ARHGEF11基因R1467H多态性与甘肃回族、汉族2型糖尿病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     明确ARHGEF11基因R1467H位点多态性在甘肃回、汉两民族人群中的分布及其差异性;初步探讨甘肃回、汉族人群ARHGEF11基因R1467H位点多态性与2型糖尿病、胰岛素抵抗、肥胖及血脂异常的相关性。
     方法
     1.采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)和DNA直接测序技术,分别对回族117例2型糖尿病患者(T2DM组)、104例正常对照者(NC组)和汉族149例2型糖尿病患者(T2DM组)、114例正常对照者(NC组)ARHGEF11基因R1467H多态性位点进行基因分型,并分析回、汉族人群两组基因型和等位基因频率的差异。
     2.采用全自动生化分析仪测定空腹血糖(FPG)、血脂、肝功能、肾功能,糖化血红蛋白分析仪测定糖化血红蛋白(HbA1c),放射免疫法测定空腹胰岛素(FINS)。
     3.同时测量身高、体重、血压、腰围、臀围,计算体重指数(BMI)=体重/身高2(Kg/m2),腰臀比(WHR)=腰围/臀围,HOMA胰岛素抵抗指数(HOMA-IR)=空腹血糖(FPG)×空腹胰岛素(FINS)/22.5。
     结果
     1.回、汉族人群2型糖尿病组间以及回、汉族人群正常对照组间ARHGEF11基因R1467H位点基因型频率和等位基因频率比较均无统计学差异(P>0.05)。
     2.汉族人群2型糖尿病组和正常对照组的基因型GG、GA、AA频率分别为61.1%、35.6%、3.3%和75.4%、21.1%、3.5%,等位基因G、A频率在两组间分别为78.9%、21.1%和86.0%、14.0%,汉族人群2型糖尿病组基因型和等位基因频率分布与正常对照组比较差异均有统计学意义(P<0.05);回族人群2型糖尿病组和正常对照组的基因型GG、GA、AA频率分别为50.4%、43.6%、6.0%和66.3%、28.8%、4.8%,等位基因G、A频率在两组间分别为72.2%、27.8%和80.8%、19.2%,回族人群2型糖尿病组基因型和等位基因频率分布与正常对照组比较差异均有统计学意义(P<0.05)。
     3.汉族人群GA基因型患2型糖尿病的风险显著高于GG基因型(OR=2.087,95% CI.1.186-3.673,P=0.010),且A等位基因能够显著增加2型糖尿病的患病风险(OR=1.642,95% CI:1.031-2.616,P=0.036);回族人群GA基因型在2型糖尿病人群中的频率高于GG基因型,是2型糖尿病的危险因素(OR,1.988;95%CI,1.125-3.513,P=0.017),2型糖尿病组中A等位基因能够增加2型糖尿病的患病风险(OR,1.615;95%CI,1.032-2.528,P=0.035)。
     4.汉族人群2型糖尿病组A等位基因携带者(即GA+AA基因型)较GG基因型有更高的空腹血糖、空腹胰岛素和胰岛素抵抗指数(P<0.05);汉族人群正常对照组空腹血糖水平在A等位基因携带者中高于GG基因型,差异有统计学意义(P<0.05);回族人群2型糖尿病组A等位基因携带者较GG基因型有更高的空腹血糖水平(P=0.002);在回族对照组中,A等位基因携带者的腰臀比和低密度脂蛋白胆固醇水平高于GG基因型,差异有统计学意义(P<0.05)。
     结论
     ARHGEF11基因R1467H位点多态性在甘肃回族和汉族人群中的分布不存在差异;ARHGEF11基因R1467H位点多态性可能与甘肃汉族人群胰岛素抵抗及2型糖尿病相关,亦可能与甘肃回族人群2型糖尿病、肥胖及血脂异常相关。
Objectives The aim of our study was to investigate the distribution and difference of ARHGEF11 gene R1467H polymorphism in Hui and Han population in Gansu province. To evaluate the relationship between the R1467H polymorphism in ARHGEF11 and risk of type 2 diabetes mellitus (T2DM) and insulin resistance in Hui and Han population in Gansu province.
     Methods We genotyped R1467H polymorphism in 117 patients with T2DM and 104 control subjects in Gansu Hui population and 149 patients with T2DM and 114 control subjects in Gansu Han population, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol and DNA sequencing methods. The frequencies of genotypes and alleles at the site were compared between the T2DM and control groups. Total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and fasting blood glucose levels were determined by automatic biochemistry analyzer. Glycosylated hemoglobin (HbAlc) value was determined by HbAlc analyzer. Fasting insulin concentration was measured using insulin radioimmunoassay kit. At the same time, we measured the height, weight, waist circumference, hip circumference, blood pressure. The body mass index (BMI), waist hip ratio (WHR) and insulin resistance index (HOMA-IR) were computed.
     Results (1) There was no significant difference in distribution of genotype and allele in R1467H polymorphism between T2DM and NC in Hui and Han population of Gansu province. (P>0.05); (2) Genotype frequencies of GG, GA, AA were 61.1%, 35.6%,3.3%in T2DM group and 75.4%,21.1%,3.5%in NC group, allele frequencies of G, A were 78.9%,21.1%in T2DM group and 86.0%,14.0%in NC group in Han population. Genotype frequencies of GG, GA, AA were50.4%,43.6%, 6.0%in T2DM group and 66.3%,28.8%,4.8%in NC group, allele frequencies of G, A were 72.2%,27.8%in T2DM group and 80.8%,19.2%in NC group in Hui population. There was a significant difference in distribution of genotype and allele in R1467H polymorphism between T2DM and NC in Han and Hui population; (3) The relative risk of GA genotype in the T2DM of Han population was significantly higher than GG genotype (OR=2.087,95% CI:1.186-3.673, P= 0.010). And A allele was associated with increased risk of T2DM (OR= 1.642,95% CI:1.031-2.616, P= 0.036). The relative risk of GA genotype in the T2DM of Hui population was significantly higher than GG genotype (OR,1.988; 95% CI,1.125-3.513, P= 0.017). And A allele was associated with increased risk of T2DM (OR,1.6.15; 95%CI, 1.032-2.528, P= 0.035); (4) In Han population, the levels of FPG, FINS and HOMA-IR in the type 2 diabetes group of Han population were higher in A allele carriers (GA+AA genotype) than those of GG genotype (all P< 0.05). The level of FPG in the NC group was significantly higher in genotypes with allele A than in GG genotype (P< 0.05). In Hui population, the level of FPG in the type 2 diabetes group was significantly higher in GA+AA genotype than in GG genotype (P= 0.002). In the NC group, the subjects carrying GA, AA genotype had the significant increased levels of WHR and LDL-C (P< 0.05).
     Conclusion There was no significant difference in distribution of ARHGEF11 R1467H polymorphism between T2DM and NC in Hui and Han population of Gansu province. Our investigation suggests that the R1467H polymorphism of ARHGEF11 gene may contribute to susceptibility to T2DM and insulin resistance in Han population in Gansu province. Moreover, the SNP was likely related to increased risk of T2DM, obesity and dyslipidemia in Hui population in Gansu province.
引文
[1]Patel A, Neal B, Chalmers J. Event rates in trials of patients with type 2 diabetes. JAMA2010;303 (8):732; author reply 733.
    [2]Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27 (5):1047-1053.
    [3]Zuo H, Shi Z, Hu X, Wu M, Guo Z, Hussain A. Prevalence of metabolic syndrome and factors associated with its components in Chinese adults. Metabolism 2009;58 (8):1102-1108.
    [4]Schwarz PE, Muylle F, Valensi P, Hall M, Diabetes Prevention Forum IDFE. The European perspective of diabetes prevention. Horm Metab Res 2008;40 (8):511-514.
    [5]Ling C, Groop L. Epigenetics:a molecular link between environmental factors and type 2 diabetes. Diabetes 2009;58 (12):2718-2725.
    [6]Bloomgarden ZT. The 6th Annual World Congress on the Insulin Resistance Syndrome. Diabetes Care 2009;32 (11):e127-133.
    [7]Hanley AJ, Wagenknecht LE, Norris JM, Bryer-Ash M, Chen YI, Anderson AM, Bergman R, Haffner SM. Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes:the Insulin Resistance Atherosclerosis Study (IRAS) Family study. Diabetologia 2009;52 (10):2079-2086.
    [8]Lorenzo C, Wagenknecht LE, D'Agostino RB, Jr., Rewers MJ, Karter AJ, Haffner SM. Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population:the Insulin Resistance Atherosclerosis Study. Diabetes Care 2010;33 (1):67-72.
    [9]Gupta R. Metabolic syndrome as a marker of risk in type 2 diabetes. Indian J Med Res 2009;129 (5):481-484.
    [10]Bo S, Gambino R, Ciccone G, Rosato R, Milanesio N, Villois P, Pagano G, Cassader M, Gentile L, Durazzo M, Cavallo-Perin P. Effects of TCF7L2 polymorphisms on glucose values after a lifestyle intervention. Am J Clin Nutr 2009;90 (6):1502-1508.
    [11]王克安,向红丁.中国糖尿病流行特点研究:糖尿病和糖耐量低减患病.中华流行病学杂志.1998;19(5).-282-285.
    [12]胡善联,刘国恩,许樟荣,李大魁,胡永华.我国糖尿病流行病学和疾病经济负担研究现状.中国卫生经济.2008;27(8).-5-8.
    [13]Misra A, Khurana L. The metabolic syndrome in South Asians:epidemiology, determinants, and prevention. Metab Syndr Relat Disord 2009;7 (6):497-514.
    [14]Sathiyapriya V, Bobby Z, Agrawal A, Selvaraj N. Protein glycation, insulin sensitivity and pancreatic beta cell function in high-risk, non-diabetic, first degree relatives of patients with type 2 diabetes. Indian J Physiol Pharmacol 2009;53 (2):163-168.
    [15]Aberg K, Sun G, Smelser D, Indugula SR, Tsai HJ, Steele MS, Tuitele J, Deka R, McGarvey ST, Weeks DE. Applying novel genome-wide linkage strategies to search for loci influencing type 2 diabetes and adult height in American Samoa. Hum Biol 2008;80 (2):99-123.
    [16]Richards JB, Waterworth D, O'Rahilly S, Hivert MF, Loos RJ, Perry JR, Tanaka T, Timpson NJ, Semple RK, Soranzo N, Song K, Rocha N, Grundberg E, Dupuis J, Florez JC, Langenberg C, Prokopenko I, Saxena R, Sladek R, Aulchenko Y, Evans D, Waeber G, Erdmann J, Burnett MS, Sattar N, Devaney J, Willenborg C, Hingorani A, Witteman JC, Vollenweider P, Glaser B, Hengstenberg C, Ferrucci L, Melzer D, Stark K, Deanfield J, Winogradow J, Grassl M, Hall AS, Egan JM, Thompson JR, Ricketts SL, Konig IR, Reinhard W, Grundy S, Wichmann HE, Barter P, Mahley R, Kesaniemi YA, Rader DJ, Reilly MP, Epstein SE, Stewart AF, Van Duijn CM, Schunkert H, Burling K, Deloukas P, Pastinen T, Samani NJ, McPherson R, Davey Smith G, Frayling TM, Wareham NJ, Meigs JB, Mooser V, Spector TD, Consortium G. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet 2009;5 (12):e1000768.
    [17]Cauchi S, Meyre D, Durand E, Proenca C, Marre M, Hadjadj S, Choquet H, De Graeve F, Gaget S, Allegaert F, Delplanque J, Permutt MA, Wasson J, Blech I, Charpentier G, Balkau B, Vergnaud AC, Czernichow S, Patsch W, Chikri M, Glaser B, Sladek R, Froguel P. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 2008;3 (5):e2031.
    [18]Moore AF, Jablonski KA, McAteer JB, Saxena R, Pollin TI, Franks PW, Hanson RL, Shuldiner AR, Knowler WC, Altshuler D, Florez JC, Diabetes Prevention Program Research G. Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes 2008;57 (9):2503-2510.
    [19]Joerges S, Schaaf L. [New aspects in diet for persons with type 2 diabetes]. MMW Fortschr Med 2009;151 (49-50):44-46.
    [20]Dhanaraj E, Bhansali A, Jaggi S, Dutta P, Jain S, Tiwari P, Ramarao P. Predictors of metabolic syndrome in Asian north Indians with newly detected type 2 diabetes. Indian J Med Res 2009; 129 (5):506-514.
    [21]Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420 (6916):629-635.
    [22]Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002;420 (6913):333-336.
    [23]Larsen L, Storling J, Darville M, Eizirik DL, Bonny C, Billestrup N, Mandrup-Poulsen T. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 2005;48 (12):2582-2590.
    [24]Geiger PC, Wright DC, Han DH, Holloszy JO. Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2005;288 (4):E782-788.
    [25]Kowluru A, Veluthakal R. Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes 2005;54 (12):3523-3529.
    [26]Nevins AK, Thurmond DC. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 2005;280 (3):1944-1952.
    [27]Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 2000;113 Pt 2:279-290.
    [28]Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001;410 (6831):944-948.
    [29]Houssa B, de Widt J, Kranenburg O, Moolenaar WH, van Blitterswijk WJ. Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA. J Biol Chem 1999;274 (11):6820-6822.
    [30]Hess JA, Ross AH, Qiu RG, Symons M, Exton JH. Role of Rho family proteins in phospholipase D activation by growth factors. J Biol Chem 1997;272(3):1615-1620.
    [31]Sah VP, Seasholtz TM, Sagi SA, Brown JH. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 2000;40:459-489.
    [32]Piekny A, Werner M, Glotzer M. Cytokinesis:welcome to the Rho zone. Trends Cell Biol 2005;15 (12):651-658.
    [33]Haeusler LC, Blumenstein L, Stege P, Dvorsky R, Ahmadian MR. Comparative functional analysis of the Rac GTPases. FEBS Lett 2003;555 (3):556-560.
    [34]Ron D, Zannini M, Lewis M, Wickner RB, Hunt LT, Graziani G, Tronick SR, Aaronson SA, Eva A. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol 1991;3 (4):372-379.
    [35]Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 2001;26(12):724-732.
    [36]Oleksy A, Barton H, Devedjiev Y, Purdy M, Derewenda U, Otlewski J, Derewenda ZS. Preliminary crystallographic analysis of the complex of the human GTPase RhoA with the DH/PH tandem of PDZ-RhoGEF. Acta Crystallogr D Biol Crystallogr 2004;60 (Pt 4):740-742.
    [37]Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000;348 Pt 2:241-255.
    [38]Kozasa T. Regulation of G protein-mediated signal transduction by RGS proteins. Life Sci 2001;68 (19-20):2309-2317.
    [39]Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs:the missing link between transforming G proteins and Rho? Oncogene 2001;20 (13):1661-1668.
    [40]Panizzi JR, Jessen JR, Drummond IA, Solnica-Krezel L. New functions for a vertebrate Rho guanine nucleotide exchange factor in ciliated epithelia. Development 2007; 134 (5):921-931.
    [41]Hirotani M, Ohoka Y, Yamamoto T, Nirasawa H, Furuyama T, Kogo M, Matsuya T, Inagaki S. Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors. Biochem Biophys Res Commun 2002;297 (1):32-37.
    [42]Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS. Homo-and hetero-oligomerizatiori of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 2004;23 (1):233-240.
    [43]Gu J, Wu X, Dong Q, Romeo MJ, Lin X, Gutkind JS, Berman DM. A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser 1416Gly) modulates the risk of lung cancer in Mexican Americans. Cancer 2006; 106 (12):2716-2724.
    [44]Elbein SC, Hoffman MD, Teng K, Leppert MF, Hasstedt SJ. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 1999;48(5):1175-1182.
    [45]Wiltshire S, Hattersley AT, Hitman GA, Walker M, Levy JC, Sampson M, O'Rahilly S, Frayling TM, Bell JI, Lathrop GM, Bennett A, Dhillon R, Fletcher C, Groves CJ, Jones E, Prestwich P, Simecek N, Rao PV, Wishart M, Bottazzo GF, Foxon R, Howell S, Smedley D, Cardon LR, Menzel S, McCarthy MI. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository):analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 2001;69 (3):553-569.
    [46]Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S, De Matos F, Durand E, Lepretre F, Lecoeur C, Gallina P, Zekiri L, Dina C, Froguel P. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet 2000;67 (6):1470-1480.
    [47]Hsueh WC, St Jean PL, Mitchell BD, Pollin TI, Knowler WC, Ehm MG, Bell CJ, Sakul H, Wagner MJ, Burns DK, Shuldiner AR. Genome-wide and fine-mapping linkage studies of type 2. diabetes and glucose traits in the Old Order Amish:evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes 2003;52 (2):550-557.
    [48]Ma L, Hanson RL, Que LN, Cali AM, Fu M, Mack JL, Infante AM, Kobes S, Bogardus C, Shuldiner AR, Baier LJ. Variants in ARHGEF11, a candidate gene for the linkage to type 2 diabetes on chromosome 1q, are nominally associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 2007;56 (5):1454-1459.
    [49]Fu M, Sabra MM, Damcott C, Pollin TI, Ma L, Ott S, Shelton JC, Shi X, Reinhart L, O'Connell J, Mitchell BD, Baier LJ, Shuldiner AR. Evidence that Rho guanine nucleotide exchange factor 11 (ARHGEF11) on 1q21 is a type 2 diabetes susceptibility gene in the Old Order Amish. Diabetes 2007;56 (5):1363-1368.
    [50]Bottcher Y, Schleinitz D, Tonjes A, Bluher M, Stumvoll M, Kovacs P. R1467H variant in the rho guanine nucleotide exchange factor 11 (ARHGEF11) is associated with'impaired glucose tolerance and type 2 diabetes in German Caucasians. J Hum Genet 2008;53 (4):365-367.
    [51]Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 2002;34 (3):275-305.
    [52]Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998;8 (12):1229-1231.
    [53]Zimmet P. Epidemiology of diabetes and its macrovascular manifestations in Pacific populations:the medical effects of social progress. Diabetes Care 1979;2(2):144-153.
    [54]McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians.Lancet 1991;337 (8738):382-386.
    [55]Diehl AK, Stern MP. Special health problems of Mexican-Americans:obesity, gallbladder disease, diabetes mellitus, and cardiovascular disease. Adv Intern Med 1989;34:73-96.
    [56]World Health Organization Definition. Definition, diagnosis and classification of diabetes mellitus and its complications:report of a WHO consultation.Part 1. Diagnosis and classification of diabetes mellitus (World Health Organization, Geneva,1999).
    [57]Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H. A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care 1996;19(10):1138-1141.
    [58]Park PJ, Kong SW, Tebaldi T, Lai WR, Kasif S, Kohane IS. Integration of heterogeneous expression data sets extends the role of the retinol pathway in diabetes and insulin resistance. Bioinformatics 2009;25 (23):3121-3127.
    [59]Isharwal S, Misra A, Wasir JS, Nigam P. Diet & insulin resistance:a review & Asian Indian perspective. Indian J Med Res 2009; 129 (5):485-499.
    [60]Finucane TE. Diabetic polyneuropathy and glucose control. Jama;303 (5):420; author reply 420-421.
    [61]Saremi A, Allison M, Ditomasso D, Ge L, Anderson R, Moritz TE, Duckworth W, Abraira C, Reaven PD, Vadt. Preliminary report:hepatic fat and inflammation in type 2 diabetes mellitus. Metabolism 2010;59 (3):430-432.
    [62]Kim Y, Lee S. Physical activity and abdominal obesity in youth. Appl Physiol Nutr Metab 2009;34 (4):571-581.
    [63]Friedl KE. Waist circumference threshold values for type 2 diabetes risk. J Diabetes Sci Technol 2009;3 (4):761-769.
    [64]Rett K, Jacob S, Wicklmayr M. Possible synergistic effect of ACE inhibition and calcium-channel blockade on insulin sensitivity in insulin-resistant type II diabetic hypertensive patients. J Cardiovasc Pharmacol 1994;23 Suppl 1:S29-33.
    [65]Polakof S. Diabetes therapy:novel patents targeting the glucose-induced insulin secretion. Recent Pat DNA Gene Seq 2010;4 (1):1-9.
    [66]Edwards KL, Hutter CM, Wan JY, Kim H, Monks SA. Genome-wide linkage scan for the metabolic syndrome:the GENNID study. Obesity (Silver Spring) 2008;16(7):1596-1601.
    [67]张弘.2型糖尿病患病率的研究进展.口岸卫生控制.2008;13(4).-43-46.
    [68]Luo TH, Zhao Y, Li G, Yuan WT, Zhao JJ, Chen JL, Huang W, Luo M. A genome-wide search for type Ⅱ diabetes susceptibility genes in Chinese Hans. Diabetologia 2001;44 (4):501-506.
    [69]Xiang K, Wang Y, Zheng T, Jia W, Li J, Chen L, Shen K, Wu S, Lin X, Zhang G, Wang C, Wang S, Lu H, Fang Q, Shi Y, Zhang R, Xu J, Weng Q. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese:significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 2004;53 (1):228-234.
    [70]Ng MC, So WY, Lam VK, Cockram CS, Bell GI, Cox NJ, Chan JC. Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes 2004;53 (10):2676-2683.
    [71]Ehm MG, Karnoub MC, Sakul H, Gottschalk K, Holt DC, Weber JL, Vaske D, Briley D, Briley L, Kopf J, McMillen P, Nguyen Q, Reisman M, Lai EH, Joslyn G, Shepherd NS, Bell C, Wagner MJ, Burns DK, American Diabetes Association GSGGoN. Genomewide search for type 2 diabetes susceptibility genes in four American populations. Am J Hum Genet 2000;66 (6):1871-1881.
    [72]Schmohl M, Rimmele S, Potz O, Kloog Y, Gierschik P, Joos TO, Schneiderhan-Marra N. Protein-protein-interactions in a multiplexed, miniaturized format a functional analysis of Rho GTPase activation and inhibition. Proteomics 2010;10(8):1716-1720.
    [73]Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E, Messerschmidt EM, Heisenberg CP, Raz E. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat Cell Biol 2010; 12 (1):47-53; sup pp 41-11.
    [74]Florez JC. Clinical review:the genetics of type 2 diabetes:a realistic appraisal in 2008. J Clin Endocrinol Metab 2008;93 (12):4633-4642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700