新型3-芳基异吲哚酮化合物的设计、合成与抗癌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为三章。在前期工作中发现的抗癌活性苗头化合物CDS-1548基础上,设计并合成了一系列3-芳基异吲哚酮化合物及其类似物,从而对苗头化合物进行较为系统的结构优化。之后对活性化合物进行初步的抗癌作用机制及手性-活性研究,确定了活性单体的绝对够型。
     第一章介绍了背景材料及前期工作基础,引出了本论文的目的及意义。
     当今社会,癌症是导致人类死亡的主要原因之一。而现有的抗癌药物仍存在对实体瘤疗效不理想,严重副作用,因患者基因的多样性和用药后产生的耐药性,而呈现明显疗效和毒性个体差异等不足。因此研发结构多样、高效低毒的新型抗癌药物以用于癌症的治疗势在必行。而针对癌细胞无限增殖、抵抗凋亡的特征,通过靶向于细胞周期或细胞凋亡通路中调控因子,从而诱导癌细胞发生细胞周期阻滞或细胞凋亡,从而治疗癌症的策略是行之有效的。
     所有药物均具备有效、安全、质量可控三大基本要素,而手性药物因其不同手性异构体在活性、代谢及毒性等方面存在显著差异,被提出了更严格的要求。因此在研发过程中,阐明不同异构体的活性差异,有目的地设计和开发单一对映体是很有必要的。
     异吲哚酮作为一类母核结构,广泛出现在众多活性化合物和药物结构中。在异吲哚酮3-位引入取代基后,可提高其体内代谢稳定性,且手性中心的引入有可能提高化合物的生物活性或降低毒副作用。鉴于3-取代异吲哚酮具有的结构优势,本实验室在前期工作中,设计、合成并发现了对癌细胞生长具有较好抑制活性的苗头化合物CDS-1548,其具有3-芳基异吲哚酮母核结构,IC_(50)=6.5μM (HeLa,48h)。
     本论文是在前期工作基础上,通过对苗头化合物CDS-1548进行系统的结构优化,初步作用机制探索,以及手性活性研究,从而为更加深入的构效关系及化学生物学研究提供参考,并为此类结构抗癌先导化合物,乃至抗癌药物的发现奠定基础。
     第二章介绍了苗头化合物CDS-1548类似物的设计、合成与抗癌活性研究。
     首先,我们进行了苗头化合物类似物的设计。我们将CDS-1548结构分为A、B、C、D四个部分,针对不同结构片段,设计了两大类化合物。第一类为一系列3-芳基异吲哚酮化合物,我们拟从三个方面对苗头化合物进行结构改造:1)去除A或C片段,消除4-甲氧基苯甘氨醇片段手性中心,简化分子结构;2)对A和B部分苯环的取代基进行变化;3)对C部分的羟甲基进行官能团转化。第二类化合物,是在第一类化合物结构优化基础上,对D部分异吲哚酮母核结构进行改造,设计一系列3-芳基异吲哚酮类似物。具体设计过程中,我们拟通过减少芳环数量、引入氢键受体/给体、延长脂肪链长度等方法,实现提高类药性、降低LogP、增加分子柔性的目的,以期通过结构优化,提高化合物活性。
     其次,我们进行了苗头化合物类似物合成方法的探索。我们先对3-芳基异吲哚酮化合物的合成方法进行了文献总结。在此基础上,我们选取还原N-酰亚胺离子的方法,经条件优化,探索了两条构建3-芳基异吲哚酮母核结构的路线。路线一:通过芳香酮酸与伯胺或其盐酸盐缩合,生成半缩酮中间体,再通过乙酸催化生成N-酰亚胺离子中间体,氰基硼氢化钠还原,从而消除异吲哚酮3-位羟基得到目标产物。此方法虽然产率偏低,但可在异吲哚酮2-位N-上进行多种取代基变化,从而实现分子多样性。路线二:通过酮酸和β-氨基醇脱水缩合,及三氟化硼乙醚/三乙基硅烷参与的还原开环反应,两步合成一系列具有β-氨基醇结构片段的异吲哚酮化合物。此方法优点在于操作简便,反应产率较高,易于纯化,缺点在于产物结构单一。两条路线相互补充,为我们进行全面构效关系研究提够了保证。
     最后,我们利用改进的两条合成路线,对所设计的化合物进行了合成,并在Hela细胞上,通过MTT法进行了活性筛选。在第一类三个系列的3-芳基异吲哚酮化合物中,我们发现了活性较好的化合物2-168a (IC_(50)=9.5μM)、CDS-3078(IC_(50)=3.6μM)和2-219a (IC_(50)=15μM)。在第二部分结构优化中,我们针对活性化合物2-168a中D部分的异吲哚酮母核进行变化,合成了一系列3-芳基异吲哚酮类似物。通过活性测试,我们发现了活性较好化合物2-245(IC_(50)=10μM)和2-249(IC_(50)=25.4μM)。根据以上活性结果,我们发现潜在作用靶点对化合物结构有较强的选择性:1)A、B片段苯环上的取代基和C片段中的羟甲基部分,引入空阻或电性不适合的取代基,均导致活性的消失;2)一系列活性化合物都具有特定的手性构型,与其差向异构体活性差异明显,且增强分子柔性或刚性,使得构型改变甚至消失则直接导致活性消失。因此我们猜测潜在活性靶点具有高度保守的空间结构。此外,我们发现了相对活性最佳化合物CDS-3078(IC_(50)=3.6μM, Hela,48h)。因此,针对CDS-3078,研究手性对活性的影响成为我们下一阶段的目标。
     第三章介绍了苗头化合物CDS-1548及活性化合物CDS-3078的初步作用机制研究及CDS-3078的手性-活性研究。
     首先,我们通过光学显微镜及细胞流式的方法,对CDS-1548和CDS-3078抗肿瘤机制进行初步研究,发现两者在<10μM水平均能将HeLa细胞周期阻滞在G2/M期,并能诱导其发生早期凋亡,且作用具有浓度依赖性。之后,我们选择活性更好的CDS-3078研究手性与活性关系。通过合成CDS-3078的4个异构体,并进行手性纯度检测及绝对构型表征后,我们通过对三种不同癌细胞系HeLa、A549和SW1116进行活性测试,发现只有(S,S)型异构体具有诱导多种癌细胞凋亡活性,具有较广的抗瘤谱。通过手性-活性的研究,进一步说明此类3-芳基异吲哚酮化合物作用靶点可能高度保守,具有较强的蛋白-小分子相互作用结构选择性。深入的作用机制研究仍在进行中。
This dissertation is divided into three chapters. In previous work, compoundCDS-1548was found to have anticancer activity through screening. Based on this hitcompound, a series of3-aryl isoindolinones and their analogues were designed andsynthesized for systematic structure optimization. After that, the preliminaryanticancer mechanism of active compounds was studied, and the absoluteconfiguration of the most active isomer was determined.
     In the first chapter, the background and previous work were described, and thenthe content and meaning of this dissertation was drawn.
     Today, cancer is a major cause of human death. There are still some drawbacksof existing anticancer drugs, including the poor activity against solid tumors, severeside effects, and the apparent individual differences of efficacy and toxicity, due to thegene diversity of patients and drug resistance. In this way, the development of novelanticancer drugs with diverse structures, efficiency and low toxicity is imperative.Characteristics of cancer cells include unlimited proliferation and resistance toapoptosis. Thus, targeting the regulatory factors of cell cycle and apoptosis pathwayto induce cancer cell cycle arrest and apoptosis, is considered as the efficient strategyfor cancer treatment.
     All medicines have three basic elements: effective, safe, and quality controlled.There are more stringent requirements for chiral drugs, owing to the differences ofactivity, metabolism or toxicity for different chiral isomers. Therefore, during theresearch and development process, to clarify the activity of each isomer, and develop single enantiomer is necessary.
     Isoindolinone as a pharmacophore, widely appear in active compounds. Thesubstituents on3-position of the isoindolinone ring system have shown improvedmetabolic stability, and the chiral center is possible to increase the biological activityor reduce the toxicity of active compound. In the previous work, an anticancer activitycompound CDS-1548(IC_(50)=6.5μM, HeLa,48h), with3-aryl isoindolinone scaffoldwas found though screening from the isoindolinone compounds, which were designedand synthesized on the basis of the reported active compound.
     In this dissertation, based on previous work, the systematic optimization of hitcompound CDS-1548, preliminary mechanism, and chiral-activity relationship ofactive compound were carried out. This work provides reference for the more in-depthstructure-activity relationships study, and lay the foundation for the discovery of leadcompounds, even anticancer drug with novel3-aryl isoindolinone skeleton.
     In the second chapter, the design, synthesis and anticancer activity studies of theanalogs of hit compound CDS-1548were described.
     First of all, the design of the analogs of the hit compound was carried out. Thestructure of CDS-1548was divided into A, B, C, D four parts, and two classes ofcompounds were designed. The first class compounds are all3-aryl isoindolinones,and the structure optimization was carried out from three aspects:1) removing A or Cpart to eliminate the chiral center of the4-methoxy phenylethanol fragment, forsimplifying the molecular structure;2) changing the substituent on the benzene ring ofA and B parts;3) changing the hydroxymethyl fragment in C part for other functionalgroups. The second class of compounds, as the analogs of3-aryl isoindolinone withthe modification on isoindolinone skeleton, was designed on the basis of the screeningresult of the first class of compounds. In order to improve drug-likeness, lower LogPand increase the molecular flexibility, the derivatives of CDS-1548were designedreasonably, by way of reducing aromatic rings, introducing of hydrogen bondacceptor or donor and extending alkyl chain. Through the structure optimization, thebest active compound was expected to be found.
     Secondly, the synthetic routes of the analogues of hit compound were developed. The synthetic methods of3-aryl isoindolinone reported in literatures weresummarized firstly. Based on this, two synthetic routes were developed to build the3-aryl isoindolinone skeleton via the reduction of N-acyliminium ion. Route one: ketoacid was condensed with different primary amine or its hydrochloride to give3-hydroxy-3-aryl isoindolinone intermediate, which was then reduced by cyanosodium borohydride in glacial acetic acid to afford the product. Although the yield ofthis method is low, the substituent on N-can be changed to achieve the moleculardiversity. Route two: the tricyclic γ-lactam was produced by condensation of keto acidwith aminoalcohol in good yield. Then, the diastereomers were synthesized via borontrifluoride ether induced ring-opening of tricyclic lactam substrates, and hydrideaddition of N-acyliminium ion with triethylsilane. The high yield, ease of operationand purification are the advantages of this method, while few types of N-functionalgroup is the limitation. The two routes complemented each other, and thestructure-activity relationship studies were ensured.
     Finally, designed compounds were synthesized through the two improvedsynthetic routes, and then screened in Hela cells by MTT assay., From the three seriesof3-aryl isoindolinone compounds in the first class, active compounds2-168a (IC_(50)=9.5μM), CDS-3078(IC_(50)=3.6μM) and2-219a (IC_(50)=15μM) were founded. In thesecond class, on the basis of the structure of compound2-168a, isoindolinoneskeleton in D part was modified and a series of3-aryl isoindolinone analogs weresynthesized. Through the screening, active compounds2-245(IC_(50)=10μM) and2-249(IC_(50)=25.4μM) were founded. According to the above results, it suggested thatthe potential target might have a restriction on the structure of compound:1) For thesubstituent on benzene ring of A, B part, and the hydroxymethyl moiety in C part, ifsteric hindered or electrical property did not match, the activity of compound wouldbe disappeard;2) All the active compounds have special configuration, while theirisomers were all inactive. And the activity was lost when the configuration of theactive compound was changed or disappeared. Therefore, we guess that the potentialtarget has a highly conserved spatial structure. In addition, the best active compoundsCDS-3078(IC_(50)=3.6μM, HeLa,48h) was found. Therefore, the chiral-activity relationship of CDS-3078became the goal of the next phase of our studies.
     In the third chapter, the study of the initial mechanism of active compoundsCDS-1548and CDS-3078, and chiral-active relationship of CDS-3078weredescribed.
     First, through the analysis by optical microscopy and flow cytometry, it isindicated that CDS-1548and CDS-3078could both arrest cell cycle at the G2/Mphase, and induce the early apoptotic in HeLa cell at10μM, in aconcentration-dependent manner. Second, the more active compound CDS-3078waschosen for the study of chiral-activity relationship. After the synthesis, determinationof chiral purities and absolute configuration of the four isomers of CDS-3078, threedifferent tumor cell lines HeLa, A549and SW1116were chosen for activity screening.Only the (S, S)-isomer3-8was found to induce the apoptosis of three tumor cells,which indicated that3-8had a broad spectrum of anticancer activity. These resultsfurther showed that the potential target of this kind of3-aryl isoindolinones and theiranalogs might be highly conservative, and the protein-small molecule interactionsmight have strong structural selectivity. Further study of mechanism is still inprogress.
引文
[1] JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics [J]. CA: ACancer Journal for Clinicians,2011,61(2):69-90.
    [2]世界卫生组织. http://www.who.int/mediacentre/factsheets/fs297/zh/index.html[J].实况报道,2009,第297号.
    [3] HE J, GU D, WU X, et al. Major Causes of Death among Men and Women inChina [J]. New England Journal of Medicine,2005,353(11):1124-1134.
    [4] LONGLEY D B, JOHNSTON P G. Molecular mechanisms of drug resistance [J].The Journal of Pathology,2005,205(2):275-292.
    [5] LUQMANI Y A. Mechanisms of Drug Resistance in Cancer Chemotherapy [J].Medical Principles and Practice,2005,14(Suppl.1):35-48.
    [6] HANAHAN D, WEINBERG ROBERT A. Hallmarks of Cancer: The NextGeneration [J]. Cell,2011,144(5):646-674.
    [7] KONG N, FOTOUHI N, WOVKULICH P M, et al. Cell cycle inhibitors for thetreatment of cancer [J]. Drugs of the Future,2003,28(9):881.
    [8] KHOSRAVI-FAR R, WHITE E, TAN T-T. Therapeutic Targeting of DeathPathways in Cancer: Mechanisms for Activating Cell Death in Cancer CellsProgrammed Cell Death in Cancer Progression and Therapy [M]. SpringerNetherlands.2007:81-104.
    [9] MAJNO G, JORIS I. Apoptosis, oncosis, and necrosis. An overview of cell death[J]. Am J Pathol,1995,146(1):3-15.
    [10]HANNUN Y A. Apoptosis and the Dilemma of Cancer Chemotherapy [J]. Blood,1997,89(6):1845-1853.
    [11] PEDRAZA-FARINA L G. Mechanisms of oncogenic cooperation in cancerinitiation and metastasis [J]. The Yale Journal of Biology and Medicine,2006,79(3-4):95-103.
    [12]MCCONKEY D J. Therapy-Induced Apoptosis in Primary Tumors [J]. Advancesin Experimental Medicine and Biology,2007,608,31-51.
    [13]MADDIKA S, ANDE S R, PANIGRAHI S, et al. Cell survival, cell death and cellcycle pathways are interconnected: Implications for cancer therapy [J]. DrugResistance Updates,2007,10(1–2):13-29.
    [14]KARUNAGARAN D, JOSEPH J, KUMAR T R S. Cell growth regulation [J].Advances in Experimental Medicine and Biology,2007,595,245-268.
    [15]MOLINARI M. Cell cycle checkpoints and their inactivation in human cancer [J].Cell Proliferation,2000,33(5):261-274.
    [16]DICKSON M A, SCHWARTZ G K. Development of cell-cycle inhibitors forcancer therapy [J]. Current Oncology,2009,16(2):36-43.
    [17]CROSSLEY R. The relevance of chirality to the study of biological activity [J].Tetrahedron,1992,48(38):8155-8178.
    [18]VAN ZWIETEN P A. An overview of the pharmacodynamic properties andtherapeutic potential of combined alpha-and beta-adrenoceptor antagonists [J]. Drugs,1993,45(4):509-517.
    [19]DAY R O, WILLIAMS K M, GRAHAM G G, et al. Stereoselective disposition ofibuprofen enantiomers in synovial fluid [J]. Clinical Pharmacology&Therapeutics,1988,43(5):480-487.
    [20]KEAN W F, LOCK C J, HOWARD-LOCK H E. Chirality in antirheumatic drugs[J]. Lancet,1991,338(8782-8783):1565-1568.
    [21]FDA. FDA's policy statement for the development of new stereoisomeric drugs[J]. Chirality,1992,4(5):338-340.
    [22]MOON E-Y, OH J-M, KIM Y-H, et al. Clitocybins, novel isoindolinone freeradical scavengers, from mushroom Clitocybe aurantiaca inhibit apoptotic cell deathand cellular senescence [J]. Biological&Pharmaceutical Bulletin,2009,32(10):1689-1694.
    [23]YOO K-D, PARK E-S, LIM Y, et al. Clitocybin A, a Novel Isoindolinone, Fromthe Mushroom Clitocybe aurantiaca, Inhibits Cell Proliferation Through G1PhaseArrest by Regulating the PI3K/Akt Cascade in Vascular Smooth Muscle Cells [J].Journal of Pharmacological Sciences,2012,118(2):171-177.
    [24]LEE I-K, KIM S-E, YEOM J-H, et al. Daldinan A, a novel isoindolinoneantioxidant from the ascomycete Daldinia concentrica [J]. The Journal of Antibiotics,2012,65(2):95-97.
    [25]SCHERLACH K, SCHUEMANN J, DAHSE H-M, et al. Aspernidine A and B,prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans [J].The Journal of Antibiotics,2010,63(7):375-377.
    [26]ZHANG G, SUN S, ZHU T, et al. Antiviral isoindolone derivatives from anendophytic fungus Emericella sp. associated with Aegiceras corniculatum [J].Phytochemistry,2011,72(11–12):1436-1442.
    [27]LI E, JIANG L, GUO L, et al. Pestalachlorides A–C, antifungal metabolites fromthe plant endophytic fungus Pestalotiopsis adusta [J]. Bioorganic&MedicinalChemistry,2008,16(17):7894-7899.
    [28]ITO-KOBAYASHI M, AOYAGI A, TANAKA I, et al. Sterenin A, B, C and D,novel11beta-hydroxysteroid dehydrogenase type1inhibitors from Stereum sp.SANK21205[J]. The Journal of Antibiotics,2008,61(3):128-135.
    [29]SHINOZUKA T, YAMAMOTO Y, HASEGAWA T, et al. First total synthesis ofsterenins A, C and D [J]. Tetrahedron Letters,2008,49(10):1619-1622.
    [30]EMANUELI A, MANDELLI V, MASCELLANI G, et al. Indoprofen, a newnon-steroidal anti-inflammatory drug, in the treatment of osteoarthrosis: report on amulti-centre study in1629patients [J]. Current Medical Research and Opinion,1979,6(2):124-135.
    [31]MULLER G W, CHEN R, HUANG S-Y, et al. Amino-substituted thalidomideanalogs: Potent inhibitors of TNF-α production [J]. Bioorganic&MedicinalChemistry Letters,1999,9(11):1625-1630.
    [32]LUO W, YU Q-S, SALCEDO I, et al. Design, synthesis and biologicalassessment of novel N-substituted3-(phthalimidin-2-yl)-2,6-dioxopiperidines and3-substituted2,6-dioxopiperidines for TNF-α inhibitory activity [J]. Bioorganic&Medicinal Chemistry,2011,19(13):3965-3972.
    [33]PARK J, BAIK K, CHO J, et al. Noble2-[3-(cyclopentyloxy)-4-methoxyphenyl]-1-isoindolinone derivatives. Part I: synthesis and SAR studies for the inhibition ofTNF-α production [J]. Archives of Pharmacal Research,2001,24(5):367-370.
    [34]PARK J S, MOON S C, BAIK K U, et al. Synthesis and SAR studies for theinhibition of TNF-alpha production. Part2.2-[3-(Cyclopentyloxy)-4-methoxyphenyl]-substituted-1-isoindolinone derivatives [J]. Archives of PharmacalResearch,2002,25(2):137-142.
    [35]HAWKINSON J E, SZOKE B G, GAROFALO A W, et al. Pharmacological,pharmacokinetic, and primate analgesic efficacy profile of the novel bradykinin B1Receptor antagonist ELN441958[J]. Journal of Pharmacology and ExperimentalTherapeutics,2007,322(2):619-630.
    [36]YEO H, LI Y, FU L, et al. Synthesis and Antiviral Activity of HelioxanthinAnalogues [J]. Journal of Medicinal Chemistry,2005,48(2):534-546.
    [37]ZHAO X Z, SEMENOVA E A, VU B C, et al.2,3-Dihydro-6,7-dihydroxy-1H-isoindol-1-one-Based HIV-1Integrase Inhibitors [J]. Journal of MedicinalChemistry,2008,51(2):251-259.
    [38]ZHAO X Z, MADDALI K, CHRISTIE VU B, et al. Examination of halogensubstituent effects on HIV-1integrase inhibitors derived from2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-ones and4,5-dihydroxy-1H-isoindole-1,3(2H)-diones[J]. Bioorganic&Medicinal Chemistry Letters,2009,19(10):2714-2717.
    [39]LUEBBERS T, ANGEHRN P, GMUENDER H, et al. Design, synthesis, andstructure-activity relationship studies of new phenolic DNA gyrase inhibitors [J].Bioorganic&Medicinal Chemistry Letters,2007,17(16):4708-4714.
    [40]KHAZAK V G, ERICA A.; MENON, SANJAY R.; WEBER, LUTZ. Isoindolonecompounds, compositions containing the same, and methods of use thereof for thetreatment of viral infections related to the etiology of cancer, US2006/264473[P/OL],2006.
    [41]MAASS G, IMMENDOERFER U, KOENIG B, et al. Viral resistance to thethiazolo-iso-indolinones, a new class of nonnucleoside inhibitors of humanimmunodeficiency virus type1reverse transcriptase [J]. Antimicrobial Agents andChemotherapy,1993,37(12):2612-2617.
    [42]MERTENS A, ZILCH H, KOENIG B, et al. Selective non-nucleoside HIV-1reverse transcriptase inhibitors. New2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-onesand related compounds with anti-HIV-1activity [J]. Journal of Medicinal Chemistry,1993,36(17):2526-2535.
    [43]REIFFEN M, EBERLEIN W, MUELLER P, et al. Specific bradycardic agents.1.Chemistry, pharmacology, and structure-activity relationships of substitutedbenzazepinones, a new class of compounds exerting antiischemic properties [J].Journal of Medicinal Chemistry,1990,33(5):1496-1504.
    [44]KATO Y, TAKEMOTO M, ACHIWA K. Prostanoids and Related Compounds. VI.Synthesis of Isoindolinone Derivatives Possessing Inhibitory Activity forThromboxane A2Analog (U-46619)-Induced Vasoconstriction [J]. Chemical&Pharmaceutical Bulletin,1993,41(11):2003-2006.
    [45]KATO Y, TAKEMOTO M, ACHIWA K. Prostanoids and Related Compounds.VII. Synthesis and Inhibitory Activity of1-Isoindolinone Derivatives PossessingInhibitory Activity against Thromboxane A2Analog (U-46619)-InducedVasoconstriction [J]. Chemical&Pharmaceutical Bulletin,1999,47(4):529-535.
    [46]EGBERTSON M S, HARTMAN G D, GOULD R J, et al. Nonpeptide GPIIb/IIIainhibitors.10. Centrally constrained alpha-sulfonamides are potent inhibitors ofplatelet aggregation [J]. Bioorganic&Medicinal Chemistry Letters,1996,6(21):2519-2524.
    [47]ANNIKA B, JONAS B, OEJVIND D, et al. Isoindoline Derivatives for theTreatment of Arrhythmias, WO2008008022[P/OL].2008.
    [48]LAWSON E C, LUCI D K, GHOSH S, et al. Nonpeptide Urotensin-II ReceptorAntagonists: A New Ligand Class Based on Piperazino-Phthalimide andPiperazino-Isoindolinone Subunits [J]. Journal of Medicinal Chemistry,2009,52(23):7432-7445.
    [49]ZHANG S-H, WANG C-Y, JIANG Z-Z, et al. Synthesis and Blocking Activitiesof Isoindolinone-and Isobenzofuranone-Containing Phenoxylalkylamines as Potentα1-Adrenoceptor Antagonists [J]. Chemical and Pharmaceutical Bulletin,2011,59(1):96-99.
    [50]NORMAN M H, MINICK D J, RIGDON G C. Effect of Linking BridgeModifications on the Antipsychotic Profile of Some Phthalimide and IsoindolinoneDerivatives [J]. Journal of Medicinal Chemistry,1996,39(1):149-157.
    [51]CAPPELLI A, ANZINI M, VOMERO S, et al. Novel Potent5-HT3ReceptorLigands Based on the Pyrrolidone Structure: Synthesis, Biological Evaluation, andComputational Rationalization of the Ligand–Receptor Interaction Modalities [J].Bioorganic&Medicinal Chemistry,2002,10(3):779-801.
    [52]HAMPRECHT D, MICHELI F, TEDESCO G, et al. Isoindolone derivatives, anew class of5-HT2C antagonists: Synthesis and biological evaluation [J]. Bioorganic&Medicinal Chemistry Letters,2007,17(2):428-433.
    [53]ITO S, HIRATA Y, NAGATOMI Y, et al. Discovery and biological profile ofisoindolinone derivatives as novel metabotropic glutamate receptor1antagonists: Apotential treatment for psychotic disorders [J]. Bioorganic&Medicinal ChemistryLetters,2009,19(18):5310-5313.
    [54]REYES A, HUERTA L, ALFARO M, et al. Synthesis and nootropic activity ofsome2,3-dihydro-1H-isoindol-1-one derivatives structurally related with piracetam[J]. Chemistry&Biodiversity,2010,7(11):2718-2726.
    [55]FAVOR D A, POWERS J J, WHITE A D, et al.6-Alkoxyisoindolin-1-one baseddopamine D2partial agonists as potential antipsychotics [J]. Bioorganic&MedicinalChemistry Letters,2010,20(19):5666-5669.
    [56]ZHUANG Z-P, KUNG M-P, MU, et al. Isoindol-1-one Analogues of4-(2'-methoxyphenyl)-1-[2'-[N-(2''-pyridyl)-p-iodobenzamido]ethyl]piperazine(p-MPPI) as5-HT1A Receptor Ligands [J]. Journal of Medicinal Chemistry,1998,41(2):157-166.
    [57]TAKAHASHI I, KAWAKAMI T, HIRANO E, et al. Novel PhthalimidineSynthesis. Mannich Condensation of o-Phthalaldehyde with Primary Amines using1,2,3-1H-Benzotriazole and2-Mercaptoethanol as Dual Synthetic Auxiliaries [J].Synlett,1996,1996(04):353,355.
    [58]WADA T, FUKUDA N. Pharmacologic profile of a new anxiolytic, DN-2327:effect of Ro15-1788and interaction with diazepam in rodents [J].Psychopharmacology,1991,103(3):314-322.
    [59]LINDEN M, HADLER D, HOFMANN S. Randomized, double-blind,placebo-controlled trial of the efficacy and tolerability of a new isoindoline derivative(DN-2327) in generalized anxiety [J]. Human Psychopharmacology: Clinical andExperimental,1997,12(5):445-452.
    [60]STUK T L, ASSINK B K, BATES R C, et al. An Efficient and Cost-EffectiveSynthesis of Pagoclone [J]. Organic Process Research&Development,2003,7(6):851-855.
    [61]MAGUIRE G, FRANKLIN D, VATAKIS N G, et al. Exploratory RandomizedClinical Study of Pagoclone in Persistent Developmental Stuttering: The EXaminingPagoclone for peRsistent dEvelopmental Stuttering Study [J]. Journal of ClinicalPsychopharmacology,2010,30(1):48-56.
    [62]KANAMITSU N, OSAKI T, ITSUJI Y, et al. Novel Water-SolubleSedative-Hypnotic Agents: Isoindolin-1-one Derivatives [J]. Chemical&Pharmaceutical Bulletin,2007,55(12):1682-1688.
    [63]BELLIOTTI T R, BRINK W A, KESTEN S R, et al. Isoindolinone enantiomershaving affinity for the dopamine D4receptor [J]. Bioorganic&Medicinal ChemistryLetters,1998,8(12):1499-1502.
    [64]BOTERO CID H M, TR NKLE C, BAUMANN K, et al. Structure ActivityRelationships in a Series of Bisquaternary Bisphthalimidine Derivatives Modulatingthe Muscarinic M2-Receptor Allosterically [J]. Journal of Medicinal Chemistry,2000,43(11):2155-2164.
    [65]BRADFORD V W, RADHAKRISHNAN U, JOSHUA C, et al. SubstitutedIsoindolinones and Their Use as Metabotropic Glutamate Receptor Potentiators2007.
    [66]ZHOU D, GROSS J L, ROBICHAUD A J. Preparation of isoquinolinone andisoindolinone derivatives and analogs thereof as histamine-3antagonists, US,US2009069370[P/OL],2009.
    [67]TAYLOR E C, ZHOU P, JENNINGS L D, et al. Novel synthesis of aconformationally-constrained analog of DDATHF [J]. Tetrahedron Letters,1997,38(4):521-524.
    [68]SHAH J H, SWARTZ G M, PAPATHANASSIU A E, et al. Synthesis andEnantiomeric Separation of2-Phthalimidino-glutaric Acid Analogues: PotentInhibitors of Tumor Metastasis [J]. Journal of Medicinal Chemistry,1999,42(16):3014-3017.
    [69]HONMA T, HAYASHI K, AOYAMA T, et al. Structure-Based Generation of aNew Class of Potent Cdk4Inhibitors: New de Novo Design Strategy and LibraryDesign [J]. Journal of Medicinal Chemistry,2001,44(26):4615-4627.
    [70]CURTIN M L, FREY R R, HEYMAN H R, et al. Isoindolinone ureas: a novelclass of KDR kinase inhibitors [J]. Bioorganic&Medicinal Chemistry Letters,2004,14(17):4505-4509.
    [71]SHINJI C, MAEDA S, IMAI K, et al. Design, synthesis, and evaluation of cyclicamide/imide-bearing hydroxamic acid derivatives as class-selective histonedeacetylase (HDAC) inhibitors [J]. Bioorganic&Medicinal Chemistry,2006,14(22):7625-7651.
    [72]LEE S, SHINJI C, OGURA K, et al. Design, synthesis, and evaluation ofisoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors[J]. Bioorganic&Medicinal Chemistry Letters,2007,17(17):4895-4900.
    [73]HARDCASTLE I R, AHMED S U, ATKINS H, et al. Isoindolinone-basedinhibitors of the MDM2-p53protein-protein interaction [J]. Bioorganic&MedicinalChemistry Letters,2005,15(5):1515-1520.
    [74]HARDCASTLE I R, AHMED S U, ATKINS H, et al. Small-Molecule Inhibitorsof the MDM2-p53Protein-Protein Interaction Based on an Isoindolinone Scaffold [J].Journal of Medicinal Chemistry,2006,49(21):6209-6221.
    [75]HARDCASTLE I R, LIU J, VALEUR E, et al. Isoindolinone Inhibitors of theMurine Double Minute2(MDM2)-p53Protein Protein Interaction:Structure Activity Studies Leading to Improved Potency [J]. Journal of MedicinalChemistry,2011,54(5):1233-1243.
    [76]LIPPMANN W. Method of use and composition for1,3-dihydro-3-(2-Hydroxy-2-methylpropyl)-2H-isoindol-1-one. US4267189[P/OL],1981.
    [77]BERNSTEIN P R, AHARONY D, ALBERT J S, et al. Discovery of novel, orallyactive dual NK1/NK2antagonists [J]. Bioorganic&Medicinal Chemistry Letters,2001,11(20):2769-2773.
    [78]JAGTAP P G, SOUTHAN G J, BALOGLU E, et al. The discovery and synthesisof novel adenosine substituted2,3-dihydro-1H-isoindol-1-ones: potent inhibitors ofpoly(ADP-ribose) polymerase-1(PARP-1)[J]. Bioorganic&Medicinal ChemistryLetters,2004,14(1):81-85.
    [79]WACKER D A, VARNES J G, MALMSTROM S E, et al. Discovery of(R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one,a Selective, Orally Active Agonist of the5-HT2C Receptor [J]. Journal of MedicinalChemistry,2007,50(6):1365-1379.
    [80]LEE H J, LIM S J, OH S J, et al. Isoindol-1,3-dione and isoindol-1-onederivatives with high binding affinity to β-amyloid fibrils [J]. Bioorganic&MedicinalChemistry Letters,2008,18(5):1628-1631.
    [81]LEE J H, BYEON S R, KIM Y, et al.[18F]-labeled isoindol-1-one andisoindol-1,3-dione derivatives as potential PET imaging agents for detection ofβ-amyloid fibrils [J]. Bioorganic&Medicinal Chemistry Letters,2008,18(20):5701-5704.
    [82]SCHMAHL H J, HEGER W, NAU H. The enantiomers of the teratogenicthalidomide analogue EM12.2. Chemical stability, stereoselectivity of metabolismand renal excretion in the marmoset monkey [J]. Toxicology Letters,1989,45(1):23-33.
    [83]KENYON B M, BROWNE F, D'AMATO R J. Effects of thalidomide and relatedmetabolites in a mouse corneal model of neovascularization [J]. Experimental EyeResearch,1997,64(6):971-978.
    [84]LAMBLIN M, COUTURE A, DENIAU E, et al. Alternative and complementaryapproaches to the asymmetric synthesis of C3substituted NH free or N-substitutedisoindolin-1-ones [J]. Tetrahedron Asymmetry,2008,19(1):111-123.
    [85]KONDO T, YOSHIDA K, YOSHIMURA Y, et al. Enantioselectivepharmacokinetics in animals of pazinaclone, a new isoindoline anxiolytic, and itsactive metabolite [J]. Biopharm Drug Dispos,1995,16(9):755-773.
    [86]WATSON A F, LIU J, BENNACEUR K, et al. MDM2-p53protein–proteininteraction inhibitors: A-ring substituted isoindolinones [J]. Bioorganic&MedicinalChemistry Letters,2011,21(19):5916-5919.
    [87]何兴莲.新型胆固醇吸收抑制剂的设计与合成[D].长春;吉林大学,2010.
    [88]STOCKWELL B R. Exploring biology with small organic molecules [J]. Nature,2004,432(7019):846-854.
    [89]STRAUSBERG R L, SCHREIBER S L. From Knowing to Controlling: A Pathfrom Genomics to Drugs Using Small Molecule Probes [J]. Science,2003,300(5617):294-295.
    [90]ALLIN S M, NORTHFIELD C J, PAGE M I, et al. A highly diastereoselectivesynthesis of3-substituted isoindolin-1-one dericatives [J]. Tetrahedron Letters1999,40(1):143-146.
    [91]ALLIN S M, NORTHFIELD C J, PAGE M I, et al. Approaches to the synthesis ofnon-racemic3-substituted isoindolinone derivatives [J]. Journal of the ChemicalSociety, Perkin Transactions1,2000,1715-1721.
    [92]MAMOUNI A, PIGEON P, DA CH A, et al. Intramolecular amidoalkylationcyclizations in synthesis of novel pyrrolo(or isoindolo)thieno[2]benzazepines [J].Journal of Heterocyclic Chemistry,1997,34(5):1495-1499.
    [93]DENIAU E, ENDERS D. A new simple and convenient synthesis of3-substitutedphthalimidines [J]. Tetrahedron Letters2000,41(14):2347-2350.
    [94]DENIAU E, ENDERS D, COUTURE A, et al. A new synthetic route to highlyenantioenriched3-substituted-2,3-dihydro-1H-isoindol-1-ones [J]. Tetrahedron:Asymmetry,2003,14(15):2253-2258.
    [95]RUAN Y P, CHEN M D, HE M Z, et al. A practical two-step synthesis of3-alkyl-2,3-dihydro-1H-isoindolin-1-ones [J]. Synthetic Communication2004,34(5):853-861.
    [96]CHEN M-D, ZHOU X, HE M-Z, et al. A versatile approach for the asymmetricsynthesis of3-alkyl-2,3-dihydro-1H-isoindolin-1-ones [J]. Tetrahedron,2004,60(7):1651-1657.
    [97]CHEN M-D, HE M-Z, ZHOU X, et al. Studies on the diastereoselective reductivealkylation of (R)-phenylglycinol derived phthalimide: observation of stereoelectroniceffects [J]. Tetrahedron,2005,61(5):1335-1344.
    [98]JIANG L-J, TENG B, ZHENG J-F, et al. Bis-Lewis acids-catalyzed highlydiastereoselective one-pot reductive dehydroxylation of chiral N,O-acetals [J].Tetrahedron,2010,66(1):172-175.
    [99]WANG E-C, CHEN H-F, FENG P-K, et al. A new synthesis of3-alkyl-1-isoindolinones [J]. Tetrahedron Letters,2002,43(50):9163-9165.
    [100] OSANTE I, LETE E, SOTOMAYOR N. Tandem Parham cyclisation-α-amidoalkylation reaction in the synthesis of the isoindolo[1,2-a]isoquinoline skeletonof nuevamine-type alkaloids [J]. Tetrahedron Letters,2004,45(6):1253-1256.
    [101] WAKCHAURE P B, EASWAR S, PURANIK V G, et al. Facile air-oxidation ofN-homopiperonyl-5,6-dimethoxyhomophthalimide: simple and efficient access tonuevamine [J]. Tetrahedron,2008,64(8):1786-1791.
    [102] ALLIN S M, NORTHFIELD C J, PAGE M I, et al. A highly diastereoselectivesynthesis of tricyclic lactams and their application as novel N-acyl iminium ionprecursors in the synthesis of isoindolinone derivatives [J]. Tetrahedron Letters,1997,38(20):3627-3630.
    [103] ALLIN S M, NORTHFIELD C J, PAGE M I, et al. A new approach to thesynthesis of non-racemic isoindolin-1-one derivatives [J]. Tetrahedron Letters,1999,40(1):141-142.
    [104] DEVINEAU A, POUSSE G, TAILLIER C, et al. One-Pot Hydroxy GroupActivation/Carbon-Carbon Bond Forming Sequence Using a Br nsted Base/Br nstedAcid System [J]. Advanced Synthesis&Catalysis,2010,352(17):2881-2886.
    [105] ENDERS D, BRAIG V, RAABE G. Asymmetric synthesis of3-aryl-substituted2,3-dihydro-1H-isoindol-1-ones [J]. Canadian Journal of Chemistry,2001,79(11):1528-1535.
    [106] CLAYDEN J, TURNBULL R, PINTO I. Diastereoselective protonation ofextended pyrrol-3-en-2-one enolates: an attempted ‘de-epimerisation’[J]. Tetrahedron:Asymmetry,2005,16(13):2235-2241.
    [107] WANG Z-Q, FENG C-G, XU M-H, et al. Design of C2-SymmetricTetrahydropentalenes as New Chiral Diene Ligands for Highly EnantioselectiveRh-Catalyzed Arylation of N-Tosylarylimines with Arylboronic Acids [J]. Journal ofthe American Chemical Society,2007,129(17):5336-5337.
    [108] PARHAM W E, BRADSHER C K. Aromatic organolithium reagents bearingelectrophilic groups. Preparation by halogen-lithium exchange [J]. Accounts ofChemical Research,1982,15(10):300-305.
    [109] SOTOMAYOR N, LETE E. Aryl and Heteroaryllithium Compounds by Metal-Halogen Exchange. Synthesis of Carbocyclic and Heterocyclic Systems [J]. CurrentOrganic Chemistry,2003,7(3):275-300.
    [110] LAMBLIN M, COUTURE A, DENIAU E, et al. Alternative andcomplementary approaches to the asymmetric synthesis of C3substituted NH free orN-substituted isoindolin-1-ones [J]. Tetrahedron: Asymmetry2008,19(1):111-123.
    [111] LORION M, COUTURE A, DENIAU E, et al. Complementary SyntheticApproaches to Constitutionally Diverse N-Aminoalkylated Isoindolinones:Application to the Synthesis of Falipamil and5-HT1A Receptor Ligand Analogues [J].Synthesis,2009,2009(EFirst):1897,1903.
    [112] DENIAU E, COUTURE A, GRANDCLAUDON P. A conceptually newapproach to the asymmetric synthesis of3-aryl and alkyl poly-substitutedisoindolinones [J]. Tetrahedron: Asymmetry,2008,19(23):2735-2740.
    [113] NGUYEN T B, WANG Q, GU RITTE F. Chiral Phosphoric Acid CatalyzedEnantioselective Transfer Hydrogenation of ortho-Hydroxybenzophenone N HKetimines and Applications [J]. Chemistry–A European Journal,2011,17(35):9576-9580.
    [114] SHACKLADY-MCATEE D M, DASGUPTA S, WATSON M P.Nickel(0)-Catalyzed Cyclization of N-Benzoylaminals for Isoindolinone Synthesis [J].Organic Letters,2011,13(13):3490-3493.
    [115] MARCOS C F, MARCACCINI S, MENCHI G, et al. Studies on isocyanides:synthesis of tetrazolyl-isoindolinones via tandem Ugi four-componentcondensation/intramolecular amidation [J]. Tetrahedron Letters,2008,49(1):149-152.
    [116] CLAYDEN J, MENET C J.2,3-Dihydroisoindolones by cyclisation andrearomatisation of lithiated benzamides [J]. Tetrahedron Letters,2003,44(15):3059-3062.
    [117] CLARY K N, PARVEZ M, BACK T G. Preparation of1-aryl-substitutedisoindoline derivatives by sequential Morita-Baylis-Hillman and intramolecularDiels-Alder reactions [J]. Organic&Biomolecular Chemistry,2009,7(6):1226-1230.
    [118] KITCHING M S, CLEGG W, ELSEGOOD M R J, et al. Synthesis of3-Alkoxy-and3-Alkylamino-2-alkyl-3-arylisoindolinones [J]. Synlett,1999,997-999.
    [119] RAVI KUMAR A, BHASKAR G, MADHAN A, et al. Stereoselective Synthesisof ()-Cytoxazone and (+)-5-Epi-cytoxazone [J]. Synthetic Communication,2003,33(16):2907-2916.
    [120] DRANDAROV K, GUGGISBERG A, HESSE M. Asymmetric Syntheses of theMacrocyclic Spermine Alkaloids ()-(S)-Protoverbine,()-(S)-Buchnerine, and TheirNaturally Occurring Congenial Alkaloids [J]. Helvetica Chimica Acta2002,85(4):979-989.
    [121] ALLIN S M, NORTHFIELD C J, PAGE M I, et al. Approaches to the synthesisof non-racemic3-substituted isoindolinone derivatives [J]. Journal of the ChemicalSociety, Perkin Transactions1,2000,1715-1721.
    [122] ZHENG L, ZHENG J, ZHAO Y, et al. Three anti-tumor saponins from Albiziajulibrissin [J]. Bioorganic&Medicinal Chemistry Letters,2006,16(10):2765-2768.
    [123] MANOSROI A, PANYOSAK A, ROJANASAKUL Y, et al. Characteristics andanti-proliferative activity of azelaic acid and its derivatives entrapped in bilayervesicles in cancer cell lines [J]. Journal of Drug Targeting,2007,15(5):334-341.
    [124] IKEDA R, IWAKI T, IIDA T, et al.3-Benzylamino-β-carboline derivativesinduce apoptosis through G2/M arrest in human carcinoma cells HeLa S-3[J].European Journal of Medicinal Chemistry,2011,46(2):636-646.
    [125] TIM M. Rapid colorimetric assay for cellular growth and survival: Applicationto proliferation and cytotoxicity assays [J]. Journal of Immunological Methods,1983,65(1–2):55-63.
    [126] SHIMADA Y, AKANE H, TANIGUCHI N, et al. Preparation of Highly Potentand Selective Non-Peptide Antagonists of the Arginine Vasopressin V1A Receptor byIntroduction of a2-Ethyl-1H-1-imidazolyl Group [J]. Chemical and PharmaceuticalBulletin,2005,53(7):764-769.
    [127] RAJ I V P, SURYAVANSHI G, SUDALAI A. Organocatalytic activation ofTMSCN by basic ammonium salts for efficient cyanation of aldehydes and imines [J].Tetrahedron Letters,2007,48(40):7211-7214.
    [128] STILZ H U, GUBA W, JABLONKA B, et al. Discovery of an Orally ActiveNon-Peptide Fibrinogen Receptor Antagonist Based on the Hydantoin Scaffold [J].Journal of Medicinal Chemistry,2001,44(8):1158-1176.
    [129] P RARD-VIRET J, PRANG T, TOMAS A, et al. A simple and efficientasymmetric synthesis of3-alkyl-isoindolin-1-ones [J]. Tetrahedron,2002,58(25):5103-5108.
    [130] COMINS D L, SCHILLING S, ZHANG Y. Asymmetric Synthesis of3-Substituted Isoindolinones: Application to the Total Synthesis of (+)-Lennoxamine[J]. Organic Letters,2005,7(1):95-98.
    [131] HART D J, HONG W P, HSU L Y. Total synthesis of (±)-Lythrancepine II and(±)-Lythrancepine III [J]. The Journal of Organic Chemistry,1987,52(21):4665-4673.
    [132] RABAN M, MISLOW K. Top Stereochem,1967,(2)199-192.
    [133] HOLLSTEIN M, SIDRANSKY D, VOGELSTEIN B, et al. p53mutations inhuman cancers [J]. Science,1991,253(5015):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700