生物法生产低聚葡萄糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究以生物法生产低聚葡萄糖,为低聚葡萄糖的工业化提供新的技术依据。
     首先研究了肠膜明串珠菌(Leuconostoc mesenteroides)发酵产葡聚糖。文中依据肠膜明串珠菌的生长曲线和摇瓶发酵曲线,确定了肠膜明串珠菌对数生长期为26~36 h,稳定期为36~60 h;26 h之后发酵液中开始产生葡聚糖。通过摇床发酵实验确定了发酵液最佳配方:蔗糖100 g/L、蛋白胨5.0 g/L、CaCO_3 0.8 g/L、MgSO_4 0.02 g/L、(NH_4)_2SO_4 0.02 g/L;摇床发酵最佳条件:温度25℃、活化液接种量5 %、发酵液装液量100/250 mL、摇床转速150 r/min、发酵液起始pH值7.5。在此条件下,摇瓶和发酵罐发酵的蔗糖转化率分别为62.58 %和70.25 %。
     第二研究了发酵液的脱蛋白、脱色及葡聚糖的提取和沉淀工艺。研究发现TCA法脱蛋白效果最好,以0.1 %TCA脱蛋白,蛋白的脱除率为81.5 %,葡聚糖的损失率为10.2 %;活性炭对发酵液的脱色效果较好,实验结果表明:10 g/L活性炭用于脱色发酵液时,脱色率为80.19 %,葡聚糖损失率为19.24 %;接着研究了NaCl、KCl、NaOH对葡聚糖提取的效果,结果表明:0.6 mol/L的KCl,60℃提取效果最好,葡聚糖得率为43.57 g/kg;最后考查了乙醇沉淀葡聚糖的效果,结果表明:60℃时,60 %乙醇终浓度沉淀葡聚糖效果较好,葡聚糖得率为41.28 g/kg;
     第三研究了普鲁兰酶(Optimax EC3.2.1.41)酶解葡聚糖生产低聚葡萄糖。通过酶解实验确定酶解葡聚糖的最优条件为:pH 4.4、温度54℃、反应时间0.5 h、酶活浓度2000 ASPU/g,在此条件下,94.11 %的葡聚糖可以降解为低分子量的糖。
     最后探讨了低聚葡萄糖的结构和性质。高效液相色谱表明酶解产物中低聚葡萄糖占74.55 %,比市面上销售的低聚异麦芽糖IMO500的活性成分高。红外光谱表明低聚葡萄糖含有α吡喃糖苷键。通过葡聚糖相对粘度的测定,发现低聚葡萄糖的粘度随着温度的增加而降低,随着溶液pH的增加而增加,pH在4.0~8.0的范围内粘度增加速度较快,低聚葡萄糖有着与其它低聚糖相当的热稳定性。通过低聚葡萄糖相对溶解度的测定,发现60℃低聚葡萄糖相对溶解度最大,达到82 %,冷冻干燥的产品溶解性最好,相对溶解度达到79~85 %。
The objective of this work focused on using biological method to produce a glucose oligosaccharide, which provided new technology for the industrialization of glucose oligosaccharide.
     Firstly, dextran produced by Leuconostoc mesenteroides was stdutied. According to the growth curve of Leuconostoc mesenteroides and the time course of growth in shake flask, logarithmic growth phase of Leuconostoc mesenteroides was between 26 h and 36 h, and stationary phase was between 36 h and 60 h; after 26 h dextran was synthesised in fermentation broth. Fermentation experiments had been taken to determine the optimum fermentation liquid medium:sucrose 100 g/L, peptone 5.0 g/L, CaCO_3 0.8 g/L, MgSO_4 0.02 g/L, (NH_4)_2SO_4 0.02 g/L; the optimum fermentation conditions in the shaker: temperature is 25℃, the inocating rate of actitivation solution is 5 %, the culture medium of fermentation liquid is 100/250 mL, the rotation speed of shaking table is 150 r/min, the starting pH of fermentation liquid is pH 7.5. At optimum medium and optimum conditions, the conversion rate of sucrose in shake flask and in fermentor was 62.58 % and 70.25 %, respectively.
     Secondly,the deproteinization and decoloration of fermentation liquid; the extraction and the precipitation of dextran were studied. The method of TCA was the best to remove proteins, 0.1 % TCA was used for deproteinization, the rate of deproteinization reached 81.5 % while the rate of dextran losing was only 10.2 %. The decoloration effect is better by the method of active carbon, the rate of decoloration reached 80.19 % while the rate of dextran losing was 19.24 %.Then three extraction methods’effects of the dextran had been compared, NaCl, KCl, NaOH. The results showed that the method of 0.6 mol/L KCl was the best for extraction at 60℃, the yield rate of dextran is 43.57 g/kg. The effect of ethanol precipitation dextran was examined , the results showed that 60 % ethanol terminal concentration was more effective to deposite dextran at 60℃, the yield rate of dextran is 41.28 g/kg.
     Thirdly, the production of glucose oligosaccharide by the pullulanase (Optimax EC 3.2.1.41) enzymolysising dextran was studied. Through the enzymolysis experiment, optimum conditions for enzymolysis dextran were: pH 4.4, the temperature 54℃, the reaction time 0.5 h, the enzyme concentration 2000 ASPU/g. The results showed that 94.11% dextran can be degradated to low molecular weight carbohydrate.
     Finally, glucose oligosaccharide’structure and nature were preliminary discussed.The highly effective liquid chromatography (HPLC) indicated that glucose oligosaccharide was 74.55% in enzymatic hydrolysate, with higher active ingredient than Ismalto-oligosaccharides IMO500 in sales.The infrared chromatograph indicated that the glucose oligosaccharide included alpha pyranose glucoside linkage. Through the glucose oligosaccharide relative viscosity's determination, it was discovered that glucose oligosaccharide viscosity decreased while temperature increaseing; and increased while pH decreaseing; and in the pH 4~8 scope the viscosity increased faster; glucose oligosaccharide had the equivalent thermostability as well as other oligosaccharides. Through the glucose oligosaccharide relative solubility determination, it was discovered that the glucose oligosaccharide relative solubility was the biggest, reaching 82 % at 60℃; the solubility of product by the freeze-drying was the best, and the relative solubility reached 79~85 %.
引文
1.雷桅,汤绍虎,孙敏,等.糖生物学——生物化学领域的广袤前沿[J].生物学教学,2007,32 (10):2
    2. Keshvnl IV.Expanding soybean food utilization.Food Technology,2000,54(7):46—58
    3.蒋秋燕,乔旭.生命科学的新领域——糖生物学[J].山东农业大学学报(自然科学版), 2003,34(2):294—298
    4.尤新.低聚糖的功能和发展前景[J].食品与药品,2007,9(11):1
    5.乔为仓,张涛.功能性低聚糖的开发与应用[J].饮料工业,2005,(2):4—7
    6.李芃 ,曾凡骏,柳玲,等.大米制取低聚异麦芽糖工艺研究[J].粮食与饲料工业,2007,(6):21
    7. Kaneko T,Yokoyama A,Suzuki M,etc.Digestibility characteristics of isomalto- oligosaccharides in comparisonwith several saccharides using the rat jejunum loop method.Biosci Biotechnol Biochem,1995,59(7):1190—1194
    8. Tsunerhiro J,Matsukubo T,Shiota M,etc.Effects of a hydrogenated isomalto- oligosaccharide mixture on glucan synathesis and on caries development in rats [J].Biosci Biotechnol Biochem,1997,61(12):2015—2018
    9.叶娴,刘传富,董海洲.异麦芽低聚糖面包的研制[J].中国粮油学报,2007,22(2):112—116
    10.王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,1999.55—58
    11.魏长庆,童军茂.功能性低聚木糖的研究开发及应用[J].农产品加工·学刊,2007(1):40
    12.贾建萍,裘娟萍.低聚半乳糖的研究进展[J].中国乳品工业,2003,31(1):23—27
    13. Crittenden R G,Playne M J.Production,properties and applications of food-grade oligosaccharides.Trends in Food Science & Technology,1996(7):353—361
    14.金华丽.大豆低聚糖制取及纯化工艺研究[J].郑州工程学院学报,2001(2) :35—38.
    15.刘欣,冯杰.大豆低聚糖的生理功能及其应用[J].中国饲料,2005(6):15—16
    16.徐苇.大豆低聚糖的特性及在食品中的应用[J].中国食品添加剂,2005(4):77—80.
    17. Mulimani V.H,Thippeswamy,S,Ramalingam.Effect of soaking,cooking and crudeα-galactosidase treatment on the oligosaccharide content of red soybean flour.Food Chemistry,1997,53(2):279—282
    18.于治中,丁长河,李里特.大豆低聚糖的生产、生理功能及其应用[J].中国食品添加剂,2007(1):159—164
    19. Tortuem F.Fernandez F.Ruperez P,etc.Raffinose and lactic acid hacteria influence cereal fermentation and serum cholesterol in rat.Nutrition Research,1997,17(1):41—49.
    20. Tsunerhiro J,Matsukubo T,Shiota M,etc.Effects of a hydrogenated isomalto- oligosaccharide mixture on glucan synathesis and on caries development in rats. BiosciBiotechnol Biochem,1997,61(12):2015—2018
    21.唐传核,朱高.功能性食品添加剂——龙胆低聚糖[J].江苏食品与发酵,2000(1):29—30
    22.刘唐森,黎海彬.天然新型甜味剂——帕拉金糖及帕拉金糖醇[J].广西轻工业,2001 (2) :16
    23.尹学琼,张岐,林强,等.低聚壳聚糖及其稀土LaCl-3nH2O配合物的抗氧化活性研究[J].食品科学,2002,23(2):27—30
    24.纵伟,张青锋,赵光远.甲壳低聚糖保健功能研究进展[J].中国食物与营养,2007(1): 45—47
    25. Naoji,K.A sunoke oreoaration of half N-acetylated chitosam highly soluble in water and aqueous organic solvents.CarbohydrateResearch,2000,324:268—274
    26. Hu,Z.Preparation of chit to oligosaccharides from chitosan by a complex enzyme.Carbohydrate Research,1999(320):257—260
    27.杨海军.辛修峰.黄婧.水溶性膳食纤维聚葡萄糖的应用与发展[J].农产品加工,2008(2): 26—27
    28. Marotta,A.Martino,A.De Rosa.Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes.Process Biochemistry,2002(38):101—108
    29. Kohmoto T,Fukui F,Takaku H,etc.Effect of Isomalto oligosaccharide on Human Fecal flora.Bifido Bacteria and Microflora,2000,7(2):61—69
    30. Philippe Alliet,M.D,Petra Scholtensc,Marc Raes,M.D,etc.Effect of prebiotic galacto- oligosaccharide,long-chain fructooligosaccharide infant formula on serum cholesterol and triacylglycerol levels.Nutrition,2007(23):719—723
    31.江海燕,黄皓,干信.硫酸化魔芋葡甘低聚糖的抗乙肝病毒作用[J].中国生化药物杂志,2007,28(1):23
    32. Kenji Too,Hiroshi Kamasaka,Takahisa Nishimura,etc.Absorbability of calcium from calcium-bound phosphorryl oligosaccharides in comparison with that from various calcium compounds in the Rat Ligated J ejunum Loop.Biosci Biotech Biochem,2003,67(8):1713—1718
    33. Kamasaka Hiroshi,Inaba Daisuke,Minami Kentaro,etc.Production and application of phosphoryl oligosaccharides prepared from potato starch.Trends in Glycoscience and Glycotechnology,2003,15(82):75—89
    34. MarcoMoracci Antonio Trincone,Mose Rossi.Glycosynthases:new enzymes for oligosaccharide synthesis.Journal of Molecular Catalysis B,Enzymatic,2001(11):155—163
    35. Sarah Hanson,Michael Best,Marian C.Bryan and Chi-Huey Wong Chemoenzymatic synthesis of oligosaccharides and glycop roteins.TRENDS in Biochemical Sciences,2004, 29(12):656—664
    36. Sun H J,Yoshida S,Park N H,etc.Preparation of (1-4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan:suitability of cotton-seed xylan as a starting material for the preparation of (1-4)-β-D-xylooligosaccharides.Carbohyd Res,2002(337):657—661
    37.陈子昂,李韶雄,李华,等.新型食品配料——聚葡萄糖制备工艺的研究[J].中国食品添加剂,2002(6):29
    38. Suna Kim,Wansoo Kim&InK,Hwangd.Optimization of the extraction and purification of oligosaccharides from defatted soybean meal.International Journal of Food Science & Technology,2003(38):337—342
    39. Shin H J.Yang J W.Galatooligosaccharide production byβ-galactosidase in hydrophobic organic media.Biotech Lett,1994,16(1):1157—1162
    40. Mariana Santos,A lirio Rodrigues,Jose A.Teixeira.Production of dextran and fructose from carob pod and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochemical Engineering Journal,2005(25):1—6
    41. Motomitsu Kitaoka,John F.Robyt.Mechanism of the action of Leuconostoc mesenteroides B-512FMC dextransucrase:kinetics of the transfer of D-glucose to maltose and the effects of enzyme and substrate concentrations.Carbohydrate Research,1999(320):183—191
    42. G.L.Cotea,J.L.Willetb.Thermomechanical depolymerization of dextran.Carbohydrate Polymers.1999(39):119—126
    43.董明辉.固定化技术制备右旋糖酐及其相对分子质量控制[D].[硕士学位论文].合肥:合肥工业大学,2007
    44.国家药典委员会.中华人民共和国药典[S].北京:化学工业出版社,2005(二部):88-91
    45. C.V.A.Wynter,M.Chang,De Jersey,etc.Isolation and characterization of a thermostable dextranase Enzyme and Microbial Technology,1997(20):242—247
    46.万菌,黄绍华,傅桂明.聚葡萄糖的制取、性质及在食品中的功能[J].食品研究与开发,2000,21(5):30—34
    47.廖威,杨辉,梁海秋,等.肠膜明串珠菌发酵产物葡聚糖结构的鉴定[J].食品与发酵工业.2003,29(7):24—26
    48.李艳,陈学武.右旋糖酐的生产及应用[J].山西食品工业,1998,(3):36—37
    49. Doman Kim,John F.Robyt.Peoduction,selection,and characteristics of mutants of Leuconostoc mesenteroides B-742 constitutive for dextransucrases.Enzyme and Microbial Technology,1995(15):689—695
    50. Viyada Tirtaatmadja,Dave E.Dunstan,David V.Boger.Rheology of dextran solutions. Non-Newtonian Fluid Mechanics,2001(97):295—301
    51.张小华,黄晓萍,刘夏忠.功能性低聚糖研究进展[J].食品科技.江西食品工业
    52.许牡,汤木红.功能性低聚糖的改性研究进展[J].食品科技,2007(8):9—11
    53.王乃强.我国低聚糖的研发现状与前景[J].精细与专用化学品,2007,15(12):1—5
    54.万茵,付桂明,黄绍华,等.新型功能性食品添加剂——聚葡萄糖的合成研究[J].食品添加剂,2005,26(1):156—158
    55.金征宇,顾正彪,童群义,等.碳水化合物化学[M].北京:化学工业出版社,2007.285—288
    56. Thomas Heinze,Tim Liebert,Brigitte Heublein,etc.Functional Polymers Based on Dextran.Advanced Polymer Science,2006(205):210—211
    57.农万廷.肠膜明串珠菌(Leuconostoc mesenteroide)葡聚糖蔗糖酶基因的克隆与表达[D].[硕士学位论文].广西:广西大学微生物学院,2007
    58. Doman Kim,John F.Robyt.Dextransucrase constitutive mutants of Leuconostoc mesenteroides B-1299,Enzyme and Microbial Technology,1995(17):1050—1056
    59. R.S.Karthikeyan,S.K.Rakshit,A.Baradarajan.Optimization of batch fermentation conditions for dextran production.Bioprocess Engineering,1996(15):247—251
    60. Gaetan Richard,Sandrine Morel,etc.Glucosylation ofα-butyl- andα-octyl-D- glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides. Carbohydrate Research,2003(338):855—864
    61. Motomitsu Kitaoka,John F.Robyt.Mechanism of the action of Leuconostoc mesenteroides B-512FMC dextransucrase:kinetics of the transfer of D-glucose to maltose and the effects of enzyme andsubstrate concentrations.Carbohydrate Research,1999(320):183—191
    62.大连轻工业学院等合编.食品分析[M].北京:中国轻工业出版社,1994
    63. RE希坎南.伯杰氏细菌鉴定手册[M] .第八版.北京:科学出版社,1984.706—707
    64.李文斌,敏丽,高荣琨.膜明串珠菌的研究和应用进展[J].食品工业,2006,(4):3
    65.农万廷,韦宇拓,黄日波.肠膜明串珠菌葡聚糖蔗糖酶基因的克隆与表达[J].工业微生物.2007(3):29
    66. Mariana Santos,A lirio Rodrigues,Jose A.Teixeira.Production of dextran and fructose from carob pod and cheese whey by Leuconostoc mesenteroides NRRL B512(f).Biochemical Engineering Journal,2005(25):1—6
    67. Prabhu Arcot Padmanabhan,Dong-Shik Kim,Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523,Carbohydrate Research,2002 (337):1529—1533
    68.廖威,杨辉,粱海秋,等.葡聚糖产生菌的分离鉴定与发酵条件的初步研究[J].食品科学,2003(24):56—59
    69. M.Lopretti,E.Martinez,L.Torres,etc.Influence of nitrogen:carbon ratio and complement- ary sugars on dextransucrase production by Leuconostoc mesenteroides NRRL B512(f). Process Biochemistry,1999(34):879—884
    70.孙力军,吴吉明.肠膜明串珠菌的分离与鉴定[J].安徽农业技术师范学院学报,2000, 14(4):22—23
    71.邵伟,刘世玲,唐明,等.茁霉多糖发酵及提取工艺条件研究[J].生物技术,2004,14(5):70
    72.葛崇涛,田星,高莉莉.肠膜明串珠菌生长特性研究[J].中国乳品工业,2005,33(7):9—11
    73. S.Rodrigues,L.M.F.Lona,T.T.Franco.Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F.Bioprocess Biosyst Engineering,2003(26):57—62
    74. R.S.K arthikeyan,S.K.Rakshit,A.Baradarajan.Optimization of batch fermentation conditions for dextran production.Bioprocess Engineering,1996(15):247—251
    75. F.Krier.A.M.Revol—Junelles.P.Germain.Infuence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp.mesenteroides FR52 during batch fermentation.Microbiol Biotechnology,1998(50):359—363
    76. Didem Z.Icoz,Carmen I.Moraru,Jozef L .Kokini.Polymer–polymer interactions in dextran systems using thermal analysis.Carbohydrate Polymers,2005(62):120—129
    77. T.Kawguchi.Dextran-magnetite complex:conformation of dextran chains and stability of solution.Materials in medicine,2001(12):121—127
    78.大连轻工业学院,等.食品分析[M].北京:中国轻工业出版社,1996.155
    79. Staub A M.Removal of proteins from polysaccharides.Methods in Carbohydrate Chemistry,1965(5):5
    80.李瑞,赵浩如,陈乃林.白花蛇草多糖除蛋白的方法研究[J].江苏中医,2003,24(10):56—57
    81.杨云,田润涛,苗明三,等.大枣渣多糖活性炭脱色工艺研究[J].河南中医学院学报,2004, 110 (19):35—36
    82.李娟,张耀庭,曾伟,等.应用考马斯亮蓝法测定总蛋白含量[J].中国生物制品学杂志, 2000,13(1):118—120
    83. Werner Praznik,Anton Huber.De facto molecular weight distributions of glucans by size-exclusionchromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.Chromatography B,2005(824):295—307
    84.山东大学,青岛海洋大学,山东师范大学,等编著.物理化学实验[M].济南:山东大学出版社,1999
    85.郑昌仁.高聚物分子量及其分布[M].北京:化学工业出版社,1986.377—379
    86.淀粉化学实验讲义[M].无锡:江南大学食品学院,2002.12—13
    87. A.Abdel-Rahman,Q.Smejkal,R.Schick,etc.Influence of dextran concentrations and molecular fractions on the rate of sucrose crystallization in pure sucrose solutions.Food Engineering,2008(84):501—508
    88.王淼,丁霄霖.葡聚糖生物活性与结构的关系[J].无锡轻工大学学报,1997,16(2):90—94
    89. Yuuki Hirata,Yoh Sano,Mitsuo Aoki,etc.Structural change in dextran: Mechanism of insolubilization by adsorption on the air–liquid interface.Colloid and Interface Science, 1999(212):530—534
    90. Hirata Y,Aoki M,Kobatake H,Yamamoto H.Insolubilization of water-soluble dextran.Biomaterials,1999(20):303—307
    91. C.V.A.Wynter,M.Chang,De Jersey,etc.Isolation and characterization of a thermostable dextranase.Enzyme and Microbial Technology,1997(20):242—247
    92.中国食品发酵工业研究所,江苏省微生物研究所,山东环宇集团公司,等. QB/T 2491—2000.低聚异麦芽糖.中华人民共和国轻工行业标准[S].北京:2000
    93.廖威,杨辉,梁海秋,等.肠膜明串珠菌发酵产物葡聚糖结构的鉴定[J].食品与发酵工业,2003,29(7):24—26
    94. G.L.Cotea,J.L.Willetb.Thermomechanical depolymerization of dextran. Carbohydrate Polymers,1999(39):119—126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700