微纳结构催化剂的设计合成及其在光催化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟自然界光合作用,构建人工光催化系统实现对太阳能的利用,是解决目前人类所面临的能源危机和环境污染问题的根本途径。具有良好的光电响应特性的纳米半导体材料为这一目标的实现提供了可能。然而,目前在半导体纳米光催化研究领域存在诸多问题,如光谱吸收范围窄、光生电子空穴易复合、氧化还原能力难控、牺牲剂难以避免等,导致其发展缓慢,特别是在实际应用方面鲜有报道。近年来,由主体半导体材料和电子供受体(或兼具光吸收功能)组装的功能化微纳结构光催化材料,因具有良好的光催化性能,受到人们的重视。然而,目前对微纳结构材料中电子供受体的形态、空间位置及有效吸光性对其光催化活性的影响研究鲜有报道。
     在本文中,我们基于表面电子供受体形态控制、电子供受体空间限域、稀土上转换发光等研究策略,通过功能化微纳结构光催化剂的构建,为上述问题的解决提供了新途径。
     首先,为了研究表面电子供受体形态对半导体光催化性能的影响,我们构建了具有蛇莓形态的TiO_2-Cdot微纳结构光催化体系,提供了一种TiO_2表面电子供受体碳纳米点的可控合成策略,探讨了碳纳米点分布对TiO_2光催化活性的影响,提出了TiO_2@C核壳结构在光催化过程中可能存在“活塞式”光生电子转移模式。通过对光催化剂吸附性能、光吸收程度、光电响应性能等研究,揭示TiO_2表面碳纳米点的形态是影响微纳结构TiO_2-C组装材料光催化活性的关键因素。
     另外,在上述研究二氧化钛和碳复合材料的过程中,我们以碳为还原性物种将TiO_2部分还原,合成出了具有多面体自组装形貌的灰黑色金红石型TiO_2。与普通白色金红石型TiO_2相比,由于Ti3+的存在,使该灰黑色TiO_2具有很强的可见光吸收能力及光电分离能力;在可见光下,其光催化性能显著高于白色金红石型TiO_2和锐钛型P25TiO_2。并且,我们通过二次煅烧钝化TiO_2表面还原态Ti3+,有效提高了灰黑色TiO_2的物理化学稳定性及光催化活性的稳定性。
     为了研究表面电子供受体空间位置对半导体光催化性能的影响,我们以TiO_2纳米管为基体,将Pt纳米粒子作为电子受体限域在TiO_2纳米管内部,将兼具光吸收天线和电子供体功能的TCMnPc限域在TiO_2纳米管外部,构建了具有电子供受体空间限域结构的Pt@TiO_2-TCMnPc光催化体系,提供了一种层层组装法和模板法相结合的空间限域微纳结构材料的通用性合成方法。在该微纳结构光催化体系中,电子供、受体作为反应活性位点,有效控制了半导体TiO_2材料的氧化还原能力,提高其在光催化有机合成应用中的选择性,成功用于烯烃的选择性氧化。研究结果表明,通过电子供受体的空间限域,可以实现光生电子空穴的定向分离,从而提高光生电子空穴的分离效率,提高光催化反应效率。
     最后,基于稀土上转换发光及能带匹配原理,通过稀土上转换发光材料与半导体材料的有效耦合,构建了能有效利用太阳光谱中紫外、可见和近红外光谱的NaYF_4:Yb~(3+),Er~(3+)@SiO2-CuInS_2光催化体系。该微纳结构光催化剂,能将吸收的980nm的近红外光谱转化为CuInS_2可以充分吸收的540nm可见光,提高了太阳光利用率;通过与光解水制氢耦合,实现了以水氢源高选择性光催化还原CO_2,且避免了牺牲剂的使用;通过具有合适能带的半导体CuInS_2的选择应用,提高了对稀土上转换发光的吸收性能和CO_2的光催化还原的选择性。
     本文开展的上述研究工作,对半导体表面的电子供受体的形态、空间位置对微纳结构光催化材料的催化活性的影响机制进行了系统性研究;通过稀土上转换发光材料与半导体材料的有效耦合,将其吸光范围从可见光区拓展到了近红外区。上述微纳结构光催化体系,分别成功应用于水环境中污染物降解、烯烃选择氧化、光催化还原CO_2,取得了令人满意的光催化效果。
Utilization of solar energy is the basic way to solve the energy crisis and environmentpollution by mimicking the photosynthesis existed in nature. Semiconducor materials areproposed as the most promising tools to perform this goal due to their excellent light-electronresponse character. However, they are still suffered from narrow spectral absorbance,recombination of photogenerated electrons and holes and low photocatalytic reaction selectivity,which cause a tardigrade development in the photocatalysis research field. Micro-nanostructurephotocatalyst systems which are usually composed of carrier, electron donor and acceptor (or actas light absorbance), exhibit effective catalytic activity due to wide spectral absorbance andenhanced charge separation. However, the effection on the photocatalytic activity caused by theelectron donors or acceptors morphology has been ignored for a long time.
     In this paper, based on the idea of energy up-conversion, morphology controle and spatialconfinement of electron donors and acceptors, we constructed novel micro-nano structurematrials to improve the solar absorbance and charge separation efficiency for the photocatalysis,which were successfully applied in the water water purification, oxidation of olefins and watersplitting.
     First, to show the influence caused by the morphology of surface electron donors oracceptors, a new kind of carbonouse TiO_2composite, TiO_2-Cdot, was fabricated as the modelphotocatalyst. It indicated that TiO_2particles strewed with optimal quantity of carbon nanodotshas much higher photoactivity than that of TiO_2overcovered with carbon layer owning to thesufficient exposure of the active sites and efficient separation of photogenerated electrons andholes. According to these results, the different photocatalytic mechanism was discussed. Theestablished mechanism is proposed to be compatible to clarify why the semiconductors modifiedwith other electron acceptors such as metal-semiconductor hybrid materials have the optimalcontents for the photoactivity. Moreover, a piston motion model electrons transfer mechanism was proposed for TiO2@C material for the first time, which maybe has the universality to other kind of core-shell semiconductor hybrid materials with compact shells and need further investigation in the future work.
     Second, we prepared a novel photocatalyst, Pt@TiO.2-TCMnPc, based on TiO2nanotube with confinement of electron donor and acceptor at inner and outer surface respectively by a universal method. In which, Pt nanoparticles (electron acceptor) and dye (TCMnPc, electrons donor) are localized at inner and outer surface of a porous TiO2nanotube respectively. The as-designed nanostructure afforded a void space separation state of electron donor and acceptor, which significantly enhanced the charge separation, consequently the catalytic activity for photooxidation of olefins with O2. Moreove, both of the electron donor and acceptor were utilized as active site to activate the substrates by deliberate design avoiding the use of sacrificial agents.
     Last, based on the idea of energy up-conversion and band matching, a novel micro-nano structure NaYF4:Yb3+, Er3+@SiO2-CuInS2was fabricated to apply in the photocatalytic water splitting and reduction of CO2. The as-prepared photocatalyst can absorb near infrared light, which improve the utilization efficiency of the solar light. The photocatalytic efficiency and selectivity were remarkably improved.
     The results reported in this paper as mentioned aboved should be much helpful to make a rational design on constructure new kind of composite photocatalysts.
引文
[1]朱成章,中外非化石能源统计分析的启示[J],中外能源,2011,16(5):34-39。
    [2]丛威,赖晓乐,“十二五”时期加快非化石能源发展的必要性及若干建议[J],华北电力技术,2011,7:35-39。
    [3]潘家华,禹湘,非化石能源发展的几个战略问题[J],开放导报,2011,4(157):13-19。
    [4] K. Kalyanasundaram and M. Gr tzel, Themed issue: nanomaterials for energy conversionand storage [J], J. Mater. Chem.,2012,22:24190-24194.
    [5] Gary Hodes, When Small Is Different: Some Recent Advances in Concepts and Applicationsof Nanoscale Phenomena [J], Adv. Mater.2007,19:639–655.
    [6] Yongmei Liu, Hironori Tsunoyama, Tomoki Akita, Songhai Xie, and Tatsuya Tsukuda,Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite:Size Effect in the Sub-2nm Regime[J], ACS Catal.,2011,1(1):2–6.
    [7] J. M. White, Opportunities for Catalysis in the21st Century, BASIC ENERGY SCIENCESADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT,2002:1-47.
    [8] Na Tian, Zhi-You Zhou, Shi-Gang Sun, Yong Ding, Zhong Lin Wang,Synthesis ofTetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-OxidationActivity[J], Science,2007,316:732-735.
    [9] Gary Hodes, When Small Is Different: Some Recent Advances in Concepts and Applicationsof Nanoscale Phenomena[J], Adv. Mater.2007,19:639–655.
    [10]M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation ofcarbon monoxide at a temperature far below0℃[J],Chem. Lett.1987,4:405.
    [11]L. Prati, M. Rossi, Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidationof Diols[J], J. Catal.,1998,176:552.
    [12] Dan I. Enache, Jennifer K. Edwards, Philip Landon, Benjamin Solsona-Espriu,Albert F.Carley, Andrew A. Herzing, Masashi Watanabe, Christopher J. Kiely,David W. Knight, Graham J.Hutchings, Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2Catalysts[J],SCIENCE,2006,311:362-365.
    [13] Babak Karimi and Farhad Kabiri Esfahani,Gold nanoparticles supported on Cs2CO3asrecyclable catalyst system for selective aerobic oxidation of alcohols at room temperature[J],Chem. Commun.,2009:5555–5557.
    [14] Jinlong Gong and C. Buddie Mullins Selective Oxidation of Ethanol to Acetaldehyde onGold[J], J. Am. Chem. Soc.,2008,130(49):16458–16459.
    [15] Avelino Corma and Pedro Serna, Chemoselective Hydrogenation of Nitro Compounds withSupported Gold Catalysts[J],Science,2006,313:332.
    [16] Yongmei Liu,a Hironori Tsunoyama,a Tomoki Akitabc and Tatsuya Tsukuda,Efficient andselective epoxidation of styrene with TBHP catalyzed by Au25clusters on hydroxyapatite[J],Chem. Commun.,2010,46:550–552.
    [17] Qi Fu, Howard Saltsburg, Maria Flytzani-Stephanopoulos, Active Nonmetallic Au and PtSpecies on Ceria-Based Water-Gas Shift Catalysts[J], Science,2003,301:935.
    [18] Jianlin Shi, On the Synergetic Catalytic Effect in Heterogeneous NanocompositeCatalysts[J],Chemical Reviews,2013,113(3):2139–2181.
    [19] Xiangwen Liu, Dingsheng Wang, Yadong Li, Synthesis and catalytic properties of bimetallicnanomaterials with various architectures[J], Nano Today,2012,7:448—466.
    [20] Svetlozar Surnev, Alessandro Fortunelli, and Falko P. Netzer, Structure PropertyRelationship and Chemical Aspects of Oxide Metal Hybrid Nanostructures[J], Chem. Rev.,2013, Article ASAP, DOI:10.1021/cr300307n.
    [21] Dongqing Wu,a Fan Zhang,a Haiwei Liangab and Xinliang Feng, Nanocomposites andmacroscopic materials: assembly of chemically modified graphene sheets[J], Chem. Soc. Rev.,2012,41:6160-6177.
    [22] Haiyan Zheng, Yongjun Li, Huibiao Liu, Xiaodong Yin and Yuliang Li, Construction ofheterostructure materials toward functionality[J], Chem. Soc. Rev.,2011,40:4506-4524.
    [23] Rafael Luque, Aziz Fihri, Haibo Zhu, Mohamed Bouhrara and Jean-Marie Basset,Magnetically Recoverable Nanocatalysts[J], Chem. Rev.2011,111:3036–3075.
    [24] Honda, K. and Fujishima, A. Electrochemical photolysis of water at a semiconductorelectrode[J], Nature,1972,238:37-38.
    [25] Rachel S. Selinsky, Qi Ding, Matthew S. Faber, John C. Wright and Song Jin, Quantum dotnanoscale heterostructures for solar energy conversion[J], Chem. Soc. Rev.2013,42:2963-2985.
    [26] K. Kalyanasundaram and M. Gr tzel, Themed issue: nanomaterials for energy conversionand storage[J], J. Mater. Chem.,2012,22:24190-24194.
    [27] D. M. Chapin, C. S. Fuller, and G. L. Pearson, A New Silicon p‐n Junction Photocell forConverting Solar Radiation into Electrical Power, J. Appl. Phys.,1954:25,676–677.
    [28] Dye Sensitized Solar Cells, ed. K. Kalyanasundaram, EPFL Press, CRC, Press, Lausanne,2010, ISBN-13:978-1-4398-0866-5,978-2-940222-36-0.
    [29] Brian O’regan, M. Gr tzel, A low cost, high efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J], Nature,1991,353:737-740.
    [30] Ningzhong Bao, Xinjian Feng, and Craig A. Grimes, Self-Organized One-Dimensional TiO2Nanotube/Nanowire Array Films for Use in Excitonic Solar Cells: A Review[J],Journal ofNanotechnology,2012,2012:Article ID645931,27pages.
    [31] Neil R., Optimizing Dyes for Dye—Sensitized Solar Cells[J],Angew. Chem.Inter.Ed.,2006,(45):2338-2345.
    [32]张力,孙岳明,染料敏化太阳能电池的研究进展[J],化工时刊,2008,1(22):10。
    [33] Takeru Bessho, Edwin C. Constable, Michael Graetzel, et al., An element ofsurprise—efficient copper-functionalized dye-sensitized solar cells[J], Chem. Commun.,2008:3717–3719.
    [34] William R. McNamara, Robert C. Snoeberger III, et al., Acetylacetonate Anchors for RobustFunctionalization of TiO2,Nanoparticles with Mn(II)-Terpyridine Complexes[J],J. Am. Chem.Soc.,2008,130(43):14329–14338.
    [35]Geary EA, Yellowlees LJ, Jack LA, et al., Synthesis, structure, and properties of
    [Pt(II)(diimine)(dithiolate)] dyes with3,3'-,4,4'-, and5,5'-disubstituted bipyridyl: applications indye-sensitized solar cells[J], Inorg Chem.,2005,44(2):242-50.
    [36] M. Yang, D. W. Thompson and G. J. Meyer, Dual pathways for TiO2sensitization byNa2[Fe(bpy)(CN)4[J],Inorg. Chem.,2000,39:3738–3739.
    [37] Anders. Hagfeldt, Michael. Graetzel, Light-Induced Redox Reactions in NanocrystallineSystems[J],Chem. Rev.,1995,95(1):49–68.
    [38] Mershin, Kazuya Matsumoto, Liselotte Kaiser, Daoyong Yu, Michael Vaughn, Md. K.Nazeeruddin, Barry D. Bruce, Michael Graetzel&Shuguang Zhang, Self-assembledphotosystem-I biophotovoltaics on nanostructured TiO2and ZnO Andreas[J],SCIENTIFICREPORTS,2012, DOI:10.1038/srep00234.
    [39]Michael. Graetzel, Recent Advances in Sensitized Mesoscopic Solar Cells[J],ACCOUNTSOF CHEMICAL RESEARCH,2009,42(11):1788-1798.
    [40]Erik C. Garnett, Mark L. Brongersma, Yi Cui, and Michael D. McGehee,Nanowire SolarCells[J],Annu. Rev. Mater. Res.2011.41:269–295.
    [41] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, Quantum Dot Solar Cells.Tuning Photoresponse through Size and Shape Control of CdSe TiO2Architecture[J], J. Am.Chem. Soc.,2008,130:4007–4015.
    [42] Octavi E. Semonin, Joseph M. Luther, Sukgeun Choi, Hsiang-Yu Chen, Jianbo Gao, ArthurJ. Nozik, Matthew C. Beard, Peak External Photocurrent Quantum Efficiency Exceeding100%via MEG in a Quantum Dot Solar Cell[J],2011,334:1530.
    [43]M. C. Beard, A. G. Midgett, M. C. Hanna, J. M. Luther, B. K. Hughes and A. J. Nozik,Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in BulkSemiconductors: Implications for Enhancement of Solar Energy Conversion[J], Nano Lett.,2010,10:3019–3027.
    [44] Octavi E. Semonin, Joseph M. Luther, Sukgeun Choi, Hsiang-Yu Chen, Jianbo Gao, ArthurJ. Nozik, Matthew C. Beard, Peak External Photocurrent Quantum Efficiency Exceeding100%via MEG in a Quantum Dot Solar Cell[J],Science,2011,334:1530.
    [45] M. Shalom, S. Buhbut, S. Tirosh and A. Zaban, Design Rules for High-EfficiencyQuantum-Dot-Sensitized Solar Cells: A Multilayer Approach[J], J. Phys. Chem. Lett.,2012,3:2436.
    [46] Coehn, A., Ber, Deutsch., Chem. Gesellschaft[J],1910,43,880.
    [47] Anna Kubacka, Marcos Fernández-García, and Gerardo Colón, Advanced Nanoarchitecturesfor Solar Photocatalytic Applications[J],2012,112(3):1555–1614.
    [48] Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi,Elizabeth A. Santori, and Nathan S. Lewis, Solar Water Splitting Cells[J], Chem. Rev.2010,110:6446–6473.
    [49] Xiaobo Chen, Can Li, Michael Gr tzel, Robert Kosteckid and Samuel S. Mao,Nanomaterials for renewable energy production and storage[J], Chem. Soc. Rev.2012,41:7909-7937.
    [50] Hyun G. Kim, Dong W. Hwang, Jindo Kim, Young G. Kim and Jae S. Lee, Highlydonor-doped (110) layered perovskite materials as novel photocatalysts for overall watersplitting[J], Chem. Commun.,1999,12:1077-1078.
    [51] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible lightirradiation with an oxide semiconductor photocatalyst[J], Nature2001,414:625–627.
    [52] Qing-Ping Ding, Yu-Peng Yuan, Xiang Xiong, Rui-Pu Li, Hong-Bo Huang, Zhao-Sheng Li,Tao Yu, Zhi-Gang Zou and Shao-Guang Yang, Enhanced Photocatalytic Water SplittingProperties of KNbO3Nanowires Synthesized through Hydrothermal Method[J], J. Phys. Chem.C,2008,112(48):18846–18848.
    [53] Ana Primo, Tiziana Marino, Avelino Corma, Raffaele Molinari, and Hermenegildo García,Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported onNanoparticulate CeO2Obtained by a Biopolymer Templating Method[J], J. Am. Chem. Soc.2011,133:6930–6933.
    [54] W. JUSTIN YOUNGBLOOD, SEUNG-HYUN ANNA LEE, KAZUHIKO MAEDA, ANDTHOMAS E. MALLOUK, Visible Light Water Splitting Using Dye-Sensitized OxideSemiconductors[J],2009,42(12):1966-1973.
    [55] Barbara R. Evans, Hugh M. O’Neill, Stacy A. Hutchens, Barry D. Bruce, and EliasGreenbaum, Enhanced Photocatalytic Hydrogen Evolution by Covalent Attachment ofPlastocyanin to Photosystem I[J], NANO LETTERS,2004,4(10):1815-1819.
    [56] Feng Wang, Wen-Guang Wang, Xiao-Jun Wang, Hong-Yan Wang, Chen-Ho Tung andLi-Zhu Wu, A Highly Efficient Photocatalytic System for Hydrogen Production by a RobustHydrogenase Mimic in an Aqueous Solution[J], Angew. Chem. Int. Ed.2011,50:3193–3197.
    [57] Zhiji Han, Fen Qiu, Richard Eisenberg, Patrick L. Holland, Todd D. Krauss, RobustPhotogeneration of H2in Water Using Semiconductor Nanocrystals and a Nickel Catalyst[J],Science,2012,1227775.
    [58] Francesca M. Toma, Andrea Sartorel, et.al., Efficient water oxidation at carbonnanotube–polyoxometalate electrocatalytic interfaces[J], Nature Chemistry,2010,2:826–831.
    [59] Afeesh R. Unnithana, Nasser A.M. Barakatb, R. Nirmalab, Salem S. Al-Deyabd, Hak YongKimb, Novel electrospun nanofiber mats as effective catalysts for water photosplitting[J],Ceramics International,2012,38(6):5175–5180.
    [60] Graphene/TiO2nanocomposites: synthesis, characterization and application in hydrogenevolution from water photocatalytic splitting[J], Xiao-Yan Zhang, Hao-Peng Li, Xiao-Li Cui andYuehe Lin, J. Mater. Chem.,2010,20:2801-2806.
    [61] Yasuhiro Tachibana, Lionel Vayssieres and James R, DurrantArtificial photosynthesis forsolar water-splitting[J], Nature Photonics,2012,6:511–518.
    [62] Hao Ming Chen, Chih Kai Chen, Yu-Chuan Chang, Chi-Wen Tsai, Ru-Shi Liu, Shu-Fen Hu,Wen-Sheng Chang, Kuei-Hsien Chen, Quantum Dot Monolayer Sensitized ZnO Nanowire-ArrayPhotoelectrodes: True Efficiency for Water Splitting[J], Angewandte Chemie,2010,122(34):6102–6105.
    [63] HIROAKI TADA, TOMOHIRO MITSUI, TOMOKAZU KIYONAGA, TOMOKI AKITAAND KOJI TANAKA, All-solid-state Z-scheme in CdS–Au–TiO2three-componentnanojunction system[J],Nature Materials,2006,5:782-786.
    [64] Hyeong Jin Yun, Hyunjoo Lee, Nam Dong Kim, David Minzae Lee, Sungju Yu, andJongheop Yi,A Combination of Two Visible-Light Responsive Photocatalysts for Achieving theZ-Scheme in the Solid State[J], ACS Nano,2011,5(5):4084–4090.
    [65] Yasuyoshi Sasaki, Hiroaki Nemoto, Kenji Saito and Akihiko Kudo,Solar Water SplittingUsing Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer withoutan Electron Mediator[J], J. Phys. Chem. C,2009,113(40):17536–17542.
    [66] Kazuhiko Maeda and Kazunari Domen, Water Oxidation Using a ParticulateBaZrO3-BaTaO2N Solid-Solution Photocatalyst That Operates under a Wide Range of VisibleLight solar energy conversion efficiency and light-harvesting capability[J], Angew. Chem. Int.Ed.2012,51(39):9865–9869.
    [67] O. Legrini, E. Oliveros, A. M. Braun, Photochemical Processes for Water Treatment[J],Chem. Rev.1093,93:671-698.
    [68]Allen J. Bard,Photoelectrochemistry[J], SCIENCE,1980,207(4427):139-144.
    [69] Steven H. Szczepankiewicz, A. J. Colussi, and Michael R. Hoffmann, Infrared Spectra ofPhotoinduced Species on Hydroxylated Titania Surfaces[J], J. Phys. Chem. B,2000,104(42):9842–9850.
    [70] Joel N. Schrauben, Rebecca Hayoun, Carolyn N. Valdez, Miles Braten, Lila Fridley, JamesM. Mayer,Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron,TransferAgents[J],Science,2012,336:1298.
    [71] Yongquan Quab and Xiangfeng Duan, Progress, challenge and perspective of heterogeneousphotocatalysts[J], Chem. Soc. Rev.2013,42:2568-2580.
    [72] Jan M. Macak, Martin Zlamal, Josef Krysa, Patrik Schmuki, Self-Organized TiO2NanotubeLayers as Highly Efficient Photocatalysts[J], Small,2007,3(2):300–304.
    [73] Jing Zhang, Qian Xu, Zhaochi Feng, Meijun Li, Can Li.Importance of the Relationshipbetween Surface Phases and Photocatalytic Activity of TiO2[J], Angewandte ChemieInternational Edition,2008,47(9):1766–1769.
    [74] Hua Gui Yang, Gang Liu, Shi Zhang Qiao, Cheng Hua Sun, Yong Gang Jin, Sean CampbellSmith, Jin Zou, Hui Ming Cheng and Gao Qing Lu, Solvothermal Synthesis and Photoreactivityof Anatase TiO2Nanosheets with Dominant {001} Facets[J], J. Am. Chem. Soc.,2009,131(11):4078–4083.
    [75] Fan Zuo, Le Wang, Tao Wu, Zhenyu Zhang, Dan Borchardt, and Pingyun Feng, Self-DopedTi3+Enhanced Photocatalyst for Hydrogen Production under Visible Light[J], J. AM. CHEM.SOC.2010,132:11856–11857.
    [76] Jian Pan, Gang Liu, Gao Qing Lu, Hui-Ming Cheng, On the True Photoreactivity Order of{001},{010}, and {101} Facets of Anatase TiO2Crystals[J], Angewandte Chemie InternationalEdition,2011,50(9):2133–2137.
    [77] Alberto Naldoni, Mattia Allieta, Saveria Santangelo, Marcello Marelli, Filippo Fabbri,Serena Cappelli, Claudia Letizia Bianchi, Rinaldo Psaro, and Vladimiro Dal Santo, The effect ofnature and location of defects on bandgap narrowing in black TiO2nanoparticles[J],2012,134(18):7600–7603.
    [78] Xiaobo Chen, Lei Liu, Peter Y. Yu, Samuel S. Mao, Increasing Solar Absorption forPhotocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals[J], SCIENCE,2011,331:746-750.
    [79] Mohamed S. Hamdy, Rezvaneh Amrollahi, and Guido Mul, Surface Ti3+-Containing (blue)Titania: A Unique Photocatalyst with High Activity and Selectivity in Visible Light-StimulatedSelective Oxidation[J], ACS Catal.2012,2:26412647.
    [80] Magdalena Janus, and Antoni W. Morawski, Carbon-modified TiO2as Photocatalysts[J], J.Adv. Oxid. Technol.,2010,13(3):313-320.
    [81] Peter Esser, Bettina Pohlmann, and Hans-Dieter Scharf, The Photochemical Synthesis ofFine Chemicals with Sunlight[J], Angew. Chem. Int. Ed. Engl.1994,33:2009-2023.
    [82] G. O. Schenck, K. Ziegler. Naturwissenschaften[J],1944.32:157.
    [83] G. O. Schenck, Angew. Chem.[J],1952,64:12.
    [84] Marye Anne Fox’ and Maria T. Dulay,Heterogeneous Photocatalysis[J],Chem. Rev.,1993,93:341-357.
    [85] T. Punniyamurthy, Subbarayan Velusamy, and Javed Iqbal, Recent Advances in TransitionMetal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen[J], Chem. Rev.,2005,105(6):2329-2364.
    [86]Qi Wang, Miao Zhang, Chuncheng Chen, Wanhong Ma, and Jincai Zhao,PhotocatalyticAerobic Oxidation of Alcohols on TiO2: The Acceleration Effect of a Br nsted Acid[J], Angew.Chem. Int. Ed.2010,49:7976–7979.
    [87]Xianjun Lang, Hongwei Ji, Chuncheng Chen, Wanhong Ma, and Jincai Zhao,SelectiveFormation of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO2[J], Angew. Chem.Int. Ed.2011,50:3934–3937.
    [88] Francesco Parrino, Ayyappan Ramakrishnan, and Horst Kisch,Semiconductor-Photocatalyzed Sulfoxidation of Alkanes[J], Angew. Chem. Int. Ed.2008,47:1-4.
    [89] Miao Zhang, Chuncheng Chen, Wanhong Ma, et al., Visible-Light-Induced AerobicOxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2andTEMPO[J],Angew. Chem. Int. Ed.2008,47:1–5.
    [90]陆道惠,陈德文,王素华,甲基紫精与醇类问的光诱导电子转移及光催化反应的ESR研究[J],波谱学杂志,1999,16(6):495-503。
    [91] Kei Ohkubo,a Kentaro Mizushima,a Ryosuke Iwata,a Kazunori Souma,b Nobuo Suzukiband Shunichi Fukuzumi,Simultaneous production of p-tolualdehyde and hydrogen peroxide inphotocatalytic oxygenation of p-xylene and reduction of oxygen with9-mesityl-10-methylacridinium ion derivatives[J],Chem. Commun.,2010,46:601–603.
    [92] Binil Itty Ipe and Christof M. Niemeyer,Nanohybrids Composed of Quantum Dots andCytochrome P450as Photocatalysts[J], Angew. Chem. Int. Ed.2006,45:504–507.
    [93] Daijiro Tsukamoto, Yasuhiro Shiraishi, Yoshitsune Sugano, Satoshi Ichikawa, ShunsukeTanaka, and Takayuki Hirai,Gold Nanoparticles Located at the Interface of Anatase/Rutile TiO2Particles as Active Plasmonic Photocatalysts for Aerobic Oxidation[J],J. Am. Chem. Soc.,2012,134(14):6309–6315.
    [94] Yasuhiro Shiraishi, Yoshitsune Sugano, Shunsuke Tanaka, and Takayuki Hirai,AerobicOxidative Coupling of Amines by Carbon Nitride Photocatalysis with Visible Light[J], Angew.Chem. Int. Ed.2010,49,1656–1660.
    [95] Somnath C. Roy, Oomman K. Varghese, Maggie Paulose, and Craig A. Grimes, TowardSolar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons[J], ACSNANO,2010,4(3):1259–1278.
    [96] Jimmie G. Edwards, Julian A. Davies, David L. Boucher and Abdelkader Mennad, AnOpinion on the Heterogeneous Photoreactions of N2with H2O[J], Angew. Chem. Int. Ed. Engl.,1992,31(4):480-482.
    [97] Jacob Schneider, Hongfei Jia, James T. Muckermana and Etsuko Fujita, Thermodynamicsand kinetics of CO2, CO, and H+binding to the metal centre of CO2reduction catalysts[J],Chem.Soc. Rev.,2012,41:2036-2051.
    [98] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Nature[J]1979,277:637–638.
    [99] Shunsuke Sato,*Takeshi Morikawa, Shu Saeki, Tsutomu Kajino, and Tomoyoshi Motohiro,Visible-Light-Induced Selective CO2Reduction Utilizing a Ruthenium Complex ElectrocatalystLinked to a p-Type Nitrogen-Doped Ta2O5Semiconductor[J], Angew. Chem. Int. Ed.2010,49:1-6.
    [100] Keita Sekizawa, Kazuhiko Maeda, Kazunari Domen, Kazuhide Koike, and OsamuIshitani, Artificial Z Scheme Constructed with a Supramolecular Metal Complex andSemiconductor for the Photocatalytic Reduction of CO2[J], J. Am. Chem. Soc.,2013,doi.org/10.1021/ja311541a.
    [101] Li Cao, Sushant Sahu, Parambath Anilkumar, Christopher E. Bunker, Juan Xu, K. A. ShiralFernando, Ping Wang, Elena A. Guliants, Kenneth N. Tackett, II, and Ya-Ping Sun,CarbonNanoparticles as Visible-Light Photocatalysts for Efficient CO2Conversion and Beyond[J], J.Am. Chem. Soc.2011,133:4754–4757.
    [102] Robert D. Richardson, Edward J. Holland and Barry K. Carpenter,A renewable amine forphotochemical reduction of CO2[J], NATURE CHEMISTRY,2011,3:301-303.
    [103] Farah Mahdavi, Thomaa C. Bruton, and Yuzhuo Li,Photoinduced Reduction of NitroCompounds on Semiconductor Particles[J], J. Org. Chem.1993,58,744-746
    [104] Merce Boronat, Patricia Concepcion, Avelino Corma, Silvia Gonza lez,Francesc Illas, andPedro Serna,A Molecular Mechanism for the Chemoselective Hydrogenation of SubstitutedNitroaromatics with Nanoparticles of Gold on TiO2Catalysts: A Cooperative Effect betweenGold and the Support[J],J. AM. CHEM. SOC.2007,129:16230-16237.
    [105] Atsuhiro Tanaka, Yuri Nishino, Satoshi Sakaguchi, Takayuki Yoshikawa, Kazuya Imamura,Keiji Hashimoto and Hiroshi Kominami,Functionalization of a plasmonic Au/TiO2photocatalystwith an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in2-propanolsuspensions under irradiation of visible light[J],Chem. Commun.,2013,49:2551.
    [106] Andrew Mills, Stephen Le Hunte,An overview of semiconductor photocatalysis[J],Journal of Photochemistry and Photobiology A: Chemistry1997,108:1-35.
    [107] Miho Yamauchi, Ryu Abe, Tatsuya Tsukuda, Kenichi Kato, and Masaki Takata, HighlySelective Ammonia Synthesis from Nitrate with Photocatalytically Generated Hydrogen onCuPd/TiO2[J],J. Am. Chem. Soc.,2011,133(5):1150–1152.
    [108] Sachin Rawalekar and Taleb Mokari,Rational Design of Hybrid Nanostructures forAdvanced Photocatalysis[J], Adv. Energy Mater.2013,3(1):12–27.
    [1] Sachin Rawalekar and Taleb Mokari,Rational Design of Hybrid Nanostructures for AdvancedPhotocatalysis[J],Adv. Energy Mater.,2013,3(1):12–27.
    [2] Xiaobo Chen and Samuel S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties,Modifications, and Applications[J], Chem. Rev.,2007,107:2891-2959.
    [3] Magdalena Janus, and Antoni W. Morawski,Carbon-modified TiO2as Photocatalysts[J],J. Adv.Oxid. Technol.2010,13(3):313-320.
    [4] Hao Zhang, Xiaojun Lv, Yueming Li, Ying Wang, and Jinghong Li, P25-Graphene Composite asa High Performance Photocatalyst[J], ACS NANO2010,4(1):380–386.
    [5] Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells Capture andTransport of Photogenerated Electrons[J],Nano Lett.2007,7(3):676-680.
    [6] Debra R. Rolison, Catalytic Nanoarchitectures—the Importance of Nothing and theUnimportance of Periodicity[J], Science,2003,299:1698.
    [7] Jing Zhang, Qian Xu, Zhaochi Feng, Meijun Li, and Can Li, Importance of the Relationshipbetween Surface Phases and Photocatalytic Activity of TiO2[J], Angew. Chem. Int. Ed.,2008,47:1766–1769.
    [8] Gonghu Li, Nada M. Dimitrijevic, Le Chen, Jamie M. Nichols, Tijana Rajh, and Kimberly A.Gray, The Important Role of Tetrahedral Ti4+Sites in the Phase Transformation and PhotocatalyticActivity of TiO2Nanocomposites[J], J. Am. Chem. Soc.,2008,130:5402–5403.
    [9] Steven H. Szczepankiewicz, A. J. Colussi, and Michael R. Hoffmann, Infrared Spectra ofPhotoinduced Species on Hydroxylated Titania[J], J. Phys. Chem. B,2000,104:9842-9850.
    [10] Li-Wu Zhang, Hong-Bo Fu, and Yong-Fa Zhu, Efficient TiO2Photocatalysts from SurfaceHybridization of TiO2Particles with Graphite-like Carbon[J], Adv. Funct. Mater.,2008,18:2180–2189.
    [11] Li Zhao, Xiufang Chen, Xinchen Wang, Yuanjian Zhang, Wei Wei, Yuhan Sun, MarkusAntonietti, and Maria-Magdalena Titirici, One-Step Solvothermal Synthesis of a Carbon@TiO2Dyade Structure Effectively Promoting Visible-Light Photocatalysis[J], Adv. Mater.,2010,22:3317–3321.
    [12] Sheila N. Baker and Gary A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights[J],Angew. Chem. Int. Ed.,2010,49:6726–6744.
    [13] Shaohua Liu, Guang Han, Mouhai Shu, Lu Han and Shunai Che, Monodispersed inorganic/organichybrid spherical colloids: Versatile synthesis and their gas-triggered reversibly switchable wettability[J],J. Mater. Chem.,2010,20:10001–10009.
    [14] Sangaraju Shanmugam, Alexandra Gabashvili, David S. Jacob, Jimmy C. Yu, and AharonGedanken, Synthesis and characterization of TiO2@C core-shell composite nanoparticles andevaluation of their photocatalytic activities[J], Chem. Mater.2006,18:2275-2282.
    [15] Li-Wu Zhang, Hong-Bo Fu, and Yong-Fa Zhu, Efficient TiO2Photocatalysts from SurfaceHybridization of TiO2Particles with Graphite-like Carbon[J], Adv. Funct. Mater.2008,18:2180–2189.
    [16] Jing Zhong, Feng Chen, and Jinlong Zhang, Carbon-Deposited TiO2: Synthesis, Characterization,and Visible Photocatalytic Performance[J], J. Phys. Chem. C,2010,114:933–939.
    [17]Yao Li, Shenmin Zhu, Qinglei Liu, Jiajun Gu, Zaiping Guo, Zhixin Chen, Chuanliang Feng, DiZhang and Won-Jin Moon, Carbon-coated SnO2@C with hierarchically porous structuresandgraphite layers inside for a high-performance lithium-ion battery [J], J. Mater. Chem.,2012,22:2766–2773.
    [18] Guanglong Liu, Changseok Han, Miguel Pelaez, Duanwei Zhu, Shuijiao Liao, Vlassis Likodimos,Nikolaos Ioannidis, Athanassios G Kontos, Polycarpos Falaras, Patrick S M Dunlop, J Anthony Byrneand Dionysios D Dionysiou, Synthesis, characterization and photocatalytic evaluation of visible lightactivated C-doped TiO2nanoparticles [J], Nanotechnology,2012,23:294003.
    [19] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E. P. Giannelis, Surfacefunctionalized carbogenic quantum dots[J], Small,2008,4(4):455–458.
    [20] A. B. Bourlinos, S. R. Chowdhury, D. D. Jiang, Y.-U. An, Q. Zhang, L. A. Archer, E. P. Giannelis,Layered Organosilicate Nanoparticles with Liquidlike Behavior[J], Small,2005,1(1):80–82.
    [21]Carmen Ocal and Salvador Ferrer, A new CO adsorption state on thermally treated modelcatalysts[J], J. Chem. Phys.,1986,84:6474.
    [22]Hao Zhang, Xiaojun Lv, Yueming Li, Ying Wang, and Jinghong Li, P25-Graphene Composite as aHigh Performance Photocatalyst[J], ACS NANO,2010,4(1):380–386.
    [23] Sheila N. Baker and Gary A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights[J],Angew. Chem. Int. Ed.2010,49:6726–6744.
    [24] Yan-Min Long, Chuan-Hua Zhou, Zhi-Ling Zhang, Zhi-Quan Tian, Lei Bao, Yi Lin and Dai-WenPang, Shifting and non-shifting fluorescence emitted by carbon nanodots[J], J. Mater. Chem.,2012,22:5917-5920.
    [25] Magdalena Janus, and Antoni W. Morawski1, Carbon-modified TiO2as Photocatalysts[J], J. Adv.Oxid. Technol.,2010,13(3):313-320.
    [26] Yanhui Zhang, Zi-Rong Tang, Xianzhi Fu, and Yi-Jun Xu, TiO2Graphene Nanocomposites forGas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2Graphene Truly Differentfrom Other TiO2Carbon Composite Materials?[J],ACS Nano,2010,4(12):7303–7314.
    [27]Hongtao Yu, Xie Quan, Shuo Chen, and Huimin Zhao, TiO2-multiwalled carbon nanotubeheterojunction arrays and their charge separation capability[J], J. Phys. Chem. C,2007,111:12987-12991.
    [28] Anusorn Kongkanand, Rebeca Mart′nez Dom′nguez, and Prashant V. Kamat, Single wall carbonnanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogeneratedelectrons[J], Nano Lett.,2007,7(3):676-680.
    [29] Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Beguin, F., Bonnamy, S., Synthesis andcharacterization of carbon nanotubes–TiO2nanocomposites[J], Carbon2004,42:1147-1151.
    [30] Torimoto T., Okawa, Y., Takeda N., Yoneyama H., Effect of activated carbon content inTiO2-loaded activated carbon on photodegradation behaviors of dichloromethane[J], J. Photochem.Photobiol., A: Chem.1997,103:153-157.
    [31] Shanmugasundaram Sakthivel, Horst Kisch,Daylight Photocatalysis by Carbon-ModifiedTitanium Dioxide, Angewandte Chemie International Edition[J],2003,42(40):4908–4911.
    [32] C. X. Dong, A. P. Xian, E. H. Han and J. K. Shang, C-Doped TiO2with Visible LightPhotocatalytic Activity, Solid State Phenomena[J],2007,121-123:939-942.
    [33] Xiaobo Chen and Clemens Burda, Semiconductor Quantum Dots for Photodynamic Therapy[J],J. Am. Chem. Soc.,2008,130:5018–5019.
    [34] Jiaguo Yu, Gaopeng Dai, Quanjun Xiang and Mietek Jaroniec,Fabrication and enhancedvisible-light photocatalytic activity of carbon self-doped TiO2sheets with exposed {001} facets[J], J.Mater. Chem,2011,21:1049-1057.
    [35] Jennifer I. L. Chen, Edward Loso, Naazia Ebrahim, and Geoffrey A. Ozin, Synergy of Slow Photonand Chemically Amplified Photochemistry in Platinum Nanocluster-Loaded Inverse Titania Opals[J], J.Am. Chem. Soc.,2008,130(16):5420–5421.
    [36] Ryu Abe, Hitoshi Takami, Naoya Murakami and Bunsho Ohtani, Pristine Simple Oxides as VisibleLight Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds overPlatinum-Loaded Tungsten Oxide[J], J. Am. Chem. Soc.,2008,130:7780–7781.
    [1] Xiaobo Chen and Samuel S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties,Modifications, and Applications[J], Chem. Rev.,2007,107:2891-2959.
    [2] Fan Zuo, Le Wang, Tao Wu, Zhenyu Zhang, Dan Borchardt, and Pingyun Feng, Self-DopedTi3+Enhanced Photocatalyst for Hydrogen Production under Visible Light*, J. AM. CHEM.SOC.2010,132,11856–11857.
    [3]Stefano Livraghi, Sara Maurelli, Maria Cristina Paganini, Mario Chiesa, and Elio Giamello,Probing the Local Environment of Ti3+Ions in TiO2(Rutile) by17O HYSCORE,Angew. Chem.Int. Ed.2011,50,8038–8040.
    [4] Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium DioxideNanocrystals, SCIENCE,331(11):746-750.
    [5] Alberto Naldoni, Mattia Allieta, Saveria Santangelo, Marcello Marelli, Filippo Fabbri, SerenaCappelli, Claudia Letizia Bianchi, Rinaldo Psaro, and Vladimiro Dal SantoThe effect of natureand location of defects on bandgap narrowing in black TiO2nanoparticles, J. Am. Chem. Soc.,2012,134(18):7600–7603.
    [6] Mohamed S. Hamdy, Rezvaneh Amrollahi, and Guido Mul, Surface Ti3+-Containing (blue) Titania: AUnique Photocatalyst with High Activity and Selectivity in Visible Light-Stimulated SelectiveOxidation。
    [7] A.N. Shultz, W.Jang, W.M. Hetherington, D.R. Baer, L.Q. Wang, M.H.Engelhard,Comparative second harmonic generation and X-ray photoelectron spectroscopystudies of the UV creation and O2healing of Ti3+defects on (110) rutile TiO2surfaces,Surf. Sci.339(1995)114.
    [1] G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Photocatalysis: a promising routefor21st century organic chemistry[J], Chem. Commun.,2007,47:3425.
    [2] L. Wang, J. Zhan, W. Fan, G. Cui, H. Sun, L. Zhuo, X. Zhao, B. Tang, Microcrystallinesodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts[J],Chem. Commun.,2010:8833.
    [3] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic Materials:Possibilities and Challenges[J], Adv. Mater.2011,24(2):229.
    [4] Xiaobo Chen and Samuel S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties,Modifications, and Applications[J], Chem. Rev.,2007,107:2891-2959.
    [5] M. Zhang, C. Chen, W. Ma, J. Zhao, Visible‐Light‐Induced Aerobic Oxidation ofAlcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2and TEMPO[J], Angew.Chem. Int. Ed.2008,120:9876.
    [6]H. Huang, D. Y. C. Leung, D. Ye, Effect of reduction treatment on structural properties ofTiO2supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation[J], J.Mater. Chem.,2011,21:9647.
    [7] Y. Astuti, E. Palomares, S. A. Haque, J. R. Durrant, Triplet state photosensitization ofnanocrystalline metal oxide electrodes by zinc-substituted cytochrome c: application to hydrogenevolution[J], J. Am. Chem. Soc.2005,127:15120.
    [8] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Efficientand Clean Photoreduction of CO2to CO by Enzyme-Modified TiO2Nanoparticles Using VisibleLight[J],J. Am. Chem. Soc.2010,132:2132.
    [9] Congjun Wang, Robert L. Thompson, John Baltrus and Christopher Matranga,Visible LightPhotoreduction of CO2Using CdSe/Pt/TiO2Heterostructured Catalysts[J],J. Phys. Chem. Lett.,2010,1(1):48–53.
    [10] K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D.Roth, E. Kinder, M. Imboden, M. Zamkov, The Role of Hole Localization in Sacrificial HydrogenProduction by Semiconductor–Metal Heterostructured Nanocrystals[J],Nano Lett.,2011,11:2919.
    [11]D. R. Rolison, Catalytic Nanoarchitectures--the Importance of Nothing and theUnimportance of Periodicity[J], Science,2003,299:1698.
    [12]P. Roy, S. Berger, P. Schmuki, TiO2Nanotubes: Synthesis and Applications[J], Angew. Chem., Int.Ed.,2011,50:2904.
    [13]D. J. Darensbourg, R. M. Mackiewicz, A. L. Phelps, D. R. Billodeaux, Copolymerization ofCO2and Epoxides Catalyzed by Metal Salen Complexes[J], Accounts of Chem. Res.,2004,37:836.
    [14]Eoghan M. McGarrigle, and Declan G. Gilheany, Chromium and Manganese salenPromoted Epoxidation of Alkenes[J], Chem. Rev.,2005,105(5):1563-1602.
    [15]Reinhard Jira, Acetaldehyde from Ethylene—A Retrospective on the Discovery of theWacker Process[J], Angew. Chem. Int. Ed.2009,48:2–6.
    [16]T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzedoxidation of organic substrates with molecular oxygen[J], Chem. Rev.,2005,105:2329.
    [17]A. Podgor ek, M. Zupan, J. Iskra, Oxidative Halogenation with “Green” Oxidants: Oxygenand Hydrogen Peroxide[J], Angew. Chem. Int. Ed.2009,48:8424.
    [18]P. Christopher, S. Linic, Engineering selectivity in heterogeneous catalysis: Ag nanowires asselective ethylene epoxidation catalysts[J], J. Am. Chem. Soc.,2008,130:11264.
    [19]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal organic frameworks as efficientheterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide[J],ACS Catalysis2011,1:836.
    [20]K. Feng, R.-Y. Zhang, L.-Z. Wu, B. Tu, M.-L. Peng, L.-P. Zhang, D. Zhao, C.-H. Tung,Photooxidation of Olefins under Oxygen in Platinum(II) Complex-Loaded Mesoporous Molecular Sieves[J], J.Am. Chem. Soc.,2006,128:14685.
    [21]R. Ruinatscha, C. Dusny, K. Buehler, A. Schmid, Productive asymmetric styrene epoxidationbased on a next generation electroenzymatic methodology[J], Adv. Synth. Catal.,2009,351:2505.
    [22]F. Hollmann, P.-C. Lin, B. Witholt, A. Schmid, Stereospecific Biocatalytic Epoxidation:The First Example of Direct Regeneration of a FAD-Dependent Monooxygenase forCatalysis[J], J.. Am. Chem. Soc.,2003,125:8209.
    [23] David T. Mitchell, Sang Bok Lee, L cr mioara Trofin, Naichao Li, Tarja K. Nevanen,HansS derlund, and Charles R. Martin,Smart Nanotubes for Bioseparations and Biocatalysis[J], J.AM. CHEM. SOC.2002,124,11864-11865.
    [24] Jean-Philippe Tessonnier, Ovidiu Ersen, Gisela Weinberg, Cuong Pham-Huu, Dang ShengSu, and Robert Schlogl,Selective Deposition of Metal Nanoparticles Inside or OutsideMultiwalled Carbon Nanotubes[J], ACSNano,10.1021/nn900647q.
    [25]E. Elmalem, A. E. Saunders, R. Costi, A. Salant, U. Banin, Visible Light-Induced ChargeRetention and Photocatalysis with Hybrid CdSe Au Nanodumbbells[J], Adv. Mater.2008,20:4312.
    [26]B. Ohtani, K. Iwai, S.-i. Nishimoto, S. Sato, Role of platinum deposits on titanium (IV)oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol andamino acid solutions[J], J. Phys. Chem. B1997,101:3349.
    [27] H. Yan ka, D. Ayd na, M. Durmu, V. Ahsen, Peripheral and non-peripheral tetrasubstitutedaluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry[J],J. Photochem. Photobiol., A,2009,206:18.
    [28] C. Baffert, S. Romain, A. l. Richardot, J. C. L. tre, B. Lefebvre, A. Deronzier, M.-N. l.Collomb, Electrochemical and Chemical Formation of [Mn4IVO5(terpy)4(H2O)2]6+, in Relationwith the Photosystem II Oxygen-Evolving Center Model [Mn2III,IVO2(terpy)2(H2O)2]3+[J], J. Am.Chem. Soc.,2005,127:13694.
    [29]Z. Li, Y. Xiong, Y. Xie, Selected-Control Synthesis of ZnO Nanowires and Nanorods via aPEG-Assisted Route[J], Inorg. Chem.2003,42:8105.
    [30]Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Novelsynthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J], Chem.Commun.,2003,394.
    [31]尹彦冰,毛雪,姜海燕,薛红艳,2,9,16,23-四羧基金属酞菁的合成及电子光谱研究[J],东北师大学报,2008,40(4):93-96.
    [32] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splittingthrough two-step photoexcitation by visible light using a modified oxynitride as a hydrogenevolution photocatalyst[J], J. Am. Chem. Soc.,2010,132:5858.
    [33]Y. Jiang, Q. Sun, Z. Jiang, L. Zhang, J. Li, L. Li, X. Sun, The improved stability of enzymeencapsulated in biomimetic titania particles[J], Mater. Sci. Eng. C,2009,29:328.
    [34]L. S. S. Santos, R. Landers, Y. Gushikem, Application of manganese (II) phthalocyaninesynthesized in situ in the SiO2/SnO2mixed oxide matrix for determination of dissolved oxygenby electrochemical techniques[J], Talanta,2011,85:1213.
    [35]S. G. Abuabara, C. W. Cady, J. B. Baxter, C. A., Schmuttenmaer, R. H. Crabtree, G. W.Brudvig, V. S. Batista, Ultrafast Photooxidation of Mn(II) Terpyridine Complexes CovalentlyAttached to TiO2Nanoparticles[J], J. Phys. Chem. C,2007,111:11982.
    [36] I. Kruglenko, Y. Shirshovb, J. Burlachenko, A. Savchenko, S. Kravchenko, M. G. Manera, R.Rella, Sensitive coating for water vapors detection based on thermally sputtered calcein thinfilms[J], Talanta,82:1392.
    [37] M. Grobosch, C. Schmidt, R. Kraus, M. Knupfer, Electronic properties of transition metalphthalocyanines: The impact of the central metal atom (d5–d10)[J], Org. Electron.,2010,11:1483.
    [38]梁强,韩爱霞,张复实,四磺酸酞菁锰(Ⅱ)的合成及其应用[J],2004,21(12):1290.
    [39] K. Sakamoto, E. Ohno, Synthesis of novel cationic amphiphilic phthalocyanine derivativesfor next generation photosensitizer using photodynamic therapy of cancer[J], Dyes Pigments1997,35:375.
    [40] W. R. McNamara, R. C. S. III, G. Li, J. M. Schleicher, C. W. Cady, M. Poyatos, C. A.Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista, Acetylacetonate Anchors forRobust Functionalization of TiO2Nanoparticles with Mn(II) Terpyridine Complexes [J], J. Am.Chem. Soc.,2008,130:14329.
    [41] S. G. Abuabara, C. W. Cady, J. B. Baxter, C. A., Schmuttenmaer, R. H. Crabtree, G. W.Brudvig, Ultrafast photooxidation of Mn (II)-Terpyridine complexes covalently attached to TiO2nanoparticles[J], V. S. Batista, J. of Phy. Chem. C,2007,111:11982.
    [42] S. G. Abuabara, L. G. C. Rego, V. S. Batista, Influence of thermal fluctuations on interfacialelectron transfer in functionalized TiO2semiconductors[J], J..Am. Chem. Soc.,2005,127:18234.
    [43]H. Li, G. Liu, S. Chen, Q. Liu, Novel Fedopedmesoporous TiO2microspheres: Ultrasonic–hydrothermal synthesis, characterization,and photocatalyticproperties[J], Physica E,2010:421844.
    [44]M. Hájek, P. ilhavy, J. Málek, Free-radical addition reactions initiated by metal oxides. I.Anti-markovnikov addition of acetone to olefins initiated by argentic oxide[J], Tetrahedron Lett.,1974,15:3193.
    [45]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications ofSemiconductor Photocatalysis[J], Chem. Rev.1995,95:69.
    [46] F. Parrino, A. Ramakrishnan, H. Kisch, Semiconductor-Photocatalyzed Sulfoxidation ofAlkanes[J], Angew. Chem., Int. Ed.2008,47:10203.
    [47] M. J. Raiti, M. D. Sevilla, Density functional theory investigation of the electronic structureand spin density distribution in peroxyl radicals[J], J. Phys. Chem. A1999,103:1619.
    [48] F. Blatter, H. Sun, S.Vasenkov, H. Frei, Photocatalyzed oxidation in zeolite cages[J], Catal.Today1998,41:297.
    [49]H. R. Li, L. Z. Wu, C. H. Tung, Controllable Selectivity of Photosensitized Oxidation ofOlefins Included in Vesicles[J], Tetrahedron2000,56:7437.
    [50]J. I. L. Chen, E. Loso, N. Ebrahim, G. A. Ozin, Synergy of slow photon and chemicallyamplified photochemistry in platinum nanocluster-loaded inverse titania opals[J], J. Am. Chem.Soc.2008,130:5420.
    [51]K. Ohkubo, T. Nanjo, S. Fukuzumi, Photocatalytic oxygenation of olefins with oxygenIsolation of1,2-dioxetane and the photocatalytic O–O bond cleavage[J], Catal. Today,2006,117:356.
    [52]A. A. Frimer, I. Rosenthal, S. Has, CHEMICAL REACTIONS OF SUPEROXIDE ANIONRADICAL IN APROTIC SOLVENTS[J], Tetrahedron Lett.,1977,55:4631.
    [1]龙明策,蔡俊,蔡伟民,陈恒,柴歆烨,设计新型可见光响应的半导体光催化剂[J],2006,18(9):1065-1075.
    [2]Markus Haase and Helmut Sch fer,Upconverting Nanoparticles[J],Angew. Chem. Int. Ed.2011,50:5808-5829.
    [3] Somnath C. Roy, Oomman K. Varghese, Maggie Paulose, and Craig A. Grimes, Toward SolarFuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons[J],ACSNANO,2010,4(3):1259–1278.
    [4] Jacob Schneider, Hongfei Jia, James T. Muckermana and Etsuko Fujita, Thermodynamicsand kinetics of CO2, CO, and H+binding to the metal centre of CO2reduction catalysts[J],Chem.Soc. Rev.,2012,41:2036-2051.
    [5] Weimin Du, Xuefeng Qian, Jie Yin, and Qiang Gong, Shape-and Phase-Controlled Synthesisof Monodisperse, Single-Crystalline Ternary Chalcogenide Colloids through a ConvenientSolution Synthesis Strategy[J], Chem. Eur. J.2007,13:8840-8846.
    [6] Chunxia Li, Jun Yang, Zewei Quan, Piaoping Yang, Deyan Kong, and Jun Lin,DifferentMicrostructures of α-NaYF4Fabricated by Hydrothermal Process: Effects of pH Values andFluoride Sources[J],Chem. Mater.2007,19:4933-4942.
    [7] WERNER ST BER, ARTHUR FINK, Controlled Growth of Monodisperse Silica Spheres inthe Micron Size Range[J], JOURNAL OF COLLOID AND INTERFACE SCIENCE,1968,26:62-69.
    [8]Haizheng Zhong, Yi Zhou, Mingfu Ye, Youjun He, Jianping Ye, Chang He, Chunhe Yang, andYongfang Li, Controlled Synthesis and Optical Properties of Colloidal Ternary ChalcogenideCuInS2Nanocrystals[J], Chem. Mater.2008,20:6434–6443.
    [9] Jing Hui Zeng, Zhi Hua Li, Ji Su, LeyuWang, Ruoxue Yan and Yadong Li, Synthesis ofcomplex rare earth fluoride nanocrystal phosphors[J], Nanotechnology,2006,17:3549–3555.
    [10]韩星星,涂进春,李晓天,SiO2包覆α-NaYF4:Yb, Er纳米粒子的合成及其表征[J],兵器材料科学与工程,2009,32(3):52-55。
    [11] Mesarwi A., Ignatiev A. Interaction of Y overlayers with the GaAs(100) surface andoxidation of the Y/GaAs interface[J], Surf. Sci.,1993,282:371.
    [12]Behner H., Wecker J., Matthee T., Samwer K.,XPS study of the interface reactions between bufferlayers for HTSC thin films and silicon[J],Surf. Interface Anal.,1992,18:685.
    [13] Uwamino Y., Tsuge A., Ishizuka T., Yamatera H., X-ray photoelectron spectroscopy of rareearth halides[J], Bull. Chem. Soc. Jpn.,1986,59:2263.
    [14]Yu X., Hantsche H., Vertical differential charging in monochromatized small spot X-rayphotoelectron spectroscopy[J],Surf. Interface Anal.1993,20:555.
    [15] Finster J. SiO2in6:3(stishovite) and4:2Co-ordination—Characterization by core levelspectroscopy (XPS/XAES)[J], Surf. Interface Anal.,1988,12:309.
    [16] Bekkay T., Sacher E., Yelon A., Surface reaction during the argon ion sputter cleaning ofsurface oxidized crystalline silicon (111)[J], Surf. Sci.,1989,217:L377.
    [17] Beamson G., Briggs D., High Resolution XPS of Organic Polymers: the Scienta ESCA300Database[B],1992, ISBN0471935921.
    [18] Bosman H.J.M., Pijpers A.P., Jaspers A.W.M.A., An X-Ray Photoelectron SpectroscopyStudy of the Acidity of SiO2–ZrO2, Mixed Oxides[J], J. Catal.,1996,161:551.
    [19]Nakai I., Sugitani Y., Nagashima K., Niwa Y. J. X-ray photoelectron spectroscopic study ofcopper minerals[J],Inorg. Nucl. Chem.,1978,40:789.
    [20] Scheer R., Lewerenz H.J.,J. Vac. Sci. Technol. A,1994,12:56.
    [21]Haizheng Zhong, Yi Zhou, Mingfu Ye, Youjun He, Jianping Ye, Chang He, Chunhe Yang,and Yongfang Li, Controlled Synthesis and Optical Properties of Colloidal Ternary ChalcogenideCuInS2Nanocrystals[J],Chem. Mater.,2008,20:6434–6443.
    [22] Masato Uehara, Kosuke Watanabe, Yasuyuki Tajiri, Hiroyuki Nakamura, and HideakiMaeda, Synthesis of CuInS2fluorescent nanocrystals and enhancement of fluorescence bycontrolling crystal defect[J], J. Chem. Phys.,2008,129:134709.
    [23] Hiroyuki Nakamura, Wataru Kato, Masato Uehara, Katsuhiro Nose, Takahisa Omata,Shinya Otsuka-Yao-Matsuo, Masaya Miyazaki, and Hideaki Maeda, Tunable PhotoluminescenceWavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in aColloidal System[J], Chem. Mater.,2006,18:3330-3335.
    [1] Advanced Nanoarchitectures for Solar Photocatalytic Applications,Anna Kubacka, MarcosFernández-García, and Gerardo Colón*doi.org/10.1021/cr100454n
    [2] Haiming Zhu, Nianhui Song, and Tianquan Lian, Wave Function Engineering for UltrafastCharge Separation and Slow Charge Recombination in Type II Core/Shell Quantum Dots, J. Am.Chem. Soc.,2011,133:8762–8771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700