基于NPB和TAPC给体的有机紫外光探测器件的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光探测器已经广泛应用于天体物理分析,大气臭氧研究,环境污染监测,火灾预警,矿产勘探和开采,医疗卫生、紫外通信以及导弹预警等领域。有机紫外光探测器由于具有制造成本低、工艺简单,可大面积和柔性衬底生产等优点,因而备受国内外学者关注。但目前有机紫外光探测器由于入射电极ITO在短波长的强烈吸收,使得深紫外光探测器的研究受到了限制,而且其光响应度和探测率等光电性能还有待进一步的提高。
     本论文针对上述不足,以常见的宽禁带有机小分子半导体材料为基础,选用了短波长的透光性能和导电性能很好的PEDOT:PSS作为入射电极,制备了各种不同结构的有机紫外光探测器,研制出了高性能的深紫外光探测器和可见盲型探测器。并且通过优化器件结构,提高了激子的分离、载流子的传输以及电极对电荷的收集,改善了器件的光电性能。主要研究工作如下:
     1.制备出双层的NPB/BND异质结型和单层的NPB:BND体异质结型紫外光探测器。研究了不同给体和受体厚度对于器件的光电流密度的影响,并且分析了给体材料和受体材料之间的界面修饰对于器件的激子分离效率的影响。
     2.结合双层异质结和单层体异质结两种结构器件优点,研制出NPB/NPB:BND/BND结构紫外光探测器。研究了给体和受体材料的混合薄层对器件的光电流密度和光响应度等性能的影响。加入混合薄层的器件既增加了给体和受体材料之间的接触面积,提高了激子分离效率,又保留了较强的载流子传输能力,加强了电极对电荷的收集,减少了载流子的再度复合。器件在365nm的紫外光照射下,-3V时得到的光电流密度为32.61μA/cm2,光响应度为30.3mA/W。
     3.制备出了高性能的NPB/PBD紫外光探测器,研究了给体和受体厚度对器件光响应度的影响,讨论了给体和受体材料之间的能级匹配对于光生激子的分离效率的影响。器件在波长为350nm,光功率密度为60μW/cm2的紫外光照射下的光响应度高达630mA/W。
     4.选用高电导率聚合物PEDOT:PSS作透明入射电极,研制出高性能的石英/PEDOT:PSS(PH1000)/PEDOT:PSS(P VP4083)/NPB/Bphen/LiF/Al结构深紫外光探测器。通过添加DMSO和异丙醇等材料,改善了PEDOT:PSS电极的薄膜质量和导电性能。同时研究了以PEDOT:PSS(P VP4083)作为阳极修饰材料对于电极的空穴收集能力以及器件的临界击穿电压的影响。该器件在220nm的紫外光照射下,在反向电压为7.5V时,得到了77μA/cm2的光电流密度,502mA/W的光响应度和2.67×1012cmHz1/2/W的探测率。
     5.选用在可见光区没有吸收的给体材料TAPC替代NPB,研制出了TAPC/Bphen和TAPC/TAPC:Bphen两种可见盲型深紫外光探测器。两个器件在-12V时的暗电流密度分别为0.024和0.87μA/cm2,光电流密度为34和56μA/cm2,光响应度为52和75mA/W。其中TAPC/TAPC:Bphen器件的光电流密度和光响应度要稍好于TAPC/Bphen器件,但由于暗电流密度较大,其信噪比反而降低了。为了使器件的电子传输能力提高到与器件的空穴传输能力相匹配,从而降低载流子再度复合的几率,制备出了高性能的TAPC/TAPC:Bphen/Bphen:Cs2CO3结构可见盲型深紫外光探测器,器件的暗电流密度降低到0.026μA/cm2,而光电流密度提高到106μA/cm2,光响应度提高到126mA/W。
Ultraviolet (UV) photodetectors (PDs) have wide applications in astrophysical analysis, the atmospheric ozone research, environmental pollution monitoring, fire alarm, mineral exploration and mining, health care, as well as military science and other fields. Wide band gap organic UV PDs have much more attractive to scholars, due to the advantages of low manufacturing cost, simple process and ease of production on large area or flexional substrates. However, the detection of deep-UV light has been limited cause the strong absorption in the short wavelength of the incident electrode ITO of organic UV PDs. Moreover, the responsivity and detectivity of organic UV PDs remains to be further improved.
     In this work, we used common wide band gap organic small molecule semiconductor materials to prepared different structures of organic UV PDs to improve these shortcomings above, based on the incident electrode PEDOT:PSS with good short-wavelength light transmission properties and electrical conductivity. We also developed high-performance deep-UV PDs detector and visible-blind UV PDs. By optimizing structure of the devices to improve the exciton separation, carrier transportation and charge collection of the electrodes, the optical and electrical properties of organic UV PDs were enhanced. The main research works are as follows:
     1. A double layer heterojunction device and a single layer bulk heterojunction device based on NPB and BND as donor and acceptor materials were prepared to analyze the impact of the interface between donor and acceptor. The photocurrent density of the devices with a different donor and acceptor thickness and exciton separation efficiency of the devices with modification of the interface between donor and acceptor were discussed.
     2. Combined advantages of double layer heterojunction and bulk heterojunction, we developed the NPB/NPB:BND/BND device by adding a blend layer of NPB and BND between the separate NPB and BND film. The impact of blend thin layer of donor and acceptor to the performance of the device was discussed. The revised organic UV PD was shown a photocurrent density of32.61μA/cm2and a responsivity of30.3mA/W at365nm with-3V bias.
     3. A high performance NPB/PBD UV PDs was prepared to study the photocurrent density with different thickness of donor and acceptor and the separation efficiency of photoinduced exciton by improved energy level matching between donor and acceptor. The device was shown a responsivity of630mA/W at-3V with350nm light of60mW/cm2light power density, which is better than the results reported in the literature.
     4. We proposed that using the high conductivity polymer PEDOT:PSS(PH1000) to form a transparent electrode to replace ITO conductive glass as the incident anode, and developed a high-performance quartz/PEDOT:PSS(PH1000)/PEDOT:PSS(P VP4083)/NPB/Bphen/LiF/Al structure deep-UV PD. By adding materials such as DMSO and isopropyl alcohol, the quality of the film and conductive properties of PEDOT:PSS electrode were improved. PEDOT:PSS(P VP4083) improved the holes gathering capabilities and the critical breakdown voltage of the device as a modified material for the anode. The device was shown a photocurrent density of771μA/cm2and a responsivity of502mA/W and a detectivity of2.67×1012cmHz1/2/W at-7.5V with a220nm UV light.
     5. Due to the TAPC film had no absorption to visible light, we developed the TAPC/Bphen and TAPC/TAPC:Bphen two kinds of visible-blind deep-UV PDs used TAPC to replace NPB as the donor. The devices were shown dark current density of0.024and0.87μA/cm2, photocurrent density of34and56μA/cm2and responsivity of52and75mA/W. The photocurrent density of TAPC/TAPC:Bphen device was better than the TAPC/Bphen device, but the dark current density was reduced so that the signal to noise ratio to be much lower. In order to improve the ability of the electron transport ability of the device to matching the hole transport ability, we prepared a high-performance TAPC/TAPC:Bphen/Bphen:Cs2CO3structure visible-blind deep-UV PD. The dark current density was reduced to0.026μA/cm2, the photocurrent density was increased to106μA/cm2and the responsivity was increased to126mA/W.
引文
[1]M. Razeghi and A. Rogalski, Semiconductor ultraviolet detectors, J. Appl. Phys.,1996,79,7433.
    [2]Monroy E., Omnes F., and Calle F., Wide band gap semiconductor ultraviolet photodetectors, Semiconductor Science and Technology,2003,18, R33.
    [3]Peter Peumans, Aharon Yakimov, and Stephen R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys.,2003,93,3693.
    [4]Paul Schreiber, Tuoc Danga, Thad Pickenpaugha, Gary Smith, Paul Gehredb, and Cole Littonc, Solar Blind UV Region and UV Detector Development Objectives, Part of the SPIE Conference on Photodetectors:Materials and Devices IV, San Jose, California,1999, SPIE Vol.3629,230.
    [5]H. Oliver and H. Moseley, The use of diode array spectroradiometers for dosimetry in phototherapy, Phys. Med. Biol.,2002,47,4411.
    [6]M. P. Ulmer, Future UV detectors for space applications, Optical Sensing Ⅱ,2006, SPIE Vol. 6189,61890W.
    [7]N. M. Shmidt, W. V. Lundin, A. V. Sakharov, A. S. Usikov, and E. E. Zavarin, Ultraviolet photodetectors based on GaN and AlxGa1-xN epitaxial layers, Photodetectors,2000, SPIE Vol.4340, 92.
    [8]D. Starikov, I. Berishev, J.-W. Um, N. Badi, N. Medelci, A. Tempez, and A. Bensaoula, Diode structures based on p-GaN for optoelectronic applications in the near-ultraviolet range of the spectrum, J. Vac. Sci. Technol. B,2000,18,2620.
    [9]D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, and R. D. Dupuis, Back illuminated AlGaN solar-blind photodetectors, Appl. Phys. Lett.,2000,77,1900.
    [10]I. K. Sou, C. L. Man, Z. H. Ma, Z. Yang, and G. K. L. Wong, High performance ZnSTe photovoltaic visible-blind ultraviolet detectors, Appl. Phys. Lett.,1997,71,3847.
    [11]Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, Schottky barrier detectors on GaN for visible-blind ultraviolet detection, Appl. Phys. Lett.,1997,70,2277.
    [12]Shigeru Yagi, Highly sensitive ultraviolet photodetectors based on Mg-doped hydrogenated GaN films grown at 380℃, Appl. Phys. Lett.,2000,76,345.
    [13]Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen, and Y. D. Zheng, Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111), Appl. Phys. Lett., 2000,77,444.
    [14]F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, Mechanisms of recombination in GaN photodetectors, Appl. Phys. Lett.,1996,69,1202.
    [15]Chad Whitney, Christopher Stapels, Erik Johnson, Eric Chapman, Guy Alberghini, Jarek Glodo, Kanai Shah, and James Christian,6-Li enriched Cs2LiYCl6:Ce based thermal detector coupled with CMOS solid-state photomultipliers for a portable detector unit, Detectors Ⅱ,2011, SPIE Vol.7961, 79610U.
    [16]Michael R. Watts, Michael J. Shaw, Peter T. Rakich, Anthony L. Lentine, Gregory N. Nielson, Jeremy Wright, William A. Zortman, and Frederick B. McCormick, Microphotonic thermal detectors and imagers, Microresonators Ⅱ,2009, SPIE Vol.7194,71940T.
    [17]Joseph J. Talghader, Beyond the blackbody radiation limit:high-sensitivity thermal detectors, Uncooled FPAs and Applications Ⅱ,2010, SPIE Vol.7660,766011.
    [18]Anton S. Tremsin, Oswald H. W. Siegmund, John V. Vallerga, and Jeff S. Hull, Novel high-resolution readout for UV and x-ray photon counting detectors with microchannel plates, High Energy Detectors Ⅱ,2006, SPIE Vol.6276,627616.
    [19]Xinghua Zhang, Baosheng Zhao, Feifei Zhao, Yong'an Liu, Zhenhua Miao, Xiangping Zhu, and Qiurong Yan, The estimation of charge footprint size of ultraviolet photon counting imaging detector with induction readout, Rev. Sci. Instrum.,2009,80,033101.
    [20]O. H. W. Siegmund, K. Fujiwara, R. Hemphill, S. R. Jelinsky, J. B. McPhate, A. S. Tremsin, and J. V. Vallerga, Advances in microchannel plates and photocathodes for ultraviolet photon counting detectors, UV-Optical Instrumentation,2011, SPIE Vol.8145,81450J.
    [21]D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, AlGaN ultraviolet photoconductors grown on sapphire, Appl. Phys. Lett.,1996,68,2100.
    [22]E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sanchez, M. A. Sanchez-Garcia, E. Calleja, B. Beaumont, and P. Gibart, Photoconductor gain mechanisms in GaN ultraviolet detectors, Appl. Phys. Lett.,1997,71,870.
    [23]A. De Sio, J. Achard, A. Tallaire, R. S. Sussmann, A. T. Collins, F. Silva, and E. Pace, Electro-optical response of a single-crystal diamond ultraviolet photoconductor in transverse configuration, Appl. Phys. Lett.,2005,86,213504.
    [24]Kuo-Hua Chang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Chih-Ciao Yang, Huan-Shao Kuo, J. H. Yang, and Wei-Chih Lai, Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metal organic vapor phase epitaxy, Appl. Phys. Lett.,2010,97, 013502.
    [25]Yun Zhang, Shyh-Chiang Shen, Hee Jin Kim, Suk Choi, Jae-Hyun Ryou, Russell D. Dupuis, and Bravishma Narayan, Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates, Appl. Phys. Lett.,2009,94,221109.
    [26]M. L. Lee and J. K. Sheu, GaN-Based Ultraviolet p-i-n Photodiodes with Buried p-Layer Structure Grown by MOVPE, J. Electrochem. Soc.,2007,154, H182.
    [27]Dabing Li, Xiaojuan Sun, Hang Song, Zhiming Li, Hong Jiang, Yiren Chen, Guoqing Miao, and Bo Shen, Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector, Appl. Phys. Lett.,2011,99,261102.
    [28]Gang Cheng, Xinghui Wu, Bing Liu, Bing Li, Xingtang Zhang, and Zuliang Du, ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed, Appl. Phys. Lett.,2011,99,203105.
    [29]Liwen Sang, Meiyong Liao, Yasuo Koide, and Masatomo Sumiya, High-temperature ultraviolet detection based on InGaN Schottky photodiodes, Appl. Phys. Lett.,2011,99,031115.
    [30]Yi-fan Zheng, Xiaoxuan Xu, Bin Wang, Zhe Qin, and Jun-mei Li, The research of ultraviolet detection by using CCD, Session 1,2009, SPIE Vol.7384,738426.
    [31]John V. Vallerga, Marty Eckert, Martin Sirk, Oswald H. W. Siegmund, and Roger F. Malina, Long-term orbital performance of the microchannel plate (MCP) detectors aboard the Extreme Ultraviolet Explorer, Microchannel Plates,1994, SPIE Vol.2280,57.
    [32]John V. Vallerga, Bryce A. Roberts, Jean Dupuis, and Patrick N. Jelinsky, Six years in orbit:the MCP detectors aboard the Extreme Ultraviolet Explorer, Satellite Instruments,1998, SPIE Vol.3356, 1001.
    [33]F. Schedin, G. Thornton, and R. I. G. Uhrberg, Windows and photocathodes for a high resolution solid state bandpass ultraviolet photon detector for inverse photoemission, Rev. Sci. Instrum.,1997, 68,41.
    [34]R. Stiepel, R. Ostendorf, C. Benesch, and H. Zacharias, Vacuum ultraviolet photon detector with improved resolution for inverse photoemission spectroscopy, Rev. Sci. Instrum.,2005,76, 063109.
    [35]Dong Chan Kim, Byung Oh Jung, Yong Hun Kwon, and Hyung Koun Cho, Highly Sensible ZnO Nanowire Ultraviolet Photodetectors Based on Mechanical Schottky Contact, J. Electrochem. Soc.,2012,159, K10.
    [36]M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO, Appl. Phys. Lett., 2008,93,123309.
    [37]Pawel E. Malinowski, Jean-Yves Duboz, Piet De Moor, Kyriaki Minoglou, Joachim John, Sara Martin Horcajo, Fabrice Semond, Eric Frayssinet, Peter Verhoeve, Marco Esposito, Boris Giordanengo, Ali BenMoussa, Robert Mertens, and Chris Van Hoof, Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes, Appl. Phys. Lett.,2011,98,141104.
    [38]Y. Lu, I.A. Dajani, and R.J. Knize, ZnO nanorod arrays as p-n heterojunction ultraviolet photodetectors, Electron. Lett.,2006,42,1309.
    [39]Wen-Jen Lee and Min-Hsiung Hon, An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction, Appl. Phys. Lett.,2011,99,251102.
    [40]H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors, Appl. Phys. Lett.,2011,98,221902.
    [41]D. G Zhao, S. Zhang, D. S. Jiang, J. J. Zhu, Z. S. Liu, H. Wang, S. M. Zhang, B. S. Zhang, and H. Yang, A study on the spectral response of back-illuminated p-i-n AlGaN heterojunction ultraviolet photodetector, J. Appl. Phys.,2011,110,053701.
    [42]V. V. Kuryatkov, B. A. Borisov, S. A. Nikishin, Yu. Kudryavtsev, R. Asomoza, V. I. Kuchinskii, G. S. Sokolovskii, D. Y. Song, and M. Holtz,247 nm solar-blind ultraviolet p-i-n photodetector, J. Appl. Phys.,2006,100,096104.
    [43]A. Muller, GaN membrane MSM ultraviolet photodetectors, Photonics,2006, SPIE Vol.6415, 641509.
    [44]Michal J. Malachowski, Transient simulation of MSM GaN ultraviolet detector, Optoelectronic Devices,2001, SPIE Vol.4413,369.
    [45]Xiaojuan Sun, Dabing Li, Hong Jiang, Zhiming Li, Hang Song, Yiren Chen, and Guoqing Miao, Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface, Appl. Phys. Lett.,2011,98,121117.
    [46]Dabing Li, Xiaojuan Sun, Hang Song, Zhiming Li, Yiren Chen, Guoqing Miao, and Hong Jiang, Influence of threading dislocations on GaN based metal-semiconductor-metal (MSM) ultraviolet photodetectors, Appl. Phys. Lett.,2011,98,011108.
    [47]Cheng-Zhi Wu, Liang-Wen Ji, Chien-Hung Liu, Shi-Ming Peng, Sheng-Joue Young, Kin-Tak Lam, and Chien-Jung Huang, Ultraviolet photodetectors based on MgZnO thin films, J. Vac. Sci. Technol. A,2011,29,03A118.
    [48]Jong Kyu Kim and Jong-Lam Lee, GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2and IrO2 Schottky Contacts, J. Electrochem. Soc.,2004,151, G190.
    [49]S. V. Averine, Y. C. Chan, and Y. L. Lam, Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures, Solid-State Electronics,2001,45, 441.
    [50]Bo Huang, Guan-nan He, Yue-bo Wu, Liang-tang Zhang, Jing Li, Dong-hui Guo, and Sun-tao Wu, Fabrication of ZnO thin film Schottky ultraviolet photodetector, Poster Session,2007, SPIE Vol. 6722,67221W.
    [51]Jong Kyu Kim, Ho Won Jang, Chang Min Jeon, and Jong Lam Lee, GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact, Appl. Phys. Lett.,2002,81,4655.
    [52]J. Tuzzolino, Silicon photodiode vacuum ultraviolet detector, Rev. Sci. Instrum.,1964,35, 1332.
    [53]I. B. Ortenburger and D. Henderson, Ultraviolet Photoemission from Polymorphs of Ge and Si and Some Simple Models of Amorphous Ge and Si, TETRAHEDRALLY BONDED AMORPHOUS SEMICONDUCTORS:International Conference,1974, AIP Conf. Proc.20,151.
    [54]T. R. O'Brian and J. E. Lawler, Radioactive lifetimes in Si from laser-induced fluorescence in the visible, ultraviolet, and vacuum ultraviolet, Phys. Rev. A,1991,44,7134.
    [55]R. D. Baertsch and J. R. Richardson, An Ag-GaAs Schottky-barrier ultraviolet detector, J. Appl. Phys.,1969,40,229.
    [56]Paul E. Gregory and W. E. Spicer, Ultraviolet photoemission study of cesium oxide films on GaAs, J. Appl. Phys.,1976,47,510.
    [57]L. Roberts, G. Hughes, B. Fennema, and M. Carbery, Vacuum ultraviolet photoelectron spectroscopy study of the interaction of molecular sulfur with the GaAs(100) surface, J. Vac. Sci. Technol. B,1992,10,1862.
    [58]J. P. Landesman, J. C. Garcia, J. Massies, G. Jezequel, P. Maurel, J. P. Hirtz, and P. Alnot, GaInAs/InP and GaInP/GaAs (100) interfaces:An ultraviolet photoelectron spectroscopy study, J. Vac. Sci. Technol. B,1992,10,1761.
    [59]T. F. Deutsch, F. J. Leonberger, A. G. Foyt, and D. Mills, High-speed ultraviolet and x-ray sensitive InP photoconductive detectors, Appl. Phys. Lett.,1982,41,403.
    [60]D. R. Kania, A. E. Iverson, D. L. Smith, R. S. Wagner, R. B. Hammond, and K. A. Stetler, Flat response detectors for the vacuum ultraviolet and soft x-ray region:InP:Fe photoconductors, J. Appl. Phys.,1986,60,2596.
    [61]Lindsay Hum, Ultraviolet degradation study of photomultiplier tubes at SURF Ⅲ, Current Industrial Trends in CBRNE Sensing,2009, SPIE Vol.7304,730410.
    [62]H. M. Araujo, V. Yu. Chepel, M. I. Lopes, R. Ferreira Marques, and A. J. P. L. Policarpo, Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light, Rev. Sci. Instrum.,1997,68,34.
    [63]Z. H Ma, I. K Sou, K. S Wong, Z Yang, G. K. L Wong, Visible-blind ultraviolet detectors with nano-second response time, Journal of Crystal Growth,1999,201,968.
    [64]T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si, Appl. Phys. Lett.,2009,94,113508.
    [65]F. Vigue, E. Tournie, J.-P. Faurie, E. Monroy, F. Calle, and E. Munoz, Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes, Appl. Phys. Lett.,2001,78,4190.
    [66]Y. F. Gu, X. M. Li, J. L. Zhao, W. D. Yu, X. D. Gao, and C. Yang, Visible-blind ultraviolet detector based on n-ZnO/p-Si heterojunction fabricated by plasma-assisted pulsed laser deposition, Solid State Communications,2007,143,421.
    [67]Shun Han, Zhenzhong Zhang, Jiying Zhang, Likun Wang, Jian Zheng, Haifeng Zhao,Yechi Zhang, Mingming Jiang, Shuangpeng Wang, Dongxu Zhao, ChongXin Shan, Binghui Li, and Dezhen Shen, Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film, Appl. Phys. Lett.,2011,99,242105.
    [68]H. Srour, J. P. Salvestrini, A. Ahaitouf, S. Gautier, T. Moudakir, B. Assouar, M. Abarkan, S. Hamady, and A. Ougazzaden, Solar blind metal-semiconductor-metal ultraviolet photodetectors using quasi-alloy of BGaN/GaN superlattices, Appl. Phys. Lett.,2011,99,221101.
    [69]L. van Schalkwyk, W. E. Meyer, F. D. Auret, J. M. Nel, P.N.M. Ngoepe, and M. Diale, Characterization of AlGaN-based metal-semiconductor solar-blind UV photodiodes with IrO2 Schottky contacts, Physica B:Condensed Matter,2012,407,1529.
    [70]Debbie Kedar and Shlomi Arnon, Subsea ultraviolet solar-blind broadband free-space optics communication, Opt. Eng.,2009,48,046001.
    [71]Antonella Sciuto, Fabrizio Roccaforte, Salvatore Di Franco, Vito Raineri, and Giovanni Bonanno, High responsivity 4H-SiC Schottky UV photodiodes based on the pinch-off surface effect, Appl. Phys. Lett.,2006,89,081111.
    [72]A. Sciuto, F. Roccaforte, S. Di Franco, V. Raineri, S. Billotta, Photocurrent gain in 4H-SiC interdigit Schottky UV detectors with a thermally grown oxide layer, Appl. Phys. Lett.,2007,90, 223507.
    [73]R. Dahal, T. M. Al Tahtamouni, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, Hybrid AIN-SiC deep ultraviolet Schottky barrier photodetectors, Appl. Phys. Lett.,2007,90,263505.
    [74]Antonella Sciuto, Fabrizio Roccaforte, and Vito Raineri, Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors, Appl. Phys. Lett.,2008,92,093505.
    [75]Feng Zhang, Weifeng Yang, Huolin Huang, Xiaping Chen, and Zhengyun Wu, High-performance 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors with Al2O3/SiO2 films, Appl. Phys. Lett.,2008,92,251102.
    [76]WeifengYang, FengZhang, ZhuguangLiu, ZhengyunWu, Effects of annealing on the performance of 4H-SiC metal-semiconductor-metal ultraviolet photodetectors, Materials Science in Semiconductor Processing,2008,11,59.
    [77]Xiaping Chen, Huili Zhu, Jiafa Cai, and Zhengyun Wu, High-performance 4H-SiC-based ultraviolet p-i-n photodetector, J. Appl. Phys.,2007,102,024505.
    [78]Stephane Biondo, Wilfried Vervisch, Laurent Ottaviani, and Olivier Palais, Influence on electrical characteristics of the design of 4H-SiC ultraviolet photodetectors:Theoretical analysis and simulations, J. Appl. Phys.,2012,111,024506.
    [79]Ji-Soo Park, Zachary, J. Reitmeier, Daryl Fothergill, Xiyao Zhang, John F. Muth, Robert F. Davis, Growth and fabrication of AlGaN-based ultraviolet light emitting diodes on 6H-SiC (0001) substrates and the effect of carrier-blocking layers on their emission characteristics, Materials Science and Engineering B,2006,127,169.
    [80]Ligong Zhang, Weiyou Yang, Hua Jin, Zhuhong Zheng, Zhipeng Xie, Ultraviolet photoluminescence from 3C-SiC nanorods, Appl. Phys. Lett.,2006,89,143101.
    [81]H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell, and C. T. Foxon, Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet photodetectors on undoped GaN sapphire grown by MBE, Journal of Crystal Growth,2000,218,1.
    [82]O. Katz, G. Bahir, and J. Salzman, Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors, Appl. Phys. Lett.,2004,84,4092.
    [83]G. Ariyawansa, M. B. Rinzan, M. Alevli, M. Strassburg, and N. Dietz, GaN/AlGaN ultraviolet infrared dual-band detector, Appl. Phys. Lett.,2006,89,091113.
    [84]K. P. Korona, A. Drabinska, P. Caban, and W. Strupinski, Tunable GaN/AlGaN ultraviolet detectors with built-in electric field, J. Appl. Phys.,2009,105,083712.
    [85]J. Li and Z. Y. Fan,200 nm deep ultraviolet photodetectors based on AlN, Appl. Phys. Lett., 2006,89,213510.
    [86]C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes, Appl. Phys. Lett.,2000,77,2810.
    [87]G. Mazzeo and G. Contea, Deep ultraviolet detection dynamics of AlGaN based devices, Appl. Phys. Lett.,2006,89,223513.
    [88]C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode, Appl. Phys. Lett.,2002,80,3754.
    [89]J. Zhou, Y. L. Hao, Z. J. Yang, and G. Y. Zhang, Resonant tunneling effect in metal-semiconductor-metal ultraviolet detectors grown with AlGaN/GaN multi-quantum-well interlayer, Appl. Phys. Lett.,2006,89,053514.
    [90]Turgut Tut, Tolga Yelboga, Erkin Ulker, and Ekmel Ozbay, Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity, Appl. Phys. Lett.,2008,92,103502.
    [91]S.J. Young, L.W. Ji, S.J. Chang, and Y.K. Su, ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes, Journal of Crystal Growth,2006,293,43.
    [92]Q.A. Xu, J.W. Zhang, K.R. Ju, X.D. Yang, and X. Hou, ZnO thin film photoconductive ultraviolet detector with fast photoresponse, Journal of Crystal Growth,2006,289,44.
    [93]Sachindra Nath Das, Kyeong-Ju Moon, Jyoti Prakash Kar, Ji-Hyuk Choi, and Junjie Xiong, ZnO single nanowire-based UV detectors, Appl. Phys. Lett.,2010,97,022103.
    [94]Ghusoon M. Ali and P. Chakrabarti, Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors, Appl. Phys. Lett.,2010,97,031116.
    [95]Jian Sun, Feng-Juan Liu, Hai-Qin Huang, Jian-Wei Zhao, Zuo-Fu Hu, Xi-Qing Zhang, Yong-Sheng Wang, Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering, Applied Surface Science,2010,257,921.
    [96]W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, and T. Venkatesan, Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films, Appl. Phys. Lett.,2001,78, 2787.
    [97]W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T. Venkatesan, Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors. Appl. Phys. Lett.,2003,82,3424.
    [98]Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang, and X. L. Du, Mgo.55Zno.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain, Appl. Phys. Lett.,2011,98, 103506.
    [99]I. Takeuchi, W. Yang, K.-S. Chang, M. A. Aronova, and T. Venkatesan, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads, J. Appl. Phys.,2003,94,7336.
    [100]Hui Jin Looi, Michael D. Whitfield, and Richard B. Jackman, Metal-semiconductor-metal photodiodes fabricated from thin-film diamond, Appl. Phys. Lett.,1999,74,3332.
    [101]A. Balducci, Marco Marinelli, E. Milani, M. E. Morgada, and A. Tucciarone, Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition, Appl. Phys. Lett.,2005, 86,193509.
    [102]Meiyong Liao, Yasuo Koide, and Jose Alvarez, Photovoltaic Schottky ultraviolet detectors fabricated on boron-doped homoepitaxial diamond layer, Appl. Phys. Lett.,2006,88,033504.
    [103]Meiyong Liao and Yasuo Koide, High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film, Appl. Phys. Lett.,2006, 89,113509.
    [104]Meiyong Liao, Yasuo Koide, and Jose Alvarez, Single Schottky-barrier photodiode with interdigitated finger geometry:Application to diamond, Appl. Phys. Lett.,2007,90,123507.
    [105]Y. Iwakaji, M. Kanasugi, O. Maida, and T. Ito, Characterization of diamond ultraviolet detectors fabricated with high quality single-crystalline chemical vapor deposition films, Appl. Phys. Lett.,2009,94,223511.
    [106]Mose Bevilacqua and Richard B Jackman, Extreme sensitivity displayed by single crystal diamond deep ultraviolet photoconductive devices, Appl. Phys. Lett.,2009,95,243501.
    [107]S. P. Lansley, R. D. McKeag, M. D. Whitfield, N. Rizvi, and R. B. Jackmana, Diamond photodetector response to deep UV excimer laser excitation, Diamond and Related Materials,2003, 12,677.
    [108]S. Almaviva, Marco Marinelli, E. Milani, G Prestopino, A. Tucciarone, C. Verona, G. Verona Rinati, M. Angelone, M. Pillon, Extreme UV single crystal diamond Schottky photodiode in planar and transverse configuration, Diamond & Related Materials,2010,19,78.
    [109]Lanxi Wang, Xuekang Chen, Gan Wu, Wantu Guo, Shengzhu Cao, Kaiwen Shang, and Weihua Han, The mechanism of persistent photoconductivity induced by minority carrier trapping effect in ultraviolet photo-detector made of polycrystalline diamond film, Thin Solid Films,2011,520,752.
    [110]Haiguo Li, Congcheng Fan, GangWu, Hongzheng Chen, and Mang Wang, Solution-processed hybrid bilayer photodetectors with rapid response to ultraviolet radiation, J. Phys. D:Appl. Phys., 2010,43,425101.
    [111]Yangang Han, Gang Wu, Haiguo Li, Mang Wang, and Hongzheng Chen, Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing, Nanotechnology,2010,21,185708.
    [112]Richa Pandey and Russell J. Holmes, Characterizing the charge collection efficiency in bulk heterojunction organic photovoltaic cells, Appl. Phys. Lett.,2012,100,083303.
    [113]J. L. Yang, P. Sullivan, S. Schumann, I. Hancox, and T. S. Jones, Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluoro-phthalocyanine, Appl. Phys. Lett.,2012,100,023307.
    [114]Paul M. Haney, Organic photovoltaic bulk heterojunctions with spatially varying composition, J. Appl. Phys.,2011,110,024305.
    [115]M. F. Lo, T. W. Ng, T. Z. Liu, V. A. L. Roy, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, Limits of open circuit voltage in organic photovoltaic devices, Appl. Phys. Lett.,2010,96,113303.
    [116]C. W. Tang, Two layer organic photovoltaic cell, Appl. Phys. Lett.,1986,48,183.
    [117]R. A. Street and M. Schoendorf, Interface state recombination in organic solar cells, Phys. Rev. B,2010,81,205307.
    [118]Bin Yin, Liying Yang, Yongsheng Liu, Yongsheng Chen, Qingjin Qi, Fengling Zhang, and Shougen Yin, Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative, Appl. Phys. Lett.,2010,97,023303.
    [119]Oskar Armbruster, Christoph Lungenschmied, and Siegfried Bauer, Dielectric response of doped organic semiconductor devices:P3HT:PCBM solar cells, Phys. Rev. B,2011,84,085208.
    [120]S. Altazin, R. Clerc, R. Gwoziecki, G. Pananakakis, G. Ghibaudo, and C. Serbutoviez, Analytical modeling of organic solar cells and photodiodes, Appl. Phys. Lett.,2011,99,143301.
    [121]V. A. Trukhanov, V. V. Bruevich, and D. Yu. Paraschuk, Effect of doping on performance of organic solar cells, Phys. Rev. B,2011,84,205318.
    [122]Wanyi Nie, Robert C. Coffin, Jiwen Liu, Yuan Li, Eric D. Peterson, Christopher M. MacNeill, Ronald E. Noftle, and David L. Carroll, High efficiency organic solar cells with spray coated active layers comprised of a low band gap conjugated polymer, Appl. Phys. Lett.,2012,100,083301.
    [123]Safa Shoaee, Tracey M. Clarke, Mattias P. Eng, Iain McCulloch, and James R. Durrant, Charge photogeneration in donor/acceptor organic solar cells, J. Photon. Energy,2012,2,021001.
    [124]Shuang-hong Wu, Wen-lian Li, Bei Chu, Zi-sheng Su, and Feng Zhang, High performance small molecule photodetector with broad spectral response range from 200 to 900 nm, Appl. Phys. Lett.,2011,99,023305.
    [125]Debdutta Ray and K. L. Narasimhana, High response organic visible-blind ultraviolet detector, 2007,91,093516.
    [126]Tobat P. I. Saragi, Michael Fetten, and Josef Salbeck, Solution-processed organic thin-film phototransistors based on donor/acceptor dyad, Appl. Phys. Lett.,2007,90,253506.
    [127]Debdutta Ray and Meghan P. Patankar, Bulk and contact-sensitized photocarrier generation in single layer organic devices, J. Appl. Phys.,2006,100,113727.
    [128]Tobat P. I Saragi, Robert Pudzich, Thomas Fuhrmann, and Josef Salbeck, Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound, Appl. Phys. Lett.,2004,84,2334.
    [129]Tobat P. I. Saragi, Robert Pudzich, Thomas Fuhrmann-Lieker, and Josef Salbeck, Ultraviolet sensitive field-effect transistor utilized amorphous thin films of organic donor/acceptor dyad, Appl. Phys. Lett.,2007,90,143514.
    [130]Tobat P. I. Saragi, Joscha Londenberg, and Josef Salbeck, Photovoltaic and photoconductivity effect in thin-film phototransistors based on a heterocyclic spiro-type molecule, J. Appl. Phys.,2007, 102,046104.
    [131]B. Lucas, A. El Amrani, M. Chakaroun, B. Ratier, R. Antony, and A. Moliton, Ultraviolet light effect on electrical properties of a flexible organic thin film transistor, Thin Solid Films,2009,517, 6280.
    [132]Gang Yu, Yong Cao and Gordana Srdanov, High sensitivity visible-blind UV detectors made with organic semiconductors, Part of the SPIE Conference on Photodetectors:Materials and Devices IV, San Jose, California,1999, SPIE Vol.3629,349.
    [133]Zhiguo Kong, Wenlian Li, Guangbo Che, Bei Chu, Defeng Bi, Liangliang Han, and Lili Chen, Highly sensitive organic ultraviolet optical sensor based on,phosphorescent Cu (Ⅰ) complex, Appl. Phys. Lett.,2006,89,161112.
    [134]Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang,Fei Yan, Xiao Li, Yiren Chen, and Chun-Sing Lee, High response organic ultraviolet photodetector based on blend of 4,4',4"-tri-(2-methylphenyl phenylamino) triphenylaine and tris-(8-hydroxyquinoline) gallium, Appl. Phys. Lett.,2008,93,103309.
    [135]Fei Yan, Huihui Liu, Wenlian Li, Bei Chu, Zisheng Su, Guang Zhang, Yiren Chen, Jianzhuo Zhu, Dongfang Yang, and Junbo Wang, Double wavelength ultraviolet light sensitive organic photodetector, Appl. Phys. Lett.,2009,95,253308.
    [136]Shuang-hong Wu, Wen-lian Li, Bei Chu, C. S. Lee, Zi-sheng Su, Jun-bo Wang, Fei Yan, Guang Zhang, Zhi-zhi Hu, and Zhi-qiang Zhang, High response deep ultraviolet organic photodetector with spectrum peak focused on 280 nm, Appl. Phys. Lett.,2010,96,093302.
    [137]Shuang-hong Wu, Wen-lian Li, Bei Chu, C. S. Lee, Zi-sheng Su, Jun-bo Wang, Qing-jiang Ren, Zhi-zhi Hu, and Zhi-qiang Zhang, Visible-blind ultraviolet sensitive photodiode with high responsivity and long term stability, Appl. Phys. Lett.,2010,97,023306.
    [138]Yuncheng Cui, Lihui Liu, Chunbo Liu, Qingwei Wang, Wenlian Li, Guangbo Che, Chunhui Xu, and Mei Liu, High response organic ultraviolet photodetector based on bis(2-methyl-8-quinolinato)-4- phenylphenolate aluminum, Synthetic Metals,2010,160,373.
    [139]Zisheng Su, Bei Chu, and Wenlian Li, High efficient organic ultraviolet photovoltaic devices based on gallium complex, Solid-State Electronics,2010,54,605.
    [140]Chunbo Liu, Lihui Liu, Guangbo Che, Yuncheng Cui, Qingwei Wang, Wenlian Li, and Mei Liu, High response organic ultraviolet photodetectors based on 4,7-diphenyl-l,10-phenanthroline, Solar Energy Materials & Solar Cells,2012,96,29.
    [141]Zhanlin Xu, Chunhui Xu, Qingwei Wang, Wenlong Jiang, Chunbo Liu, Lihui Liu, Mei Liu, Wenlian Li, Guangbo Che, and Fanian Shi, Highly efficient organic ultraviolet photodetectors based on a Cu(Ⅰ) complex, Synthetic Metals,2010,160,2260.
    [142]Guang Zhang, Wenlian Li, Bei Chu, Zisheng Su, Dongfang Yang, Fei Yan, Yiren Chen, Dongyu Zhang, Liangliang Han, Junbo Wang, Huihui Liu, Guangbo Che, Zhiqiang Zhang, Zhizhi Hu, Highly efficient photovoltaic diode based organic ultraviolet photodetector and the strong electro- luminescence resulting from pure exciplex emission, Organic Electronics,2009,10,352.
    [143]L. L. Chen, W. L. Li, H. Z. Wei, B. Chu, B. Li, Organic ultraviolet photovoltaic diodes based on copper phthalocyanine as an electron acceptor, Solar Energy Materials & Solar Cells,2006,90, 1788.
    [144]Zhenjun Si, Bin Li, Lihong Wang, Shumei Yue, Wenlian Li, OPV devices based on functionalized lanthanide complexes for application in UV-light detection, Solar Energy Materials & Solar Cells,2007,91,1168.
    [145]J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, and C. S. Lee, Visible-blind ultraviolet photo detector using tris-(8-hydroxyquinoline) rare earth as acceptors and the effects of the bulk and interfacial exciplex emissions on the photo-responsivity, Organic Electronics,2010,11,1301.
    [146]Hai-guo Li, Gang Wu, Hong-Zheng Chen, and Mang Wang, Spectral response tuning and realization of quasi-solar-blind detection in organic ultraviolet photodetectors, Organic Electronics, 2011,12,70.
    [147]Satyajit Sahu, Amlan J. Pal, Organic photodetectors:Role of multiple donor-acceptor interfaces, Current Applied Physics,2007,7,176.
    [148]J. Yamaura, Y. Muraoka, T. Yamauchi, T. Muramatsu, and Z. Hiroi, Ultraviolet light selective photodiode based on an organic-inorganic heterostructure, Appl. Phys. Lett.,2003,83,2097.
    [149]Hui Jin, Yanbing Hou, Xianguo Meng, Feng Teng, High open-circuit voltage in UV photovoltaic cell based on polymer/inorganic bilayer structure, Chemical Physics,2006,330,501.
    [150]Hai-Guo Li, Gang Wu, Min-Min Shi, Li-Gong Yang, Hong-Zheng Chen, and Mang Wang, ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector, Appl. Phys. Lett.,2008,93,153309.
    [151]Yun-Yue Lin, Chun-Wei Chen, Wei-Che Yen, Wei-Fang Su, Chen-Hao Ku, and Jih-Jen Wu, Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes, Appl. Phys. Lett.,2008,92,233301.
    [152]Yangang Han, Gang Wu, Mang Wang, Hongzheng Chen, High efficient UV-A photodetectors based on monodispersed ligand-capped TiO2 nanocrystals and polyfluorene hybrids, Polymer,2010, 51,3736.
    [153]R. Q. Zhang, C. S. Lee, and S. T. Lee, The electronic structures and properties of Alq3 and NPB molecules in organic light emitting devices:Decompositions of density of states, J. Chem. Phys.,2000,112,8614.
    [154]Albert H. Davis and Konrad Bussmann, Large magnetic field effects in organic light emitting diodes based on tris(8-hydroxyquinoline aluminum) (Alq3)/N,N'-Di(naphthalen-l-yl)-N,N' diphenyl-benzidine (NPB) bilayers, J. Vac. Sci. Technol. A,2004,22,1885.
    [155]Shuangling Lou, Junsheng Yu, Hui Lin, and Yadong Jiang, White organic light-emitting diodes based on a novel starburst fluorene derivative, Opt. Eng.,2008,47,044002.
    [156]Minlu Zhang, Hui Wang, and C. W. Tang, Hole-transport limited S-shaped I-V curves in planar heterojunction organic photovoltaic cells, Appl. Phys. Lett.,2011,99,213506.
    [157]Andrzej Danela, Ewa Gondekb, and Iwan Kityk, 1H-pyrazolo[3,4-b]quinoline and 1H-pyrazolo- [3,4-b]quinoxaline derivatives as promising materials for optoelectronic applications, Optical Materials,2009,32,267.
    [158]C. H. Cheung, K. K. Tsung, K. C. Kwok, and S. K. So, Using thin film transistors to quantify carrier transport properties of amorphous organic semiconductors, Appl. Phys. Lett.,2008,93, 083307.
    [159]C. H. Cheung, K. K. Tsung, and S. K. So, Determination of carrier mobility of amorphous organic electronic material by thin film transistor configuration, Poster Session,2008, SPIE Vol. 7051,70511M.
    [160]H. Choukri, A. Fischer, S. Forget, S. Chenais, M. Castex, D. Ades, A. Siove and B. Geffroy, White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting, Appl. Phys. Lett.,2006,89,183513.
    [161]Yichun Luo and Hany Aziz, Space charge effects on the electroluminescence efficiency and stability of organic light-emitting devices with mixed emitting layers, Appl. Phys. Lett.,2009,95, 073304.
    [162]Emily Hellerich, Ying Chen, Min Cai, and Joseph Shinar, Electroluminescence-detected magnetic resonance study of OLEDs containing a mixed N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine(NPB)/tris(quinolinolate)Al(Alq3)layer, Poster Session,2009, SPIE Vol.7415,741522.
    [163]S. C. Tse, K. K. Tsung and S. K. So, Single-layer organic light-emitting diodes using naphthyl diamine, Appl. Phys. Lett.,2007,90,213502.
    [164]S. C. Tse, K. C. Kwok and S. K. So, Electron transport in naphthylamine-based organic compounds, Appl. Phys. Lett.,2006,89,262102.
    [165]S. C. Tse, S. W. Tsang and S. K. So, Polymeric conducting anode for small organic transporting molecules in dark injection experiments, J. Appl. Phys.,2006,100,063708.
    [166]Hiroaki Tokuhisa, Masanao Era, Tetsuo Tsutsui, and Shogo Saito, Electron drift mobility of oxadiazole derivatives doped in polycarbonate, Appl. Phys. Lett.,1995,66,3433.
    [167]S. Hoshino, K. Ebata and K. Furukawa, Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure, J. Appl. Phys.,2000,87,1968.
    [168]Takeshi Kitano, Shigeki Naka, Miki Shibata, and Hiroyuki Okada, Oscillation method for uniform formation of solution-processed organic films and its application to organic light-emitting devices, Poster Session,2007, SPIE Vol.6655,66551Ⅰ.
    [169]R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N. R. Armstrong, Photoemission spectroscopy of LiF coated Al and Pt electrodes, J. Appl. Phys.,1998,84,6729.
    [170]S. D. Wang, M. K. Fung, S. L. Lai, S. W. Tong, C. S. Lee, S. T. Lee, H. J. Zhang and S. N. Bao, Experimental study of a chemical reaction between LiF and Al, J. Appl. Phys.,2003,94,196.
    [171]Jihyun Yoon, Jang-Joo Kim, Tae-Woo Lee, and O-Ok Park, Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode, Appl. Phys. Lett.,2000,76,2152.
    [172]J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding,W. Huang, and X. Y. Hou, Dual role of LiF as a hole-injection buffer in organic light-emitting diodes, Appl. Phys. Lett.,2004,84,2913.
    [173]Hyun Sung Kim, Hyunbok Lee, Pyung Eun Jeon, Kwangho Jeong, Jung Han Lee, and Yeonjin Yi, Revised hole injection mechanism of a thin LiF layer introduced between pentacene and an indium tin oxide anode, J. Appl. Phys.,2010,108,053701.
    [174]Sze S. M., Physics of Semiconductor Devices,3rd ed, Wiley,2007
    [175]Jr.Tanislav Lunak and Milos Nepras, Photophysics of PBD derivatives. Ⅱ. The character of the lowest excited triplet state of 2-(biphenyl-4'-yl)-5-phenyl-1,3,4-oxadiazole, Chemical Physics,1993, 170,77.
    [176]H. Hong, R. Sfez, S. Yitzchaik, and D. Davidov, Led device based on self assembled poly(4-vinylpyridine) with PVK and PBD as transport layer, Synthetic Metals,1999,102,1217
    [177]Oh-Kil Kim and Hanyoung Woo, New class of light-emitting polymers/oligomers, Flat Panel Displays,2000, SPIE Vol.3955,134
    [178]Yuanmin Wang, Feng Teng, Changqi Ma, Zheng Xu, Yanbing Hou, Shengyi Yang,Yongsheng Wang, and Xurong Xu, Green to white to blue OLEDs by using PBD as a chromaticity-tuning layer, Displays,2004,25,237.
    [179]De-Wei Zhao, Zheng Xu, Fu-Jun Zhang, Shu-Fang Song, Su-Ling Zhao, Yong Wang, Guang-Cai Yuan, Yan-Fei Zhang, and Hong-Hua Xu, The effect of electric field strength on electroplex emission at the interface of NPB/PBD organic light-emitting diodes, Applied Surface Science,2007,253,4025.
    [180]Wei Zhang, Junsheng Yu, Nana Wang, Chunhua Huang, and Yadong Jiang, Efficient organic photovoltaic cells using 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole as an exciton blocking layer, Poster Session,2010, SPIE Vol.7658,76583U.
    [181]R. Schroeder and B. Ullrich, Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing, Appl. Phys. Lett.,2002,81,556.
    [182]J. X. Luo, L. X. Xiao, Z. J. Chen, and Q. H. Gong, Highly efficient organic light emitting devices with insulator MnO as an electron injecting and transporting material, Appl. Phys. Lett., 2008,93,133301.
    [183]F. Li, H. Tang, J. Anderegg, J. Shinar, Fabrication and electroluminescence of double layered organic light-emitting diodes with the Al2O3/A1 cathode, Appl. Phys. Lett.,1997,70,1233.
    [184]Y. E. Kim, H. Park, J. J. Kim, Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir-Blodgett films, Appl. Phys. Lett.,1996, 69,599.
    [185]D. A. Liu, M. Fina, Z. Y Chen, Xiaobo Chen, Gao Liu, X. B. Chen, G. Liu, S. G. Johnson, and S. S. Mao, Organic light-emitting diodes with structured cathode, Appl. Phys. Lett.,2007,91, 093514.
    [186]S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, and Z. Popovic, Work function modification of indium-tin-oxide used in organic light emitting devices, J. Vac. Sci. Technol. A, 1999,17,1773.
    [187]Soo Young Kim, Jong-Lam Lee, Ki-Beom Kim, and Yoon-Heung Tak, Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes, J. Appl. Phys.,2004,95,2560.
    [188]Tao Hu, Fujun Zhang, Zheng Xu, Suling Zhao, Xin Yue, and Guangcai Yuan, Effect of UV-ozone treatment on ITO and post-annealing on the performance of organic solar cells, Synthetic Metals,2009,159,754.
    [189]Won Hoe Koo, SamYul Boo, Soon Moon Jeong, Suzushi Nishimura, Fumito Araoka, Ken Ishikawa, Takehiro Toyooka, Hideo Takezoe, Controlling bucking structure by UV/ozone treatment for light extraction from organic light emitting diodes, Organic Electronics,2011,12,1177.
    [190]Tsung-Hsun Lee, Jhen-Hao Li, Wei-Shun Huang, Bin Hu, J. C. A. Huang, Magnetoconductance responses in organic charge-transfer-complex molecules, Appl. Phys. Lett., 2011,99,073307.
    [191]Xiaofei Lei, Fute Zhang, Tao Song, and Baoquan Sun, p-type doping effect on the performance of organic-inorganic hybrid solar cells, Appl. Phys. Lett.,2011,99,233305.
    [192]Sung Hyun Kim, Jyongsik Jang, and Jun Yeob Lee, Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices, Appl. Phys. Lett.,2006,89,253501.
    [193]Z. R. Hong, C. J. Liang, X. Y. Sun, and X. T. Zeng, Characterization of organic photovoltaic devices with indium-tin-oxide anode treated by plasma in various gases, J. Appl. Phys.,2006,100, 093711.
    [194]J. Y Lee and J. H. Kwon, Enhanced hole transport in C60-doped hole transport layer, Appl. Phys. Lett,2006,88,183502.
    [195]Hani Kanaan, Pascale Jolinat, Guy Ablart, Pierre Destruel, Cedric Renaud, Chih Wen Lee, Thien-Phap Nguyen, Influence of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) in polyfluorene based light-emitting diodes:Evidence of charge trapping at the organic interface, Organic Electronics,2010,11,1047.
    [196]A. W. Denier van der Gon, J. Birgerson, M. Fahlman, W. R. Salaneck, Modification of PEDOT-PSS by low-energy electrons, Organic Electronics,2002,3,111.
    [197]Seungju Kim, and Sangouk Ryu, Efficiency of flexible organic solar cells as a function of post-annealing temperatures, Current Applied Physics,2010,10,181.
    [198]F. Petraki, S. Kennou, and S. Nespurek, The electronic properties of the interface between nickel phthalocyanine and a PEDOT:PSS film, J. Appl. Phys.,2008,103,033710.
    [199]M. A. Khan, Wei Xu, Khizar-ul-Haq, Yu Bai, and X. Y. Jiang, Electron mobility of 4,7-diphyenyl-1,10-phenanthroline estimated by using space-charge-limited currents, J. Appl. Phys., 2008,103,014509.
    [200]Zhong Zhi You, Combined AFM, XPS, and contact angle studies on treated indium-tin-oxide films for organic light-emitting devices, Materials Letters,2007,61,3809.
    [201]G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT), Sensors and Actuators A,2010,158,313.
    [202]Shimelis Admassie, Fengling Zhang, A. G. Manoj, Mattias Svensson, Mats R. Andersson, and Olle Inganas, A polymer photodiode using vapour-phase polymerized PEDOT as an anode, Solar Energy Materials & Solar Cells,2006,90,133.
    [203]Yu-Mo Chien, Florent Lefevre, Ishiang Shih and Ricardo Izquierdo, A solution processed top emission OLED with transparent carbon nanotube electrodes, Nanotechnology,2010,21,134020.
    [204]Qingfeng Dong, Yinhua Zhou, Jianing Pei, Zhaoyang Liu, Yaowen Li, Shiyu Yao, Jibo Zhang, Wenjing Tian, All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer, Organic Electronics,2010,11,1327.
    [205]Felix Nickel, Andreas Puetz, Manuel Reinhard, Hung Do, Christian Kayser, Alexander Colsmann, Uli Lemmer, Cathodes comprising highly conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) for semi-transparent polymer solar cells, Organic Electronics,2010,11,535.
    [206]J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals,2002,126,311.
    [207]Youn Soo Kim, Seok Bin Oh, Jong Hyeok Park, Mi Suk Cho, and Youngkwan Lee, Highly conductive PEDOT/silicate hybrid anode for ITO-free polymer solar cells, Solar Energy Materials & Solar Cells,2010,94,47.
    [208]Steven K. Hau, Hin-Lap Yip, Jingyu Zou, Alex K. Y. Jen, Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes, Organic Electronics,2009,10,1401.
    [209]Leif A.A. Pettersson, Soumyadeb Ghosh, Olle Inganas, Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate), Organic Electronics,2002,3,143.
    [210]M. Girtan and M.Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer.fullerene bulk heterojunctions solar cells, Solar Energy Materials & Solar Cells,2010,94, 446.
    211] Carl Tengstedt, Anna Kanciurzewska, Michel P. de Jong, Slawomir Braun, William R. Salaneck, and Mats Fahlman, Ultraviolet light-ozone treatment of poly(3,4-ethylenedioxy-thiophene)-based materials resulting in increased work functions, Thin Solid Films,2006,515,2085.
    [212]Ouyang J, Xu Q, and Chu C, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004,45,8443.
    [212]Ouyang J, Xu Q, and Chu C, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004,45,8443.
    [213]Ralph H. Youn, Effects of geometrical disorder on hole transport in molecularly doped polymers, J. Chem. Phys.,1995,103,6749.
    [214]Ying Zheng, Sang-Hyun Eom, Neetu Chopra, Jaewon Lee, Franky So, and Jiangeng Xue, Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement, Appl. Phys. Lett.,2008,92,223301.
    [215]Richard A. Klenkler and Gu X, Charge transport across pressure-laminated thin films of molecularly doped polymers, Appl. Phys. Lett.,2006,88,102101
    [216]Yeon-Il Lee, Jun-Ho Youn, Mi-Sun Ryu, Jungho Kim, Hie-Tae Moon, Jin Jang, Highly efficient inverted poly(3-hexylthiophene):Methano fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3, Organic Electronics,2011,12,353.
    [217]Yeon-Il Lee, Jun-Ho Youn, Mi-Sun Ryu, Jungho Kim, Hie-Tae Moon, Jin Jang, Electrical properties of inverted poly(3-hexylthiophene):Methano fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3 layers, Solar Energy Materials & Solar Cells,2011,95,3276.
    [218]Jiarong Lian, Yawei Liu, Fangfang Niu, and Pengju Zeng, Improved electron injection of OLEDs with a thin PBD layer at Alq3/Cs2CO3 interface, Applied Surface Science,2011,257,4608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700