CdS纳米棒阵列及其异质结构的制备和光生电荷性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳能解决能源短缺和环境污染问题是当前国内外的热点课题,而开发高性能的光电功能材料是太阳能有效利用的基础。CdS作为一种典型的Ⅱ-Ⅵ半导体材料,由于具有良好的可见光光电性质而成为太阳能利用研究中的热点。特别是近年来通过对CdS进行修饰和改性构成具有异质界面的复合材料,能够提高光生电荷的分离效率,减缓其光腐蚀,改善其光电性能,而受到了国内外的广泛关注。但是,对于CdS纳米材料及由它构成异质材料的光生电荷行为(光生电荷转移的方向,分离效率和寿命等)却鲜有报道,而这些信息对于构建高效的CdS基光电功能材料却是至关重要的。
     本论文利用水热合成方法制备了不同形貌的CdS纳米粒子,并以CdS纳米阵列为基础制备了CdS/ZnO和CdS/ZnS异质结构。以表面光伏技术为主要的研究手段,系统研究了它们的光生电荷性质,并取得了一些具有创新意义的研究结果:
     1、利用水热合成方法制备了CdS纳米粒子、CdS六棱柱体以及CdS纳米柱阵列。表面光伏测试结果显示光伏响应为正值,符合CdS的n-型特征。而长波段的负向响应与亚带隙跃迁相关,属于表面态布居跃迁。首次利用表面光伏相位谱方法对CdS纳米材料的光伏特性进行解析,结果发现:相同的跃迁过程具有相近的光伏相位,不同的跃迁过程其相位值差别较大;当光伏相位发生突变( >100°)时,表明光生电荷扩散方向可能发生反转;可以通过表面光伏相位谱的突变点或拐点估算半导体材料的禁带宽度。
     2、以CdS六棱柱体和CdS纳米阵列为基础构筑了CdS/ZnO异质结构,并研究了其光生电荷性质,发现CdS/ZnO异质结构材料的表面光伏响应明显降低了,这可能是由于CdS与ZnO之间形成了一个弱的界面电场,在这个界面电场的作用下,CdS带带跃迁的的部分光生电子转移到了ZnO中,抵消了CdS本身带带跃迁的光伏响应。从表面光伏相位谱和瞬态光伏响应结果中可以直接分辩出这种光生电荷转移过程。
     3、在CdS纳米阵列的基础上,制备了CdS/ZnS异质结构。SPS研究表明:在CdS与ZnS之间存在一个界面电场,由于界面电场的存在消除了光生电子的束缚,导致光生空穴在表面富集。表面光伏相位谱显示CdS纳米阵列在370nm处发生相位突变,而CdS/ZnS异质结构中,没有发生相应的相位突变,这些结果证明异质界面的存在对光生电荷的扩散方向有显著的调控作用。
The utilization of the solar energy is a hot and permanent subject. Exploiting photoelectric functional materials with top performance is the foundation for solar energy conversion. As a typicalⅡ-Ⅵsemiconductor, CdS attracts many attentions for its high extinction coefficient in visible spectrum and large intrinsic dipole moment that leads to rapid charge separation. In recent years, many efforts have been focused on the modification of CdS nanostructures by introducing a second semiconductor compound to form heterostructures. It is cognized that the heterogeneous structure can hold up photo corrosion and improve the photoelectric properties of functional materials based on cadmium sulphide. However, few report expounds the behaviors of photogenerated charges (the generation, separation, transportation and recombination) of CdS nanostructrues and its heterostructures. While, this is the basic for developing the advanced materials with photo-to-electric converting function.
     In this paper, We fabricated large-scale CdS nanorod arrays with different morphologies by hydrothermal approach. And then CdS/ZnO, CdS/ZnS heterostructures was design on that basis. We studied the photoelectric properties of the above systems by surface photovoltage (SPV) technique and the transient photovoltage (TPV) technique and obtained some novel results.
     1. Well-defined hexangularly faced CdS nanorod arrays with different length-width ratio were fabricated by hydrothermal approach on a FTO substrate. The results shows that a positive response of SPV for CdS band to band transition which is correspond with the characteristics of n-type semiconductor. While the negative response in the lower energy region is correlated to sub-band-gap transitions. We utilized SPV phase for the first time to analyze the photovoltaic properties of CdS nanorod arrays and discovered the following results: The same transition processes have similar SPV phase signals, while different transition processes own their respective SPV phase signals. When the signal exhibits a break (>100°), there is a reversion of photo-generated charges direction. We can assess the band gap of a semiconductor materials by the break-point of SPV phase spectrum.
     2. The photo-generated charges characteristics of CdS/ZnO heterostructures materials have been studied by means of SPV techniques. The results showed that the photovoltage intensities of CdS/ZnO heterostructures materials decreased comparing with that of CdS. From the results of TPV measurement, the photo-generated electrons of CdS could transfer to ZnO under illumination since an electric field formed on the interface between CdS and ZnO. But this field is too weak to dominate the photo-generated charges characteristics. This result indicates that photo-generated charges characteristics can be clarified furthermore by means of surface photovoltage phase and transient photovoltage techniques.
     3. The SPV spectra of the CdS/ZnS heterostructures shows that there is a interface electric field between CdS and ZnS. It will counteract the bondage of photogenerated electrons and result in the enrichment of photogenerated holes at the surface. The SPV phase spectrum of bare CdS nanorod arrays has a break-point at 370nm, while in the case of CdS/ZnS, no obvious break-point was observed. These results show that the presence of a heterointerface will adjust the direction of the diffusion of photogenerated charges.
引文
[1] CIAMICIAN G The Photochemistry of the Future. Science, 1912, 36: 926
    [2] SMITH W. Effect of Light on Selenium during the passage of an ElectricCurrent[J]. Nature, 1873, 20: 303
    [3] SCHROEDER D K. Semiconductor Material and Device Characterization,Wiley: New York, 1998
    [4] HULLAVARAD N V, HULLAVARAD S S, KARULKAR P C. CadmiumSulphide (CdS) Nanotechnology: Synthesis and Applications. [J]. Journal ofNanoscience and Nanotechnology 2008, 8: 3272
    [5] MOORE D, WANG Z L. Growth of anisotropic one-dimensional ZnSnanostructures [J]. Journal of Material Chemistry, 2006, 16: 3898-3905
    [6] SMART L E, MOORE E A. Solid State Chemistry: An Introduction, Taylor andFransis: New York, 2005
    [7] FANG X S, ZHANG L D. One-dimensional (ID) ZnS Nanomaterials andNanostructures. [J]. Journal of Material Science Technology. 2006. 22: 721-736
    [8] MURAI H, ABE T, MATSUDA J, SATO H, CHIBA S, KASHIWABA Y.Improvement in the light emission characteristics of CdS:Cu/CdS diodes [J].Applied Surface Science, 2005, 244: 351-354
    [9] KORGEL B A, MONBOUQUETTE H G Controlled synthesis of mixed coreand layered (Zn, Cd) S and (Hg. Cd) S nanocrystals within phosphatidylcholinevesicles [J]. Langmuir 2000. 16: 3588
    [10] WANG W, GERMANENKO I. Room-temperature synthesis and characterizationof nano crystal line CdS, ZnS, and CdxZni_xS, [J]. Chemistry of Materials 2002.14:3028
    [11] PETROV D.V. Size and band-gap dependences of the first hyperpolarizability ofCd*Zm.xS nanocrystals, [J]. J. Phys. Chem. B 2002, 106: 5325.
    [12] HUGGINS M L. Evidence from Crystal Structures in Regard to AtomicStructures [J]. Physical Review, 1926, 27: 286
    [13] FRERICHS R. The Photo-Conductivity of'Incomplete Phosphors"[J]. PhysicalReview, 1947,72:594
    [14] REYNOLDS D C. LEIES Q ANTES L L, MARBURGER R E. PhotovoltaicEffect in Cadmium Sulfide [J]. Physical Review, 1954, 96: 533
    [15] SHULMAN C I. Measurement of Shot Noise in CdS Crystals [J]. PhysicalReview, 1955,98:384
    [16] SMITH R W. Properties of Ohmic Contacts to Cadmium Sulfide Single Crystals[J]. Physical Review, 1955, 97: 1525
    [17] KALLMANN H, KRAMER B, MARK P. Impedance Measurements on CdSCrystals [J]. Physical Review, 1955,99: 1328
    [18] STEINBERGER I T, ALEXANDER E. Influence of Alternating Electric Fieldson the Light Emission of Some Phosphors [J]. Physical Review, 1955, 99: 1217
    [19] BUBE R H. Infrared Quenching and a Unified Description of PhotoconductivityPhenomena in Cadmium Sulfide and Selenide [J]. Physical Review 1955, 99:1105
    [20] SOMMERS H S. BERRY R E, SOCHARD I. Photoelectromagnetic Effect inInsulating CdS [J]. Physical Review, 1956,101: 987[21 ] BUBE R H. Comparison of Surface-Excited and Volume-Excited Photoconduction in Cadmium Sulfide Crystals [J]. Physical Review, 1956, 101: 1668
    [22] LAWSON W D, SMITH F A, YOUNG A S. [J]. Journal of ElectrochemistrySociety 1960, 107:206
    [23] LAMBE J. Cadmium Sulfide with Silver Activator Cadmium Sulfide with Si;verActivator [J]. Physical Review, 1955, 100: 1586
    [24] CARDONA M, HAENSEL R. Optical properties of the rubidium and cesiumhalides in the extreme ultraviolet. Physical Review B. 1970. 1: 2605
    [25] RICHARDS D. [J]. Journal of Vacuum Science & Technology A 1984, 2: 2
    [26] CHUU D S, DAI C M. Quantum size effects in CdS thin films [J]. PhysicalReview B 1992, 45: 11805
    [27] STEPHENS R B [J]. Physical Review B, 1984, 29: 3283
    [28] SCIACCA M D, MAYUR A J, YOO W S. Infrared observation of transverse andlongitudinal polar optical modes of semiconductor films: Normal and obliqueincidence [J]. Physical Review B 1995. 51: 7744
    [29] BRUSH L E. Electronic wave functions in semiconductor clusters: experimentand theory [J]. Journal of Chemical Physics, 1984, 80: 4403
    [30] BECERRA L, MURRAY C B, GRIFFIN R Q BAWENDI M G Investigation ofthe surface-morphology of capped CdSe nanocrystallites by P nuclear magneticresonance [J]. Journal of Physical Chemistry 1994, 100: 3297.
    [31] YU W W and PENG X G Formation of High-Quality CdS and Other II-VISemiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity ofMonomers [J]. Angewandte Chemie International Edition 2002, 4: 2368
    [32] YANG Y J. [J]. Colloids Surfaces A: Physico. Eng. Aspects 2006, 276,192
    [33] UCHIHARAT, MIYAGI E. [J]. Journal of Photochemistry & Photobiology A:Chemistry, 2006, 181: 86
    [34] NARAYANAN S S, PAL S K. Aggregated CdS quantum dots: Host ofbiomolecular ligands [J]. Journal of Physical Chemistry B. 2006, 110: 24403
    [36] BARRELET C J, WU Y, BELL D C, LIEBER C M. Synthesis of CdS and ZnSNanowires Using Single-Source Molecular Precursors [J]. Journal of theAmerican Chemical Society, 2003, 125: 11498-11499
    [37] DONG L, JIAO J, COULTER M, LOVE L. Catalytic growth of CdS nanobeltsand nanowires on tungsten substrates [J]. Chemical Physics Letters 2003,376:653
    [38] ZHAI T. Y, FANG X S, BANDO Y, SEKIGUCHI T, GOLBERG D.Characterization, Cathodoluminescence, and Field-Emission Properties ofMorphology-Tunable CdS Micro/Nanostructures [J]. Advanced FunctionalMaterials, 2009, 19: 2423-2430.
    [39] FUJISHIMA A. HONDA K. Electrochemical photolysis of water at asemiconductor electrode [J]. Nature. 1972, 238: 37
    [40] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanideand sulfite in aqueous solutions at semiconductor powders [J]. The Journal ofPhysical Chemistry, 1977, 81: 1484
    [41] PALMISANO Q AUGUGLIARO V, PAGLIARO M, PALMISANO L.Photocatalysis: a promising route for 21st century organic chemistry [J].Chemical Communications. 2007. 3425
    [42] DARWENT J R. PORTER G Photochemical hydrogen production usingcadmium sulphide suspensions in aerated water [J]. Journal of the ChemicalSociety. Chemical Communications 1981, 145-146
    [43] DARWENT. J. R.H2 production photosensitized by aqueous semiconductordispersions [J]. Journal of the Chemical Society, Faraday Transactions, 1981, 77:1703-1709.
    [44] HARBOUR J R, WOLKOW R, HAIR M L. Effect of platinization on thephotoproperties of cadmium sulfide pigments in dispersion. Determination byhydrogen evolution, oxygen uptake, and electron spin resonance spectroscopy [J].J. Phys. Chem. 1981, 85, 4026-4029.
    [45] KALYANASUNDARAM K, BORGARELLO E, DUONGHONG D. GRATZELM. Wasserspaltung durch Bestrahlung kolloidaler CdS-Losungen mit sichtbardmLicht [J]. Angewandte Chemie 1981, 93: 1012-1013.
    [46] REBER J F . RUSEK M. Photochemical hydrogen production with platinizedsuspensions of cadmium sulfide and cadmium zinc sulfide modified by silversulfide [J]. The Journal of Physical Chemistry 1986? 90: 824
    [47] ISAAC B R, VISWANATHAN B? RAMAKRISHMAN V, KURIACOSE J C.Cadmium sulfide with iridium sulfide and platinum sulfide deposits as aphotocatalyst for the decomposition of aqueous sulfide [J]. Journal ofPhotochemistry and Photobiology A: Chemistry, 1995? 91: 63
    [48] GUAN Q KIDA T, KUSAKABE K, KIMURA K, FANG X, MA T, ABE E,YOSHIDA A. Photo catalytic H2 evolution under visible light irradiation onCdS/ETS-4 composite [J]. Chemical Physics Letters, 2004, 385: 319
    [49] CAO H. ZHU Y, TAN X, RANG H, YANG X, LI C. Fabrication of TiO2/CdScomposite fiber via an electrospinning method [J]. New Journal of Chemistry,2010,34: 1116-1119
    [50] FUJII H. OHTAKI M, EGUCHI K. ARAI H. Photocatalytic activities of CdScrystallites embedded in TiO2 gel as a stable semiconducting matrix [J]. J.Materials Science Letters 1997, 16: 1086
    [51] SATO T, YIN S. Materials Integration 2001, 2, 39
    [52] XIAO M W, WANG L S, WU Y D, HUANG X J, DANG Z. Preparation andcharacterization of CdS nanoparticles decorated into titanate nanotubes and theirphoto catalytic properties [J]. Nanoteclinology 2008, 19 (1): 015706.
    [53] WANG X W, LIU Q CHEN Z G LI F, WANG LZ,LUG Q, CHENG H M.Enhanced photocatalytic hydrogen evolution by prolonging the lifetime ofcarriers in ZnO/Cds heterostructures [J]. Chemical Communications 2009, (23),3452-3454.
    [54] YIN Y X, JIN Z Q HOU F. Enhanced solar water-splitting efficiency usingcore/sheath heterostructure CdS/TiO, nanotube arrays [J]. Nanotechnology 2007.18(49): 495608.
    [55] TADA H, MITSUI T, KIYONAGA T, AKITA T, TANAKA K. All-solid-stateZ-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. NatureMaterials 2006, 5, (10), 782-786.
    [56] CHEN S Q PAULOSE M, RUAN C, MOR G K, VARGHESE O K,KOUZOUDIS D, GRIMES C A. Electrochemically synthesized CdSnanoparticle modified TiOi nanotube-array photoelectrodes: Preparation.characterization, and application to photoelectrochemical cells [J]. Journal ofPhotochemistry and Photobiology a-Chemistry 2006, 177(2-3): 177-184.
    [57] HUANG B C, YANG Y, CHEN X S, YE D Q. Preparation and characterizationof CdS-TiO: nanoparticles supported on multi-walled carbon nanotubes [J].Catalysis Communications 2010, 11 (9): 844-847.
    [58] WANG W, ZHU W, XU H. Monodisperse, Mesoporous ZnxCdi.xS Nanoparticlesas Stable Visible-Light-Driven Photo catalysts [J]. The Journal of PhysicalChemistry C, 2008, 112(43): 16754-16758
    [59] XING C, ZHANG Y, YAN W, GUO L. Band structure-controlled solid solutionof Cdi.x ZnxS photocatalyst for hydrogen production by water splitting [J].International Journal of Hydrogen Energy, 2006, 31(14): 2018-2024
    [60] KOCA A, SAHIN M, Photocatalytic hydrogen production by direct sun lightfrom sulfide sulfite solution [J]. International Journal of Hydrogen Energy. 2002.27: 363-367
    [61] BAO N Z, SHEN L M, TAKATA T, DOMEN K. Self-templated synthesis ofnanoporous CdS nanostructures for highly efficient photocatalytic hydrogenproduction under visible [J]. Chemistry of Materials 2008, 20 (1): 110-117
    [62] ROY A M, DE G C. Immobilisation of CdS, ZnS and mixed ZnS-CdS on filterpaper effect of hydrogen production from alkaline NaiS/NaiSOs solution [J].Journal of Photochemistry & Photobiology A: Chemistry, 2003, 157: 87-92.
    [63] WANG X W, CHEN Z G Efficient and stable photo catalytic H2 evolution fromwater splitting by Cd0.sZn0.2S nanorods [J]. Electrochemistry Communications2009. 11 (6): 1174-1178
    [64] WANG L, WANG W, SHANG M, YIN W, SUN S, ZHANG L. Enhancedphotocatalytic hydrogen evolution under visible light over Cdi-xZnxS solidsolution with cubic zinc blend phase [J]. International Journal of HydrogenEnergy. 2010, 35(1): 19-25
    [65] SHI J. YAN H, WANG X, FENG Z, LEI Z, LI C. Composition-dependentoptical properties of ZnxCdi_xS synthesized by precipitable-hydrothermal process[J]. Solid State Communications, 2008, 146: 249-252
    [66] MAG, YAN H, SHI J, ZONGX, LEIZ, LI C. Direct splitting of H2S into H2 andS on CdS-based photocatalyst under visible light irradiation [J]. Journal ofCatalysis, 2008, 260: 134-140
    [67] ZONG X, YAN H, WU Q MA Q WEN F, WANG L, LI C. Enhancement ofPhotocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst underVisible Light Irradiation [J]. Journal of American Chemistry Society 2008, 130:7176-7177
    [68] ZONG X, WU Q YAN H, MA G SHI J. LI C. Photocatalytic H, Evolution onM0S2 CdS Catalyst under Visible Light Irradiation |J|. Journal of PhysicalChemistryC, 2010, 114 (4):1963-1968
    [69] YAN H J, YANG JH, MAG J, WUGP, ZONG X, LEI Z B, SHI J Y. LIC.Visible-light-driven hydrogen production with extremely high quantumefficiency on Pt-PdS/CdS photocatalyst [J]. Journal of Catalysis, 2009, 266(2):165-168
    [70] ZHANG H, ZHU Y F. Significant Visible Photoactivity and AntiphotocorrosionPerformance of CdS Photocatalysts after Monolayer Polyaniline Hybridization[J]. The Journal of Physical Chemistry C 2010. 114: 5822-5826
    [71] MILES R W, ZOPPI G FORBES I. Inorganic photovoltaic cell [J].Materialstoday, 2007. 10: 20
    [72] ARTURO MORALES-ACEVEDO, Thin film CdS/CdTe solar cells: Researchperspectives [J]. Solar Energy 2006 80: 675-681
    [73] FAHRENBRUCH A L, BUBE R H. Fundamentals of Solar Cells: PhotovoltaicSolar Energy Conversion (Academic, 1983)
    [74] KAYES B M, ATWATER H A, LEWIS N S. Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells [J]. Journal ofApplied Physics. 2005, 97: 114302
    [75] TSAKALAKOS L. Silicon nanowire solar cells [J]. Applied Physics Letters 2007,91,233117
    [76] HU L. CHEN G Analysis of optical absorption in silicon nanowire arrays forphotovoltaic applications [J]. Nano Letters 2007, 7: 3249-3252.
    [77] SPURGEON J M, ATWATER H A, AND LEWIS N S. A comparison betweenthe behavior of nanorod array and planar Cd(Se, Te) photoelectrodes [J]. TheJournal of Physical Chemistry B 2008, 112: 6186-6193.
    [78] BEAUCARNE Q Epitaxial thin film Si solar cells [J]. Thin Solid Films 2006,511,533-542
    [79] SCHERMER J J. Thin-film GaAs epitaxial lift-off solar cells for spaceapplications [J]. Progress In Photovoltaics 2005, 13: 587-596
    [80] FAN Z Y, RAZAVI H, DO J W, JAVEY A, Three-dimensional nanopillar-arrayphotovoltaics on low-cost and flexible substrates [J]. Nature Materials, 2009, 8:648-653.
    [81] LIN S C, LEE Y L, CHANG C H, SHEN Y J, AND YANG Y M.Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots couplingtechniques of self-assembled monolayer and chemical bath deposition [J].Applied Physics Letters, 2007, 90: 143517-143520.
    [82] CHANG C H, LEE Y L, Chemical bath deposition of CdS quantum dots ontomesoscopic TiOi films for application in quantum-dot-sensitized solar cells [J].Applied Physics Letters , 2007, 91: 053503-053506.
    [83] LEE Y H, IM S H. RHEE J H. LEE J H, SEOK S, Performance enhancementthrough post-treatments of CdS-sensitized solar cells fabricated by spraypyrolysis deposition[J]. Applied Material & Interfaces, 2010, 2 (6): 1648-1652
    [84] SHALOM M, ZABAN A, Energy Level Alignment in CdS Quantum DotSensitized Solar Cells Using Molecular Dipoles[J]. Journal of AmericanChemistry Society, 2009, 131: 9876-9877.
    [85] BAKER D R, KAMAT P V. Photosensitization of TiO2 Nano structures with CdSQuantum Dots: Paniculate versus Tubular Support Architectures[J]. AdvancedFunctional Materials, 2009, 19: 805-811.
    [86] BAKER D R . KAMAT P V. Disassembly, Reassembly.andPhotoelectrochemistrv of Etched TiOi Nanotubes[J]. The Journal of PhysicalChemistryC, 2009,113: 17967-17972.
    [87] ZHU G, CHENG Z J. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells[J]. Nanoscale, 2010, 2(7): 1229-1232.
    [88] Lee Y L, Lo Y S. Highly Efficient. Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe, Advanced Functional Materials 2009, 19: 604-609.
    [89] WANG G M, YANG X Y, QIAN F, ZHANG J Z, LI Y. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiOi Nanostructures for Photoelectrochemical Solar Hydrogen Generation [J]. Nano Letters 2010. 10:1088-1092.
    [90] LEE W J, LEE J W, LEE S J, YI W K, HAN S H, CHO B W. Enhanced charge collection and reduced recombination of CdS TiOi quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes [J]. Applied Physics Letters, 2008, 92: 153510
    [91] LEE H J. CHE N P, MOON S J, SAUVAGE F, SIVULA K, BESSHO T, GAMELIN D R, COMTE P, ZAKEERUDDIN S M, GRATZEL M, AND NAZEERUDDIN M K. Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator [J]. Langmuir , 2009, 25(13): 7602-7608.
    [92] ZHANG Q X, ZHANG Y D, HUANG S Q, HUANG X M, LUO Y H, MENG Q B, Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells(QDSSCs) [J]. Electrochemistry Communications, 2010,12: 327-330.
    [93] YANG Z, CHEN C Y, LIU C W, CHANG H T, Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chemical Communications 2010,46: 5485-5487.
    [94] AKIYAMA H Y, TORIMOTO T, TACHIBANA Y, KUWABATA S, Quantum dot sensitized semiconductors for solar energy conversion [J]. Solar Hydrogen and Nanotechnology, 2006, 6340: U115-U127 .
    [95] WEI T Y, HUANG C T, HANSEN B J, LIN Y F, WANG Z L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors [J]. Applied Physics Letters, 2010, 96: 013508
    [96] HUR S G and KIM E T. Characterization of photoconductive CdS thin films repared on glass substrates for photoconductive-sensor applications [J]. Journal of Vacuum Science & Technology B, 2008, 26(4): 1334-1337
    [97] ZHAI J U WANG D J, PENG L, LIN Y H. LI X Y , XIE T F. Visible-light-induced photoelectric gas sensing to formaldehyde based on CdSnanoparticles/ZnO heterostructures [J]. Sensors and Actuators B, 2010, 147: 234-240
    [98] CAMPOS B B, ALGARRA M, ALONSO B, CASADO C M. Mercury(II) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites[J]. Esteves da Silva Analyst, 2009, 134: 2447-2452
    [99] V. PARDO-YISSAR, KATZ E, .WASSERMAN J, WILLNER I. Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes: Photoelectrochemical Sensing of the Enzyme Inhibitors [J]. Journal of American Chemical Society. 2003, 125:622-623
    [100] QIAN Z, BAI H J, WANG GL.XUJ J, CHEN H V. A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection[J]. Biosensors and Bioelectronics, 2010. 25: 2045-2050.
    [1] HIRAI T, BANDO Y and KOMASAWA I. Immobilization of CdS Nanoparticles Formed in Reverse Micelles onto Alumina Particles and Their Photocatalytic Properties [J]. The Journal of Physical Chemistry B, 2002, 106: 8967-8970
    [2] ZONG X, Li C. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation [J]. Journal of the American Chemical Society, 2008, 130: 7176-7177
    [3] STECKEL J S, BAWENDI M G. Blue Luninesence from (CdS)ZnS Core-Shell Nanocrystals[J]. Angew. Chem, Int. Ed, 2004, 43: 2154-2158
    [4] LEE J C, SUNG Y M. Growth of CdS Nanorod-Coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications [J]. Crystal Growth & Design, 2009, 9: 4519-4523
    [5] MA R M, DAI L and QIN G G. Applied Physics Letters, 2007, 90, 093109
    [6] WU Y, YAN H, YANG P. Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics [J]. Top. Catal. 19, 197–202 (2002)
    [7] GAO Y F and NAGAI M. Morphology Evolution of ZnO Thin Films fromAqueous Solutions and Their Application to Solar Cells [J]. Langmuir 2006, 22: 3936-3940
    [8] FALOPPINI E, ROCHFORD J, CHEN H, LU Y, BOSCHLOO G. Fast ElectronTransport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells [J]. The Journal of Physical Chemistry B, 2006, 110: 16159
    [9] LEVITSKY I A, EULER W B, TOKRANOVA N, XU B and CASTRACANE J. Hybrid solar cells based on porous Si and copper phthalocyanine derivatives [J]. Applied Physics Letters, 2004, 85: 6245
    [10] ANANDAN S, WEN X, YANG S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells [J]. Materials Chemistry and Physics, 2005, 93: 35.
    [11] KANG Y M, KIM D H. Well-aligned CdS nanorod/conjugated polymer solar cells [J]. Solar Energy Materials & Solar Cells, 2006, 90:166-174
    [12] GREENE L E, LAW M, YUHAS B D, YANG P D. ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells. [J]. The Journal of Physical Chemistry C: Letters, 2007, 111: 18451-18456
    [13] QIAN X M, LIU H B, GUO Y B, ZHU S Q, SONG Y L, LI Y L. Field Emission Properties and Fabrication of CdS Nanotube Arrays. [J]. Nanoscale Research Letters, 2009, 4: 955-961.
    [14] FAN Z Y, RAZAVI H, DO J W, JAVEY A, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates [J]. Nature Materials, 2009, 8: 648-653.
    [15] HABAS S E, YANG P. Selective Growth of Metal and Binary Metal Tips on CdS Nanorods [J]. Journal of the American Chemical Society, 2008, 130: 3294.
    [16] WANG H, BAI Y S, ZHANG H, ZHANG Z H, LI J H and GUO L. CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes [J]. The Journal of Physical Chemistry C, 2010, 114: 16451-16455.
    [17] SOMANI S P, SOMANI P R, UMENO M, FLAHAUT E. Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes [J]. Applied Physics Letters, 2006, 89: 223505.
    [18] KISLYUK V V and DIMITRIEV O P. Nanorods and Nanotubes for Solar Cells [J]. Journal of Nanoscience and Nanotechnology, 2008, 8: 131-148.
    [19] CHEN F, CHEN H Z, et al. One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry [J]. The Journal of Physical Chemistry C, 2008, 112: 13457-13462.
    [20] XIE T F, WANG D J, ZHU L J, et.al. Application of Surface Photovoltage Technique to the Determination of Conduction Types of Azo Pigment Films [J]. The Journal of Physical Chemistry B, 2000, 104(34): 8177-8181.
    [21] LIN Y H, WANG D J, ZHAO Q D, YANG M, ZHANG Q L. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy [J]. The Journal of Physical Chemistry B 2004, 108: 3202-3206.
    [22] ZHANG Q L, WANG D J, WEI X, XIE T F, LI Z H, LIN Y H, YANG M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure [J]. Thin Solid Films 491 (2005) 242– 248
    [23] WEI X, XIE T F, XU D, ZHAO Q D, WANG D J. Study on dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by transient photovoltage technique [J]. Nanotechnology 2008, 19: 275707
    [24]魏霄,利用瞬态光伏技术研究功能材料的光电行为,博士学位论文, p74
    [1] ZHAI T Y, FANG X S, BANDO Y, DIERRE B, LIU B D, ZENG H B, XU X J, HUANG Y, YUAN X L, SEKIGUCHI T, GOLBERG D. Morphology-Tunable Micro/Nanostructures: Characterization, Cathodoluminescence, and Field-Emission Properties of Morphology-Tunable CdS Micro/Nanostructures [J]. Advance functional materals , 2009, 19(15): 2423-2430.
    [2] XU ZONG, HONGJIAN YAN, GUOPENG WU, GUIJUN MA, FUYU WEN, LU WANG, CAN LI. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation [J]. Journal of American Chemical Society, 2008, 130(23): 7176-7177
    [3] AKIHIKO KUDO and YUGO MISEKI. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38(1): 253-278
    [4] XUEWEN WANG, GANG LIU, ZHI-GANG CHEN, FENG LI, LIANZHOUWANG, GAO QING LU AND HUI-MING CHENG. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures [J]. Chemical Communication, 2009, 45(23): 3452-3454
    [5] WANG L, WEI H W, FAN Y J, ZHAN J H. One-Dimensional CdS/α-Fe2O3 and CdS/Fe3O4 Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity [J]. Journal of Physical Chemistry C, 2009, 113(32): 14119-14125
    [6] ZHANG Y, XIE T F, JIANG T F, WEI X, PANG S, WANG X, WANG D J. Surface photovoltage characterization of ZnO nanowires array/ CdS quantum dots heterogeneous film and application for photovoltaic device [J]. Nanotechnology, 2009, 20, 155707
    [7] SUN W T, YU Y, PAN H Y, GAO X F, CHEN Q, PENG L M. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes [J]. Journal of American Chemical Society, 2008, 130(4): 1124-1125
    [8] WU Y, TAMAKI T, VOLOTINEN T, BELOVA L and RAO K V. Enhanced Photoresponse of Inkjet-Printed ZnO Thin Films Capped with CdS Nanoparticles [J]. Journal of Physical Chemistry Letter, 2010, 1 (1), 89-92
    [9] XU F, VOLKOV V, ZHU Y, BAI H, REA A, VALAPPIL NI V, MATSUI H. Long Electron?Hole Separation of ZnO-CdS Core?Shell Quantum Dots [J]. Journal of Physical Chemistry C, 2009, 113 (45), 19419–19423
    [10] SPOERKE E D, LLOYD M T, LEE Y, LAMBERT T N, MCKENZIE B B, JIANG Y B, OLSON D C, SOUNART T L, HSU J and VOIGT J A. Nanocrystal Layer Deposition: Surface-Mediated Templating of Cadmium Sulfide Nanocrystals on Zinc Oxide Architectures [J]. Journal of Physical Chemistry C , 2009, 113 (37): 16329-16336
    [11] SEOL M, KIM H, TAK Y and YONG K. Novel nanowire array based highly efficient quantum dot sensitized solar cell [J]. Chemicla. Communication., 2010, 46: 5521-5523
    [12] LEE W, MIN S K, DHAS V, OGALE S B, HAN S H. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells [J]. Electrochemistry Communications, 2009, 11(1): 103-106
    [13] ZHANG H J, CHEN G and BAHNEMANN D W. Photoelectrocatalytic materials for environmental applications [J]. Journal of Materials Chemistry, 2009, 19: 5089–5121
    [14] WANG D F, TANG J W, ZOU Z G, YE J H. Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn) [J]. Chemistry of Materials, 2005, 17 (20): 5177–5182
    [15] CHEN T, FENG Z C, WU G P, SHI J Y, MA G J, YING P L, LI C. Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy [J]. Journal of Physical Chemistry C, 2007, 111(22): 8005-8014.
    [16] ZHAO H, ZHANG Q L, WENG Y X. Deep surface trap filling by photoinduced carriers and interparticle electron transport observed in TiO2 nanocrystalline film with time-resolved visible and Mid-IR transient spectroscopies [J]. Journal of Physical Chemistry C, 2007, 111(9): 3762-3769
    [17] KRONIK L, SHAPIRA Y. Surface photovoltage phenomena: theory, experiment, and applications [J]. Surface Science Reports, 1999, 37: 1-206
    [18] CHEN F, CHEN H Z. One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry [J]. Journal of Physical Chemistry C, 2008, 112(35): 13457-13462
    [19] TAK Y J, KIM H Y, LEE D W and YONG K J, Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity [J]. Chemical Communications, 2008, 38: 4585-4587
    [20] XIE T F , WANG D J, ZHU L J, WANG C, LI T J, ZHOU X Q, WANG M. Application of Surface Photovoltage to the Determination of Conduction Types of Azo Pigment Films [J]. Journal of Physical Chemistry B, 2000, 104(34), 8177-8181
    [21] WEI X, XIE T F, XU D, ZHAO Q D, PANG S and WANG D J. A study of the dynamic properties of photoinduced charge carriers by the transient photovoltage technique [J]. Nanotechnology, 2008, 19: 275707
    [22] ZHAO Q D , XIE T F , PENG L L , LIN Y H , WANG P , PENG L, WANG D J. Size- and orientation-dependent photovoltaic properties of ZnO nanorods [J]. The Journal of Physical Chemistry C, 2007, 111: 17136-17145
    [23] SEOL M, KIM H J , TAK Y J and YONG K J. Novel nanowire array based highly efficient quantum dot sensitized solar cell [J]. Chemical Communications, 2010, 46: 5521-5523
    [24] BALESTRA C L, ?AGOWSKI J, GATOS H C. Determination of surface state energy positions by surface photovoltage spectrometry: CdS [J]. Surface Science, 1971, 26(1), 317-320
    [25] ZHAO Q D , WANG D J, PENG L L , LIN Y H , YANG M, XIE T F. Surfacephotovoltage study of photogenerated charges in ZnO nanorods array grown on ITO [J]. Chemical Physics Letters, 2007, 434: 96-100
    [26] DUZHKO V, TIMOSHENKO V Y, DITTRICH TH. Photovoltage in nanocrystalline porous TiO2 [J]. Physics Review B, 2001, 64: 75204
    [27] GROSS DIETER, IVáN MORA-SERó, THOMAS DITTRICH, ABDELHAK BELAIDI, CHRISTIAN MAUSER, ARJAN J. HOUTEPEN, ENRICO DA COMO, ANDREY L. ROGACH, JOCHEN FELDMANN. Charge Separation in Type II Tunneling Multilayered Structures of CdTe and CdSe Nanocrystals Directly Proven by Surface Photovoltage Spectroscopy [J]. Journal of American Chemical Society, 2010, 132 (17): 5981–5983
    [28]魏霄,利用瞬态光伏技术研究功能材料的光电行为,博士学位论文, p36
    [29]肇启东,利用Kelvin探针技术研究功能材料的光电行为,博士学位论文, p93
    [30] PANG S, XIE T F , ZHANG Y, WEI X , YANG M , WANG D J , DU Z L. Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells [J]. The Journal of Physical Chemistry C, 2007, 111: 18417-18422
    [1]. TSAI C T, CHUU D S, CHEN G L, YANG S L. Studies of grain size effects in rf sputtered CdS thin films [J]. Journal of Applied Physics. 1996, 79: 9105.
    [2]. GAUTAM U K, FANG X S, BANDO Y, ZHAN J and D. GOLBERG. Synthesis, Structure, and Multiply Enhanced Field-Emission Properties of Branched ZnS Nanotube-In Nanowire Core-Shell Heterostructures [J]. ACS Nano2008, 2: 1015.
    [3]. GUDIKSEN M S, LAUHON L J, WANG J, SMITH D C, LIEBER C M. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature 2002, 415:617.
    [4]. KAR S, SANTRA S, HEINRICH H. Fabrication of High Aspect Ratio Core-Shell CdS-Mn/ZnS Nanowires by a Two Step Solvothermal Process [J]. The Journal of Physical Chemistry C 2008,112: 4036.
    [5]. ZHAN J H, BANDO Y, HU J, SEKIGUCHI T, GOLBERG D. Single-Catalyst Confined Growth of ZnS/Si Composite Nanowires [J]. Advanced Materials 2005, 17: 225.
    [6]. JUNG Y, KO D K, AGARWAL R. Synthesis and Structural Characterization of Single-Crystalline Branched Nanowire Heterostructures [J]. Nano Letters 2007, 7: 264.
    [7]. BARRELET C J, WU Y, BELL D C and LIEBER C M. Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors [J]. Journal of the American Chemical Society. 2003, 125: 11499
    [8]. LI C, YANG X G, QIAN Y T. Growth of microtubular complexes as precursors to synthesize nanocrystalline ZnS and CdS [J]. Journal of Crystal Growth. 2006,291: 45–51
    [9]. WANG W Z, GERMANENKO I, and EL-SHALL M S. Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS,[J]. Chemistry of Materials 2002, 14: 3028-3033
    [10]. XING CJ, ZHANG YJ, YAN W, GUO LJ. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting [J]. International Journal of Hydrogen Energy 2006, 31: 2018–24.
    [11]. CHEN F, CHEN H Z. One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry [J]. The Journal of Physical Chemistry C 2008, 112: 13457–13462.
    [12]. LI C, YANG X G, YANG B J, YAN Y, QIAN Y. Growth of microtubular complexes as precursors to synthesize nanocrystalline ZnS and CdS [J]. Journal of Crystal Growth 2006, 291: 45–51.
    [13]. JUNG Y W, CHUNG H S, VUGT L V and AGARWAL R*,Nanowire Transformation by Size-Dependent Cation Exchange Reactions Bin Zhang [J]. Nano Lett. 2010, 10: 149-155
    [14]. ZHAO Q D, XIE T F, PENG L L, LIN Y H, WANG P, PENG L, and WANG D J. Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods [J]. The Journal of Physical Chemistry C 2007, 111: 17136-17145
    [15]. MARíA D. HERNáNDEZ-ALONSO, FERNANDO FRESNO, SILVIA SUáREZ, JUAN M. CORONADO. Development of alternative photocatalysts to TiO2: Challenges and opportunities [J]. Energy and Environmental Science, 2009, 2: 1231-1257
    [16].HULLAVARAD N V, HULLAVARAD S S, and KARULKAR P C, Cadmium Sulphide (CdS) Nanotechnology:Synthesis and Applications [J]. Journal of Nanoscience and Nanotechnology,2008, 8: 3272–3299.
    [17]. DONCHEV V. KIRILOV K. IVANOV TS. GERMANOVA K. Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures [J]. Materials Science and Engineering B: Solid State Materials for Advanced Eechnology, 2006, 129(1-3): 186-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700