基于酞菁铜的太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,能源问题已经成为世界各国经济发展遇到的首要问题。占地球总能量99%以上的太阳能,由于具有安全、无污染;取之不尽、用之不竭的优点而受到科学家们的青睐。近年来,太阳能电池作为太阳能资源利用的重要途径之一,已经引起了学术界的极大关注,并且取得了很大的发展。一直以来,太阳能电池的研究工作主要集中在提高电池的光电转换效率和降低成本方面。
     有机小分子材料酞菁铜作为一种典型的P型材料,对600~700 nm的可见光具有较强的吸收,且其载流子的迁移率较高,因此常常被用作有机太阳能电池中的给体材料。目前,基于CuPc的有机太阳能电池的实验室效率最高可达5.58%,但依旧无法与无机硅太阳能电池相比。通过改进器件结构、加深对器件传输机制以及界面的理解,都将有助于电池效率的提高。
     本论文是针对具体基于酞菁铜的太阳能电池的研究,主要在以下三个方面进行了有益地探索:
     1.采用CuPc掺杂的MEH-PPV作为电子给体,PCBM作为电子受体,制备了三种不同CuPc掺杂比例的体异质结太阳能电池,研究了CuPc掺杂对MEH-PPV:PCBM混合薄膜光电特性的影响。结果表明,CuPc掺杂使MEH-PPV:PCBM混合薄膜的紫外—可见吸收光谱在可见光区域得到了一定的拓展,从而使电池活性层对入射光子的吸收能力得到了进一步地增强。混合薄膜的荧光光谱分析也显示了光生激子的拆分得到了有效地提高。进一步对电池的电流—电压特性进行了测试,验证了CuPc可以作为电子给体对MEH-PPV进行掺杂来改善电池的性能,并分析得出最佳光电性能时的质量比。
     2.采用有机小分子材料CuPc作为电子给体,与绒面n型Si一起组建有机/无机复合太阳能电池,并且讨论了硅表面织构处理对太阳能电池光伏性能提高的重要作用。此外,还应用电化学阻抗谱技术研究了该电池的阻抗特性,建立了一个可以完整地描述电池结构的等效电路,并且与阻抗的理论模型相结合,对电池的阻抗谱图进行了分析,从而确定了电池中载流子的传输机制为e指数陷阱分布的空间电荷限制电流。
     3.采用化学湿法沉积,在导电ITO基底上制备了ZnO纳米棒阵列薄膜,利用Kelvin探针测试系统定量测量了ZnO纳米棒阵列的表面光伏响应与弛豫过程,并通过对其弛豫过程的分析获得了ZnO纳米棒阵列薄膜能级结构的特性。此外,还利用Kelvin探针技术测试了CuPc薄膜的光电行为以及它对ZnO纳米棒阵列薄膜光电行为的影响。并结合基于锁相放大器的光伏测试技术,讨论了外来还原性分子乙醇对CuPc/ZnO纳米棒阵列复合体系光电响应的影响,得到了一些有价值的结果和经验,为今后制备CuPc/ZnO纳米棒阵列复合太阳能电池提供了直接的借鉴。
With high-speed development of economy, energy problems have become the most vital obstacle to development all over the world. Solar energy that is over 99% of total energy on the earth, have gained a great deal of attention by scientists due to its many merits, such as safety, disbefouling environment, and extremely excessive amount, et al. In recent years, solar cells have attracted considerable interest because they are one of the most important ways to utilize sloar energy, and the research of sloar cells has made great progress. At present, research of solar cells mainly focus on improving the power conversion efficiency and reducing the costs.
     Copper phthalocyanine (CuPc) has been used extensively as electron donor in organic solar cells due to its marked photovoltaic effect and photoconductivity characteristics. So far, the power conversion efficiency of organic solar cell based on CuPc have been achieved 5.58% in laboratory. However, low power conversion efficiency is still a major obstacle to the device application. Therefore, efforts to improve the photovoltaic properties of solar cell based on CuPc is still needed to made.
     In this thesis, we aimed at research of solar cells based on copper phthalocyanine, and carried out beneficial exploration in the following three aspects mainly:
     1. Three different bulk heterojunction solar cells have been fabricated using the poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and copper phthalocyanine (CuPc) as electron donors, and with 1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6) C61 (PCBM) as electron acceptor. Dramatically increased absorption spectra coverage was achieved by doping the CuPc to the blended films of MEH-PPV and PCBM, which improved the ability of absorbing the photons. The incorporation of CuPc showed further PL intensity quenching due to the separation of the photo-generated charges. Further, the current-voltage characteristics showed that the performance of cells achieved the best one when the CuPc approaches to 50% in weight compared with that of the MEH-PPV.
     2. Hybrid solar cell based on CuPc and n-Si with textured structure has been fabricated. Effects of texturization on the performance of CuPc/n-Si hybrid solar cell was discussed. Moreover, Electrochemical Impedance Spectroscopy (EIS) has been used to analyze charge carrier transport mechanism of solar cell. The equivalent circuit model consisting of a parallel resistor and capacitor in series with a resistor gives a good fit to the experimental data, which is applicable to cell's structure. The conduction mechanism was suggested to be a space-charge limited current with exponential trap distribution.
     3. Well-aligned ZnO nanorod array, synthesized by wet chemical bath deposition (CBD) method on conductive indium-tin-oxide (ITO) substrate. Surface photovoltage (SPV) technique based on a scanning Kelvin Probe system was employed to investigate the optoelectronic behavior of ZnO nanorod array. The surface photovoltage and its time-resolved evolution process are used to determine the energy level structure of the ZnO nanorod array. Kelvin Probe technique also was used to study the photovoltaic properties of the copper-phthalocyanine (CuPc), and CuPc/ ZnO nanorod array system. Moreover, Surface photovoltage (SPV) technique based on a lock-in amplifier was employed to study the photovoltaic properties of the copper-phthalocyanine (CuPc) and ZnO nanorod array system affected by ethanol. Several useful results and experience were obtained, which will benefit practical photoelectric applications based on ZnO nanorods and CuPc.
引文
[1]Lodhi M A K. Photovoltaics and hydrogen:Future energy options [J]. Energy Convers. Mgmt., 1997,38(18):1881-1893.
    [2]师昌绪.材料与可持续发展[J].自然杂志,1998,20(2):63-68.
    [3]Fujii N, Ohmori Y, Yoshino K. An organic infrared electroluminescent diode utilizing a phthalocyanine film [J]. IEEE Trans Electr Dev,1997,44(8):1204-1207.
    [4]车孝轩.太阳能光伏系统概论[M].武汉:武汉大学出版社,2006.
    [5]赵争鸣,刘建政,孙晓瑛.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [6]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005.
    [7]刘树民,宏伟.太阳能光伏发电系统的设计与施工[M].北京:科学出版社,2006.
    [8]赵富鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985.
    [9]Kettani M A. Storage of solar energy in the form of potential hydraulic energy [C], in Heliotechnique and Development (Kettani MA, Sousson JE, eds). DAA Press, Cambridge, Massachusetts,1976.
    [10]Seifert W W, Bakr M A, Kettani M A. Energy and Development:A Case Study [C]. MIT Press, Massachusetts,1973.
    [11]Sze S M. Physics of Semiconductor Devices [M].2nd ed. New York:John Wiley and Sons, 1981.
    [12]施敏.半导体物理工艺与器件[M].北京:科学出版社,1992.
    [13]杨德仁.太阳电池材料[M].北京:化学工业出版社,2007.
    [14]Green M A. Solar Cells:Operation Principles, Technology and System Application [M], Prentice-Hall, Englewood Cliffs, NY,1982.
    [15]冯文修.半导体物理学基础教材[M].北京:国防工业出版社,2005.
    [16]杨基南.太阳能电池产业的现状和发展[J].微细加工技术,2005,(2):1-4
    [17]胡晨明.太阳电池[M].北京:北京大学出版社,1990.
    [18]Ralph E L. Solar cell development survey [C], Intersociety energy conversion engineering conference,1968,2:116-121.
    [19]Szlufcik J, Nijs J,Mertens R, et al. High efficiency crystalline silicon solar cells for industrial application [J]. Semiconductor Devices,1996,2733:556-562.
    [20]席珍强,杨德仁,吴丹.单晶硅太阳电池的表面织构化[J].太阳能学报,2002,23(2):285-289.
    [21]王鹤,杨宏.单晶硅太阳电池纳米减反射膜的研究[J].固体电子学研究与进展,2003,23(3):316-319.
    [22]Hartiti B, Slaoui A, Muller J C, et al. Multicrystalline silicon solar cells processed by rapid thermal processing [C].23rd IEEE Photovoltaic Specialists Conference,1993,224-229.
    [23]吴建荣,杜丕一,韩高荣等.非晶硅太阳能电池研究现状[J].材料导报,1999,13(2):38-39.
    [24]Enrnqueza J P, Mathewa X, Hern G P, CdTe/CdS solar cells on flexible molybdenum substrates [J], Solar Energy Materials and Solar Cells,2004,82(1-2):307-314.
    [25]Anothopoulos T D, Shafai T S. Influence of oxygen doping on the electrical and photovoltaic properties of Schottky type solar cells based on a-nickel phthalocyanine [J]. Thin Solid Films,2003,441(1):207-213.
    [26]姜建壮,李册.三明治型稀土金属卟啉络合物的研究进展[J].化学通报,1994,8:19-25.
    [27]杨新国,孙景志,汪芒等.卟啉类光电功能的研究进展[J].功能材料,2003,34(2):113-117.
    [28]刘新刚,冯亚青.卟啉化合物的应用与合成研究进展[J].化学推进剂与高分子材料,2003,34(2):113-117.
    [29]黄春晖,李富友,黄岩谊等.光电功能超薄膜[M].北京,北京大学出版社,2001.
    [30]Xue J G, Uchida S, Rand B P, et al. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions [J], Appl. Phys. Lett.,2004,85:5757-5759.
    [31]Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J], Science,2007,317:222-225.
    [32]Bechinger C, Gregg B A, Development of a self-powered electrochromic device for light modulation without external power supply [J]. Solar Energy Materials and Solar Cells,1998, 54:405-410.
    [33]吴季怀,郝三存,林建明等.染料敏化TiO2纳米晶太阳能电池研究进展[J].华侨大学学报,2003,24(4):335-344.
    [34]Tennakon K, Sendeera G K R, Perera V P S, et al. Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte [J]. Chem. Mater.,1999,11:2474-2477.
    [35]Boucl J, Ravirajan P, Nelson J. Hybrid polymer-metal oxide thin films for photovoltaic applications [J]. J. Mater. Chem.,2007,17:3141-3153.
    [36]Greenham N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B,1996,54(24):17628-17637.
    [37]Arango A C, Carter S A, Brock P J. Photovoltage in Conjugated Polymer Photovoltaics With a Titanium Dioxide Anode [J]. Phys. Lett.,1999,74(12):1698-1700.
    [38]Beek W J E, Wienk M M, Janssen R A J. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer [J]. Adv. Mater.,2004,16(12):1009-1013.
    [39]Pivrika A, Sariciiftci N S, Osterbacka R, et al. Bimolecular recombinationcoefficient as a sensitive testing parameter for low-mobility solar-cell materials [J]. Phys. Rev. Lett.,2005, 94:176806.
    [40]Huynh W U, Dittmer J J, Alivisatos A P, et al. Charge transport in hybrid nanorod-polymer composite photovoltaic cells [J]. Phys. Rev. B,2003,67:115326.
    [41]Huynh W U, Dittmer J J, Alivisatos A P, et al. Hybrid Nanorod-Polymer Solar Cells [J]. Science,2002,295:2425-2427.
    [42]Tachibana Y, Moser J E, Durrant J R, et al. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films [J]. J. Phys. Chem.,1996,100: 2005-20062.
    [43]Rehm J M, Mclendon G L, Gratzel M, et al. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface, J. Phys. Chem.,1996,100:9577-9578.
    [44]Ghosh H N, Asbury J B, Lian T Q. Direct Observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy [J]. J. Phys. Chem. B,98,102(34):6482-6486.
    [45]Chirvase D, Chiguvare Z, Knipper A, et al. Temperature dependent characteristics of poly (3 hexylthiophene)-fullerene based heterojunction organic solar cells [J]. Journal of Applied Physics,2003,93:3376-3383.
    [46]Wang W L, Wu H B, Yang C Y, et al. High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant, Appl. Phys. Lett.,2007,90:183512.
    [47]苏梦蟾.聚合物有机太阳能电池器件的研究[D].北京交通大学,2007.
    [48]Braun A, Tchemiac J. Phthalocyanines Synthesis [J]. J. Chem. Ber.,1907,40:2709-2718.
    [49]Robertson J M. An X-ray study of the structure of the phthalocyanines, Part Ⅰ. The Metal-free, Nickel, Copper, and Platinum Compounds [J]. J. Chem. Soc,1935,615-628.
    [50]沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社,2000.
    [51]Griffiths J著.侯毓芬,吴祖望,胡家振,等译.颜色与有机分子结构.北京:化学工业出版社,1985.
    [52]Gouterman M. The Porphyrins. Vol. Ⅲ, Part A, Physical Chemistry [C]. New York: Academic Press,1978.
    [53]Hanack M, Lang M. Conducting Stacked Metallophthalocyanines and Related Compounds [J]. Adv. Mater.,1994,6(11):819-833.
    [54]Wohrle D, Meissner D. Organic Solar Cells [J]. Adv. Mater.,1991,3(3):129-138.
    [55]Ao R, Kilmmert L, Haarer D. Present limits of data storage using dye molecules in solid matrices [J]. Adv. Mater.,1995,7(5):495-499.
    [56]Gregory P. In high-technology application of organic colorant [M]. Plenum, New York Press, 1991,59-66.
    [57]TeraoY, Sasabe H, Adaehi C. Correlation of hole mobility, exciton diffusion length, and solar cell charaeteristics in phthalocyanine/fullerene organic solar cells [J]. Appl. Phys. Lett.,2007, 90(10):103515(1-3).
    [58]Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986,48:183-185.
    [59]Al-Mohamad A. Solar cells based on two organic layers [J]. Energy Conversion and Management,2004,45(17):2661-2665.
    [60]Tokranova N, Levitsky I, Xu B, et al. Hybrid solar cells based on organic material embedded into porous silicon. Proc. SPIE Int. Soc. Opt. Eng.,2005,5724:183.
    [61]Yang F, Lunt R R, Forrest S R. Simultaneous heterojunction organic solar cells with broad spectral sensitivity [J]. Appl. Phys. Lett.,2008,92(5):053310(1-3).
    [62]Chan M Y, Lai S L, Fung M K, et al. Doping-induced efficiency enhancement in organic photovoltaic devices [J]. Appl. Phys. Lett.,2007,90(2):023504(1-3).
    [63]Jiang X X, Dai J G, Wang H B, et al. Organic photovoltaic cells using hexadecafluoro-phthalocyaninatocopper (F16CuPc) as electron acceptor material [J]. Chem. Phys. Lett., 2007,446(4-6):329-332.
    [64]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994.
    [65]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991.
    [66]薛增泉,吴全德,李浩.薄膜物理[M].北京:电子工业出版社,1991.
    [67]李学丹,万英超,姜祥祺,等.真空沉积技术[M].浙江:浙江大学出版社,1994.
    [68]Pol V D, M F C, Blom F R, et al. R.F. planar magnetron sputtered ZnO films Ⅰ:struetural properties [J]. Thin Solid Films,1991,204(2):349-364.
    [69]Szyszka B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequeney reaetive magnetron sputtering [J]. Thin Solid Films,1999,351(1-2):164-169.
    [70]刘新福,杜占平,李为民.半导体测试技术原理与应用[M].北京:冶金工业出版社,2007.
    [71]Booker G. R. Modern Diffraction and Imaging techniques in Material Science [M]. Netherlands:North-holland Publishing Company,1970.
    [72]Hong S-K, Hanada T, Ko H J, et al. Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy:Zn and opolar ZnO films on Ga-polar GaN templates [J]. Applied Physics Letters,2000,77(22):3571-3573.
    [73]方容川.固体光谱学[M].合肥:中国科技大学出版社,2001.
    [74]Klingshirn C F. Semiconductor Optics [M]. Berlin:Springer Verlag,1997.
    [75]Huang Y, Seo H J, Feng Q, et al. Effects of trivalent rare-earth ions on spectral properties of PbWO4 crystals [J]. Materials Science and Engineering B,2005,121(1-2):103-107.
    [76]何杰.许振嘉.一种新的反应机制一轻稀土金属薄膜与Si衬底的反应机理研究[J].物理学报,1993,42(10):1617-1626.
    [77]Baikie I D. Operation manual of the SKP Kelvin probe system, KP Technology Ltd.,2004, Manual Version SKP KP 4.3.
    [78]Kronik L, Shapira Y. Surface photovoltage phenomena theory, experiment, and applications [J]. Surf. Sci. Rep.,1999,37:1.
    [79]Meilun S. AC Impedance Spectroscopy Principles and Applications [M]. Beijing:Press of National Defence Industry,2001:1-423 (in Chinese).
    [80]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):54-61.
    [81]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [82]周伟舫.电化学测量[M].上海:上海科学技术出版社,1983.
    [83]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998.
    [84]Conway B E, Bockriso M J, White R E, et al. Modern Aspects of Electrochemistry, Electrochemistry Impedance Spectroscopy and Its Applications [M]. New York:Kluwer Academic/Plenum Publishers,1999,143-248.
    [85]Domercq B,Grasso C, Maldonado J L, et al. Eleetron Transport Properties and Use in organic Light Emitting Diodes of a Bis(dioxaborine) fluorine Derivative [J]. Journal of Physical Chemistry B,2004,108:8647-8651.
    [86]Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic [J]. Nature,2004,428:911-918.
    [87]Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers [J]. Nature,1999,397:121-128.
    [88]Park J Y, Le H M, Kim G T, et al. The electroluminescent and photodiode device made of a polymer blend [J]. Synthetic Metals,1996,79:177-181.
    [89]Chen L C, Godovsky D, Inganas O, et al. Polymer Photovoltaic Devices from Stratified Multilayers of Donor-Acceptor Blends [J]. Adv. Mater.,2000,12:1367-1370.
    [90]Laief A, Chaabane R B, Bouazizi A, et al. Photovoltaic properties of bulk heterojunction solar cells with improved spectral coverage [J]. Mater. Sci. Eng. C,2006,26:344-347.
    [91]Yu G., Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions [J]. J. Appl. Phys.,1995,78:4510-4515.
    [92]Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science,1995,270:1789-1791.
    [93]Wang H, Oey C C, Djurisic A B, et al. Titania bicontinuous network structures for solar cell applications [J], Appl. Phys. Lett.,2005,87:023507(1-3).
    [94]Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells [J]. J. Appl. Phys.,2003,93:3693-3723.
    [95]Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986,48:183-185.
    [96]Peumans P, Bulovic V, Forrest S R. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes [J]. Appl. Phys. Lett.,2000,76: 2650-2652.
    [97]Yakimov A, Forrest S R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters [J]. Appl. Phys. Lett.,2001,80:1667-1669.
    [98]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron-transfer from a conducting polymer to back minster fullerene [J]. Science,1992,258:1474-1476.
    [99]Smilowitz L, Sariciftci N S, Wu R, et al. Photoexcitation spectroscopy of conducting polymer-C60 composites:Photoinduced electron transfer [J]. Physical Review B,1993, 47(20):13835-13842.
    [100]Kraabel B, Lee C H, McBranch D, et al. Ultrafast photoinduced electron transfer in conducting polymer-buckminsterfullerene composites [J]. Chem. Phys. Lett.,1993,213: 389-394.
    [101]Lee C H, Yu G, Moses D, et al. Sensitization of the photoconductivity of conducting polymers by C60:Photoinduced electron transfer [J]. Phys. Rev. B,1993,48(20): 15425-15433.
    [102]Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater.,2005,15: 1617-1622.
    [103]李斌,王立铎,张德强Gratzel电池用TiO2致密膜的制备和表征[J].科学通报,2003,48(22):2328-2332.
    [104]Bundgaard E, Krebs F C. Low band gap polymers for organic photovoltaics [J]. Sol. Energy Mater. Sol. Cells,2007,91:954-985.
    [105]Thompson B C, Frechet M J. Ploymer-fullerene composite solar cells [J]. Angew. Chem. Intl. Ed.,2008,47:58-77.
    [106]Krebs F C. Fabrication and processing of polymer solar cells:a review of printing and coating techniques [J]. Sol. Energy Mater. Sol. Cells,2009,93:394-412.
    [107]Jorgensen M, Noman K, Krebs F C. Stability/degradation of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells,2008,92:686-714.
    [108]Gnes S, Neugebauer H, Sariciftei N S. Conjugated polymer-based organic sola rcells [J]. Chem. Rev.,2007,107:1324-1338.
    [109]Xue J G, Uehida S, Rand B P, et al. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions [J]. Appl. Phys. Lett.,2004,85:5757.
    [110]Shao Y, Yang Y. Efficient organic heterojunction photovoltaic cells based on triple tmaterials [J]. Adv. Mater.,2005,17:2841.
    [111]Angermann H, Rappich J, Korte L, et al. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application [J]. Appl. Surf. Sci.,2008,254(12): 3615-3625.
    [112]Vazsonyi E, Clercq K De, Einhaus R, et al. Improved anisotropic etching process for industrial texturing of silicon solar cells [J]. Sol. Energy Mater. Sol. Cells,1999,57(2): 179-188.
    [113]Singh P K, Kumar R, Lal M, et al. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions [J]. Sol. Energy Mater. Sol. Cells,2001,70(1):103-113.
    [114]Rihani A, Boutabba N, Hassine L, et al. Conduction and transport in the ITO/AVB/AL light emitting diode [J]. Synth. Met.,2004,145(2):129-134.
    [115]Kumar R A, Suresh M S, Nagaraju J. Measurement and comparison of AC parameters of silicon (BSR and BSFR) and gallium arsenide (GaAs/Ge) solar cells used in space applications [J]. Sol. Energy Mater. Sol. Cells,2000,60(2):155-166.
    [116]Berleb S, Brutting W. Dispersive Electron Transport in tris(8-Hydroxyquinoline)Aluminum (Alq3) Probed by Impedance Spectroscopy [J]. Phys. Rev. Lett.,2002,89(28):286601.
    [117]Mustafa O, Fahrettin Y. Analysis of interface states and series resistance of Ag/SiO2/n-Si MIS schottky diode using current-voltage and impedance spectroscopy methods [J]. Microelectron. Eng.,2008,85(3):646-653.
    [118]Bredas J L, Salaneck W R, Wegner G. Organic Materials for Electronics [M]. Elsevier Science, North Holland,1994.
    [119]Kim S H, Choi K H, Lee H M, et al. Impedance spectroscopy of single-and double-layer polymer light-emitting diode [J]. J. Appl. Phys.,2000,87:882-888.
    [120]Zyung T, Jung S D. Electroluminescent Devices Using a Polymer of Regulated Conjugation Length and a Polymer Blend. ETRI J.,1996,18(3):181-193.
    [121]Greenhaln N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B,1996,54(24):17628-17637.
    [122]Huynh W U, Peng X G, Alivisatos A P. CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices [J]. Adv. Mater.,1999,11(11):923-927.
    [123]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals [J]. Nature,2000, 404(6773):59-61.
    [124]Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor [J]. Am. Chem. Soc,2001,123(1):183-184.
    [125]Alberius P C A, Frindell K L, Hayward R C, et al. General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films [J]. Chem. Mater., 2002,14(8):3284-3294.
    [126]Coakley K M, Liu Y, McGehee M D, et al. Infiltrating Semiconducting Polymer into Self-Assembled Mesoporous Titania Film for Photovoltaic Applications [J]. Adv. Fune. Mater.,2003,13(4):301-306.
    [127]Breeze A J, Sehlesinger Z, Carter S A, et al. Charge transport in TiO2/MEH-PPV polymer photovoltaics [J]. Phys. Rev. B,2001,64(12):125205(1-9).
    [128]Ravirajan P, Haque S A, Durrant J R, et al. The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells [J]. Adv. Func. Mater., 2005,15(4):609-618.
    [129]Hotovy I, Huran J, Siciliano P, et al. Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification [J]. Sensors and Actuators B,2004,103:300.
    [130]Gondal M A, Hameed A, Yamani Z H, et al. Laser induced photo-catalytic oxidation /splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts:activity comparison [J]. Chem. Phys. Lett.,2004,385(1-2):111-115.
    [131]Chen Y S, Crittenden J C, Hackney S, et al. Preparation of a Novel TiO2-Based p-n Junction Nanotube Photocatalyst [J]. Environmental Science & Technology,2005,39(5):1201-1208.
    [132]Bandara J, Pradeep U W, Bandara R G S J. The role of n-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells [J]. Journal of Photochemistry and Photobiology A,2005, 170(3):273-278.
    [133]Ohta H, Hirano M, Nakahara K, et al. Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO [J]. Appl. Phys. Lett.,2003,83:1029-1031.
    [134]Ishid Y, Fujimori A. Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO/p-NiO junction using photoemission spectroscopy [J]. Appl. Phys. Lett.,2006,89: 153502(1-3).
    [135]Sharma G D, Kumar R, Sharma S K, et al. Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc) [J]. Sol. Energy Mater. Sol. Cells,2006,90(7-8):933-943.
    [136]Liao L, Zhang W F, Lu H B, et al. Investigation of the temperature dependence of the field emission of ZnO nanorods [J]. Nanotechnology,2007,18:225703(1-5).
    [137]Baxter J B, Walker A M, Ommering K van, et al. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells [J]. Nanotechnology,2006, 17(11):S304.
    [138]Galoppini E, Rochford J, Chen H H, et al. Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells [J]. J. Phys. Chem. B,2006, 110(33):16159-16161.
    [139]Wang Z L. Nanostructures of Zinc Oxide [J]. Materials Today,2004,7(6):26-33.
    [140]Vayssieres L, Keis K, Lindquist S E, et al. Purpose-Built Anisotropic Metal Oxide Material 3D Highly Oriented Microrod Array of ZnO [J]. J. Phys. Chem. B,2001,105:3350.
    [141]Greene L E, Yuhas B D, Law M, et al. Solution-Grown Zinc Oxide Nanowires [J]. Inorg. Chem.,2006,45:7535.
    [142]Choi K S, Lichtenegger H C, Stucky G D, et al. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces [J]. Journal of the American Chemical Society,2002,124(42): 12402-12403.
    [143]Sun Y, Ketterson J B, Wong G K L. Exci tonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder [J]. Appl. Phys. Lett.,2000,77:2322-2324.
    [144]Look D C, Reynolds D C. Point defect characterization of GaN and ZnO [J]. Materials science and Engineering B,1999,66(1-3):30-32.
    [145]Bylander E G. Surface effects on the low-energy cathodoluminescence of zinc oxide [J]. Journal of the Applied Physics,1978,49:1188-1195.
    [146]Liu M, Kitai A H, Mascher P. Point defects and luminescence centers in zinc oxide doped with manganese [J]. Journal of the Luminescence,1992,54:35-42.
    [147]Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO [J]. Physics Reviews Letters,1999,82:2552-2555.
    [148]Lin B X, Fu Z X, Jia Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett.,2001,79:943-945.
    [149]Yan H, He R, Pham J, et al. Morphogenesis of One-Dimensional ZnO Nano-and Microcrystals [J]. Adv. Mater.,2003,15(5):402-405.
    [150]Li S S. Semiconductor Physical Electronics [M].2nd ed., Spring Science and Business Media,2006.
    [151]Yan Y F, Al-Jassim M M, Wei S H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO(100) surface [J]. Phys. Rev. B,2005,72:161307.
    [152]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98(4):1-103.
    [153]Park C H, Zhang S B, Wei S H, et al. Origin of p-type doping difficulty in ZnO:The impurity perspective [J]. Phys. Rev. B,2002,66(5):073202.
    [154]Yan Y F, Zhang S B, Pantelides S T. Control of doping by impurity chemical potentials: Predictions for p-type ZnO [J]. Phys. Rev. Lett.,2001,86(25):5723-5726.
    [155]Lagel B, Baikie I D, Petermann U. A novel detection system for defects and chemical contamination in semiconductors bassed upon the Scanning Kelvin Probe [J]. Surface Science,1999,622(3):433-437.
    [156]Klingshirn C F. Semiconductor optics [M].3rd ed., Beijing:Science Press,2007.
    [157]Lucia E A, Verderame F D. Spectra of Polycrystalline Phthalocyanines in the Visible Region [J]. J. Chem. Phys.,1968,48(6):2674-2681.
    [158]肇启东.利用Kelvin探针技术研究功能材料的光电行为[D].吉林大学,2008.
    [159]Rabin J, Bejar D. Quenching of aqueous colloidal ZnO fluorescence by electron and hole scavengers effect of a positive polyelectrolyte [J]. J. Phys. Chem.,1989,93:2559-2561.
    [160]Zhao Q D, Yu M, Xie T F, et al. Photovoltaic properties of a ZnO nanorod array affected by ethanol and liquid-crystalline porphyrin [J].Nanotechnology,2008,19(24):245706(1-10).
    [161]Liao L, Lu H B, Li J C, et al. Size Dependence of Gas Sensitivity of ZnO Nanorods [J]. J. Phys. Chem. C,2007,111(5):1900-1903.
    [162]Li Q H, Gao T, Wang Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements [J]. Appl. Phys. Lett.,2005,86(12): 123117(1-3).
    [163]Dijken A van, Meulenkamp E A, Vanmaekelbergh D, et al. Influence of Adsorbed Oxygen on the Emission properties of Nanocrystalline ZnO Particles [J]. J. Phys. Chem. B,2000, 104(18):4355-4360.
    [164]Lin Y H, Wang D J, Zhao Q D, et al. Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods [J]. Nanotechnology,2006,17(9): 2110-2115.
    [165]Werner J, Piesl M. Exponential band tails in polycrystalline semiconductor films [J]. Phys. Rev. B,1985,31:6881-6883.
    [166]K.W. Boer. Survey of Semiconductor Physics [M].2nd ed., Van Nostrand Reinhold, New York,1990.
    [167]Huang X, Zhao F Q, Li Z Y, et al. Self-Assembled Nanowire Networks of Aryloxy Zinc Phthalocyanines Based on Zn-O Coordination [J]. Langmuir,2007,23(9):5167-5172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700