然环境腐蚀,化学工业出版社,北京,2005.1,360-361
    [74]张金涛,胡吉明,张鉴清,有机涂层的现代研究方法,材料科学与工程学报,2003,21(5):763-768
    [75]张鉴清,曹楚南,电化学阻抗谱方法研究评价有机涂层,腐蚀与防护,1998,19(3):99-104
    [76] K. M Yin, H. Z. Wu, Electrochemical impedance study of the degradation of organic-coat copper, Surface and Coatings technology, 1998, 106(2-3): 167-173
    [77] G. M. Treacy, G. D. Wilcox, M. O. W. Richardson, Behaviour of molybdate- passivated zinc coated steel exposed to corrosive chloride environments, Journal of Applied Electrochemistry, 1999, 29: 647-654
    [78] D. J. Mill, S. Mabbutt, Investigation of defects in organic anti-corrosive coatings using electrochemical noise measurement, Progress in Organic Coatings, 2000, 39(1): 41-48
    [79] C. P. Woodcock, D. J. Mills, H. T. Singh, Use of electrochemical noise method to investigate the anti-corrosive properties if a set of compliant coatings, Progress in Organic Coating, 2005, 52(4):257-262
    [80] J. Mojica, E. García, F. J. Rodríguez, Evaluation of the protection against corrosion of a thick polyurethane film by electrochemical noise, Progress in Organic Coating, 2001, 42(3): 218-225
    [81] B. Lengyel, L. Meszaros, G. Meszaros, et al., Electrochemical methods to determine the corrosion rate of metal protected by paint film, Progress in Organic Coating, 1999, 36(1-2): 11-14
    [82] H. Xiao, L. T. Han, C. C. Lee, et al., Collection of electrochemical impedance and noise data for polymer—coated steel from remote test sites, Corrosion, 1997, 53: 412-422
    [83] C. T. Chen, B. S.Skerry, Assessing the corrosion resistance of painted steel by AC impedance and electrochemical noise techniques, Corrosion, 1991, 47: 598-611
    [84] G. P. Bierwagen, Calculation of noise resistance from simultaneous electrochemical voltage and current noise data, Journey of Electrochemical Society, 1994, 141: 155-157
    [85] Y. Puget, K. Trethewey, R. J. K. Wood, Electrochemical noise analysis of polyurethane–coated steel subjected to erosion– corrosion, Wear, 1999, 233-235; 552-567
    [86]王凤平,张学元,杜元龙,大气腐蚀研究动态与进展,腐蚀科学与防护技术,2000,12(2):104-104
    [87] ISO 9223, Corrosion of metals and alloys, Classification of corrosivity of atmospheres, 1992
    [88] J. Li, M. Li, Z.Sun, Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods, Corrosion, 1999, 55(5): 498-502
    [89]林翠,王凤平,李晓刚,大气腐蚀研究方法进展,中国腐蚀与防护学报,2004,24(4):249-256
    [90] A. Nishikata, Y. Yamashita, H. Katayama, et al., An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition Corrosion Science, 1995, 37(12): 2095-2069
    [91] A. P. Yadav, A. Nishikata, T. Tsuru, Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions––influence of time of wetness, Corrosion Science, 2004, 46(1): 169-181
    [92]郭福星,多元统计分析,福州:福州科学技术出版社,1990,169-175
    [93]郑少华,姜奉华,试验设计与数据处理,中国建材工业出版社,2004,66
    [94]李云雁,胡传容,试验设计与数据处理,化学工业出版社,2005
    [95]刘剑平,陆元鸿,概率论与数理统计方法,华东理工大学出版社,2003
    [96]张正,飞行器用铝合金大气腐蚀的电化学检测研究[博士学位论文],天津:天津大学,2006
    [97]韩磊,腐蚀电化学检测中的虚拟仪器技术[博士学位论文],天津:天津大学,2007
    [98]宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988,4~6,154
    [99] Y. J. Tan, S. Bailey, B. Kinsella, The monitoring of the formation and destruction of corrosion inhibitor filems using electrochemical noise analysis (ENA), Corrosion Science, 1996, 38(10):1681-1695
    [100] T. Schauer, H. Greisiger, L. Dulog, Details on MEM analysis of electrochemical noise data and correlation with impedance measurement for organic coating on metals, Electrochemical Acta, 1998, 43(16-17): 2423-2433
    [101] Mansfield F, Sun Z, Hsu C H, Concering trend removal in electrochemical noise measurements, Corrosion Science, 2001, 43: 341-352
    [102] U. Bertocci, F. Huet, Drift removal procedures in the analysis of electrochemical noise, Corrosion , 2002, 58(4): 337-347
    [103] U. Bertocci, F. Huet, R. Nogueira, et al., Drift removal procedures for PDS calculation, NACE 2001, paper No. 01291
    [104] D. A. Eden, K. Hladky, D. G. John, et al., Electrochemical noise– simultaneous monitoring of potential and current noise signals from corroding electrodes, Corrosion 1986, NACE, Houston(TX), US, 1986, paper 86274
    [105] F. Mansfeld, H. Xiao, Electrochemical Noise Measurements for Corrosion Applications, ASTM STP, 1996, 1277: 59
    [106] J. F. Chen, W. F. Bogaerts. The physical meaning of noise resistance, Corrosion Science, 1997, 37(11): 1839~1842
    [107] A. Legat, V. Dole?ek, Corrosion monitoring system based on measurement and analysis of electrochemical noise, Corrosion, 1995, 51(4): 295~300
    [108] A. Legat, C. Zevnik, The electrochemical noise of mild and stainless steel in various water solutions, Corrosion Science, 1993, 35(5~8): 1661~1666
    [109] J. C. Uruchrutu, J. L. Dawson, Noise analysis of pure aluminum under different pitting conditions, Corrosion, 1987, 43(1): 19~25
    [110]曹楚南,常晓元,林海潮,孔蚀过程中的电化学噪声特征,中国腐蚀与防护学报,1989,9(1):21~28
    [111] J. Flis, J. L. Dawson, J. Gill, et al., Impedance and electrochemical noise measurements on iron and iron–carbon alloys in hot caustic soda, Corrosion Science, 1991, 32(8): 877~892
    [112] T. N. Nguyen, J.B. Hubbaed, G. B. McFadden, A mathematical model for the cathodic Blistering of organic coatings on steel immersed in electrolytes, Journey of coatings technology, 1991, 63(794): 43-52
    [113]徐永祥,严川伟,高延敏等,大气环境中涂层下金属的腐蚀和涂层的失效,中国腐蚀与防护学报,2002,22(4):249-256
    [114]中华人民共和国国家技术监督局,GB/T 1766-1995,中华人民共和国国家标准,北京:中国标准出版社,1995-06-12
    [115]陶霖密,徐光祐,机器视觉中的颜色问题及应用,科学通报,2001,46(3):178-190
    [116]林福宗,多媒体技术基础,北京:清华大学出版社,2002:116
    [117]李国辉,柳伟,曹莉华,一种基于颜色特征的图象检索方法,中国图象图形学报,1999,4A(3):248-251
    [118] F. Mansfeld, L. T. Han, C. C. Lee, et al., Analysis of electrochemical impedance and noise data for polymer coated metals, Corrosion Science, 1997, 39(2): 255-279
    [119] M. Stratmann, A. Leng, W. Fürbeth, et al., The scanning Kelvin probe: a new technique for the in-situ analysis of the delamination of organic coatings, Progress in Organic Coating, 1996, 27(1): 261-267
    [120] G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochimica Acta, 2000, 45(15-16): 2515-2533
    [121] A. Miszczyk, T. Schauer, Electrochemical approach to evaluate the interlayer adhesion of organic coatings, Progress in Organic Coatings, 2005, 52(4): 298-305
    [122] Q. Le Thu, H. Takenouti, S. Touzain, EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater, Electrochimica Acta, 2006, 51(12): 2491-2502
    [123] U. Bertocci, F. Huet, Noise analysis applied to electrochemical systems, Corrosion, 1995, 51: 131-134
    [124]宋诗哲,尹立辉,武杰等,模拟循环冷却系统黄铜管的腐蚀电化学,化工学报,2005,56(1):121-125
    [125] A. Legat, M. Leban, Z. Bajt, Corrosion processes of steel in concrete characterized by means of electrochemical noise, Electrochimica Acta, 2004, 49(17-18): 2741-2751
    [126]张鉴清,张昭,王建明等,电化学噪声的分析与应用I-电化学噪声的分析原理,中国腐蚀与防护学报,2001,21(5):310-320
    [127]张鉴清,张昭,王建明等,电化学噪声的分析与应用I-电化学噪声的应用,中国腐蚀与防护学报,2001,22(4):241-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700