锑化物热光伏电池材料的MOCVD生长特性研究及其器件模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaxIn1-xAs1-ySby和InAs1-xSbx量子点的响应波长覆盖低温辐射体热光伏(TPV)电池的最佳波段。目前已报道的高性能的低温辐射体锑化物TPV电池大部分采用金属有机化学气相沉积(MOCVD)技术制备,但与传统半导体相比,锑化物的外延工艺水平较低,并且多元合金的材料参数难以确定,给建立完整的器件物理模型带来困难。针对这些问题,本论文研究了锑化物薄膜及量子点的MOCVD生长特性;另外对锑化物TPV电池进行模拟。研究内容如下:
     用低压MOCVD技术外延生长了InAs1-xSbx三元合金和GaxIn1-xAs1-ySby四元合金。研究了生长参量对外延层表面形貌、结晶质量、合金组分及电学特性的影响。选择合适的生长参数可获得表面光滑平整、晶体质量较高的外延层。
     在国内首次研究了低压MOCVD技术生长的自组装InAs1-xSbx量子点,研究了生长参数对量子点形状、尺寸、面密度和均匀性等形貌特征的影响。选择合适的生长参数可获得高密度有序排列的InAs1-xSbx量子点。
     首次通过模拟给出了影响GaxIn1-xAs1-ySby热光伏电池性能的完整的材料参数与组分、温度、掺杂浓度等的关系,建立了完整的材料和器件结构物理模型。
     首次系统地模拟了结构为P-GaSb窗口/P-GaxIn1-xAs1-ySby有源区/N-GaxIn1-xAs1-ySby有源区/N-GaSb衬底的TPV电池,分析了材料和器件结构参数对电池性能参数的影响,通过模拟得到优化的材料及器件结构。首次通过模拟分析了工作温度对GaxIn1-xAs1-ySbyTPV电池器件性能参数的影响,得到了性能参数的温度变化系数。
Recently, narrow band-gap thermphotovoltaic (TPV) cells applied for low-temperature (<1000℃) radiation conversion have received extensive attention because they have high stability and safety. Antimonide-based GaxIn1-xAs1-ySby quaternary alloys have a large range of band-gaps from 0.296 eV (4.2μm) to 0.726 eV (1.7μm) when lattice-matched to GaSb substrates, which covers the typical wavelength range of low-radiator temperature TPV cells. Quantum dots (QDs) applied in TPV cells can realize the intermediate band structures and the multiple carrier excitation process, and then improve the conversion efficiency significantly. InAs1-xSbx QDs have the responsive wavelength of 2-3μm, which also covers the typical wavelength range of low-radiator temperature TPV cells. Most of the recently reported antimonide-based TPV cells are fabricated by metalorganic chemical vapor deposition (MOCVD) technique. However, compared with the traditional matured semiconductors, the epitaxial growth quality of the antimonides is relatively poor. Moreover, it is difficult to establish the complete physical model for the GaxIn1-xAs1-ySby TPV cell since the material parameters of the quaternary alloys are difficult to be obtained. It is stringent to build the theoretical foundation in order to carry out practical research.
     Aiming at the above-mentioned problems, our work has been focused on studying the properties of antimonide semiconductor epilayers and InAs1-xSbx QDs grown by low pressure metalorganic chemical vapor deposition (LP-MOCVD) technigue and simulating the GaxIn1-xAs1-ySby TPV cell structures.
     Ternary InAs1-xSbx and quaternary GaxIn1-xAs1-ySby alloys were grown by LP-MOCVD. The properties and growth characteristics of epitaxial layers were investigated. Growth temperature is a key growth parameter because it influences greatly the surface morphology, the crystalline quality and the alloy compositions of the epitaxial layers. The low growth temperature leads to the accumulation of Sb on the surface because of the strong metallic and low volatile character of antimony atoms. High growth temperature leads to the high density surface defects with tetrahedral and strip pyramids in epitaxial layers, and the profiles of the pyramids are (111) crystal plane with the lowest surface energy and elongate to the [110] direction. The surfactant characters of Sb and the (2×4) surface reconstruction may account 吉林大学博士学位论文for forming the pyramids. Vapor III/V ratio is also an important growth parameter. The excess group III metals and Sb appear on the surface as a separate phase for the high and low III/V ratios, respectively. The optimized growth temperature range is 480-500℃and theⅢ/Ⅴratio range is 0.85~1 for InAs1-xSbx ternary alloys. The optimized growth temperature is 520℃and the III/V ratio range is 0.8-1 for GaxIn1-xAs1-ySby quaternary alloys. High quality InAs1-xSbx and GaxIn1-xAs1-ySby epitaxial layers have been achieved. The InAs1-xSbx epitaxial layer with the highest Sb composition of 0.215 was achieved by choosing the growth temperature of 480℃and III/V ratio of 0.9. Unintentionally GaSb-rich and InAs-rich GaxIn1-xAs1-ySby shows the p-type and n-type electric conduction, respectively. The lowest hole concentration is 5.91×1015cm-3 and the highest hole mobility is 415cm2/V.s for GaSb-rich GaxIn1-xAs1-ySby, which is comparable with the results reported in the literatures.
     Self-assembled InAs1-xSbx QDs have been grown, and the effects of the growth parameters on the surface morphologies such as the shape, size, density and uniformity of the QDs were investigated in detail. The ultra low and high growth temperature both lead to big volume and low density, which were relevant to the surfactant character of Sb and the high mobility of In adatoms, respectively. The optimum growth temperature range is 460~470℃for high density and ordered array QDs. The growth time is also a key growth parameter. It shows that the forming of local nonequilibrium process by importing precursors alternately to separate group III and V species can reduce the mobility of In adatoms on growth surface and improve the density of QDs. The high density and ordered array QDs were obtained by controlling the growth time and periods of the valve on and off sequences of TMIn and AsH3. The experimental results show that the uniformity InAs1-xSbx nanotubes were formed without on and off sequences of precursors. The interruption time has some effect on the QDs but not so strong. Even the interruption time was zero the process still provided interruption time as the temperature did not decrease fast enough. The "antimonidation" process was introduced, e.g. the TMSb was imported before the growth, and Sb adatoms pre-adsorbed on the epitaxial layer can reduce the mobility of In adatoms. But the "antimonidation" has not improved the density significantly. Since the TMSb was imported in the growth process, and the surfactant effects of Sb adatoms also shown in growth process. The growth pressure also influences the morphology characters, so the experimental results demonstrate that the high density QDs were obtained at the low growth pressure of 2000Pa. The high density of 5×1010cm-2 and ordered array of InAs1-xSbx QDs were achieved with the optimized growth parameters, which can be applied for low-temperature radiator TPV cells.
     The complete GaxIn1-xAs1-ySby material parameters related to the performances of TPV cells were simulated, and the material and the device structure physical model were established. The maximum output power density (Pmax) and the energy conversion efficiency (ηcel) are the figures of merit of TPV cells, which depends on the photovoltaic device-related properties (e.g.short-circuit current density (Jsc), open-circuit voltage (Voc) and fill factor (FF)). These properties are primarily determined by the material parameters and the device structures. The basic material parameters of GaxIn1-xAs1-ySby are calculated by interpolating the related binary and ternary alloy data. The intrinsic carrier concentration is calculated using a semi-empirical formula. The minority carrier mobility is calculated using an extended Caughey-Thomas model, which accounts for both temperature and carrier concentration. The recombination rates of the main minority carrier recombination mechanisms are calculated by semi-empirical formulas. The absorption coefficients are calculated using Adachi's model, and modified to include temperature effects.
     The P-GaSb window/P-GaxIn1-xAs1-ySby active region/N-GaxIn1-xAs1-ySby active region/N-GaSb structure TPV cells have been simulated systematically, and the effects of the material and device structure parameters on device performances were analyzed. The simulations are carried out for a TPV system with a fixed spectral control filter at a radiator temperature of 950℃and cell temperature of 27℃.
     It shows that adopting the thick P-GaxIn1-xAs1-ySby active region with longer minority carrier diffusion length as the main optical absorption region can improve the carrier collection efficiency, and the thin N-GaxIn1-xAs1-ySby active region contributes little to the Jsc. But N-region parameters still influence Voc through the recombination current density (Jo). Decreasing N-region thickness can suppress the effects of the bulk recombination mechanisms on Voc, but increase the effect of the back surface recombination (SNh) which needs to be suppressed for improving Voc.The carrier concentration and minority carrier recombination mechanisms of P-GaxIn1-xAs1-ySby active region have the strong effects on device performance. The recombination mechanisms of P-region have the different effects on Voc for different injection levels. The Pmax andηcel are limited by the different recombination mechanisms for the different carrier concentration ranges, and it shows that the recombination rate needs to be suppressed to improve the device performances. The SRH and surface recombination can be suppressed by improving the material growth and the surface passivation process, respectively. The Auger and radiative recombination can be suppressed by reducing the carrier concentration. In addition, the P-region thickness also has an important effect on device performances, and the optimum thickness is achieved for the maximal Pmax andηcel.
     Adopting the P-GaSb window as the passivation layer for the P-GaxIn1-xAs1-ySby active region can suppress the front surface recombination and improve device performances. Increasing P-GaSb window carrier concentration leads to the upwards energy-band bending and the minority carrier recombination rate decreasing, for the front interface of the P-GaxIn1-xAs1-ySby active region, resulting in increase in device performances. However, the heavily doping leads to decrease minority carrier diffusion length, and the front surface of the window layer has the high surface recombination velocity, therefore, it is appropriate to reduce the window thickness to increase the device performances.
     The cell temperature has the strong effect on the cell properties. The cut-off wavelength of the internal quantum efficiency increases with temperature, leading to increase in Jsc. However, both Voc and FF decrease with temperature, which leads to the decrease in Pout andηcell.The device performances variations with temperature are linear, and the calculated temperature coefficient of Jsc, Voc, FF, Pout andηcell for Gao.84In0.16As0.14Sb0.86 TPV cells are 1.8mA cm-2.℃-1,-1.03mV.℃-1,-0.0011℃-1,-3.38mW.cm-2.℃-1 and-0.155℃-1, respectively.
     The optimized material and device structures have been achieved for Ga0.8In0.2As0.18Sb0.82 TPV cells. For the optimized cells operated in a TPV system with the fixed spectral control filter and the radiator temperature of 950℃, the Pmax andηcel at 30℃are 0.76W/cm2 and 31%, respectively. The back surface reflector (BSR) can increase the back surface reflectance, and therefore increase the photon absorption. Increasing the photon absorption by BSR can also increase the photo recycling factor ((?)), resulting in decrease in radiative recombination rate. For the back surface reflectance of 100%, the Pmax andηcel are 0.82W/cm2 and 33%, respectively. The actual optical path is increased by BSR, resulting in the optimum P-region thickness decrease from 4-5μm to 2.5-3μm, which can reduce the cost of the TPV cells.
引文
[1]YEN M Y, LEVINE B F, BETHEA C G, et al. Molecular beam epitaxial growth and optical properties of InAs1-xSbx in 8-12 μm wavelength range[J]. Appl. Phys. Lett.1987. 50(14):927-929.
    [2]高新江.MBE生长长波InAsSb应变层超晶格材料研究[J].红外与激光技术,1994,5: 9-13.
    [3]WANG C A. Progress and continuing challenges in GaSb-based Ⅲ--Ⅴ alloys and heterostructures grown by organometallic vapor-phase epitaxy [J]. J. Cryst. Growth., 2004,272:664-681.
    [4]BENNETT B R, MAGNO R, BOOS J B, et al. Antimonide-based compound semiconductors for electronic devices:A review [J]. Solid-State Electronics,2005,49: 1875-1895.
    [5]BIEFELD R M.. The metal-organic chemical vapor deposition and properties of Ⅲ-Ⅴ antimony based semiconductor materials [J]. Materials Science and Engin:R,2002,36(4): 1052142.
    [6]WANG C A. Antimonide-based Ⅲ-Ⅴ thermophotovoltaic devices. Thermophotovoltaic Generation of Electricity:6th International Conference on Thermophotovoltaic Generation of Electricity:Freiburg, June,2004[C]. AIP Conf. Proc.738 (2004) 255-266.
    [7]MAUK M G, ANDREEV V M, GaSb-related materials for TPV cells [J]. Semicond. Sci.Technol.,2003,18:S191-S201.
    [8]DASHIELL M W, BEAUSANG J F, EHSANI H, et al. Quaternary InGaAsSb Thermophotovoltaic Diodes [J]. IEEE Trans. Electron. Dev.,2006,53:2879-2891.
    [9]TEOFILO V L, CHOONG P, CHANG J, et al. Thermophotovoltaic Energy Conversion for Space [J]. J. Phys. Chem. C,2008,112:7841-7845.
    [10]COUTTS T J.. A review of progress in thermophotovoltaic generation of electricity [J]. Renew. Sust. Energ. Rev.,1999,3:77-184.
    [11]COUTTS T J.. An overview of thermophotovoltaic generation of electricity [J]. Sol. Energy Mater. Sol. Cells.,2001,66:443-452.
    [12]BITNAR B, DURISCH W, MAYOR J C, et al. Characterisation of rare earth selective emitters for thermophotovoltaic applications [J]. Sol. Energy Mater. Sol. Cells.,2002,73: 221-234.
    [13]BITNAR B, DURISCH W, PALFINGER G, et al. Practical thermophotovoltaic generators [J]. Semiconductors,2004,38:941-945.
    [14]HEINZEL A, BOERNER V, GOMBERT A, et al. Microstructured tungsten surfaces as selective emitters. Thermophotovoltaic Generation of Electricity:4th NREL Conference: Denver, October,1998 [C]. AIP Conf. Proc.,1999,460:191-196.
    [15]HORNE W E, MORGAN M D, SUNDARAM V S,500 Watt Diesel Fueled TPV Portable Power Supply. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity:Rome, September 2002 [C]. AIP Conf. Proc.,2003,653:91-100.
    [16]FLEMING J G, LIN S Y, KADY I E, et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap[J]. Nature,2002,417:52-55.
    [17]HORNE W E, MORGAN M D, HORNE W Paul, et al. Frequency Selective Surface Bandpass Filters Applied To Thermophotovoltaic Generators. Thermophotovoltaic Generation of Electricity:6th International Conference on Thermophotovoltaic Generation of Electricity:Freiburg, June,2004[C]. AIP Conf. Proc.,2004,738:189-197.
    [18]FRAAS L M, AVERY J E, DANIELS W E, et al. TPV Tube Generators for Apartment Building and Industrial Furnace Applications. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity:Rome, September 2002[C]. AIP Conf. Proc.,2003,653:38-48.
    [19]BITNAR B, MAYOR J C, DURISCH W, et al. Record Electricity-to-Gas Power Efficiency of a Silicon Solar Cell Based TPV System. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity:Rome, September 2002[C]. AIP Conf. Proc.,2003,653:18-28.
    [20]HORNE W E, MORGAN M D, SUNDARAM V S, et al.500 Watt Diesel Fueled TPV Portable Power Supply. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity:Rome, September 2002 [C]. AIP Conf. Proc.,2003,653:91-100.
    [21]WERNSMANA B, BIRD T, SHELDONB M, et al. Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant [J]. J. Vac Sci. Technol. B,2006,24:1626-1629.
    [22]SU N, FAY P, SINHAROY S, et al. Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities [J]. J. Appl. Phys., 2007,101:064511.
    [23]WERNSMAN B, SIERGIEJ R R, LINK S D, et al. Greater Than 20% Radiant Heat Conversion Efficiency of a Thermophotovoltaic Radiator/Module System Using Reflective Spectral Control [J]. IEEE Trans. Electron. Dev.,2004,51:512-515.
    [24]ROHR C, ABBOTT P, BALLARD I, et al. InP-based lattice-matched InGaAsP and strain-compensated InGaAs/InGaAs quantum well cells for thermophotovoltaic applications [J]. J. Appl. Phys.,2006,100:114510.
    [25]CONNOLLY J P, ROHR C. Quantum well cells for thermophotovoltaics [J]. Semicond. Sci. Technol.,2003,18:S216-S220.
    [26]SINHAROY S, YEIZER V G, WAKCHAURE Y, et al. Development of a very high efficiency, dot-junction, InGaAs thermophotovoltaic (TPV) converter for deep space missions.31th IEEE Photovoltaic Specialist Conference and Exhibition, Orlando, January 3-7,2005 [C]. Conference record of the thirty-first IEEE.
    [27]FRASS LEWIS, BALLANTYNE RUSS, HUI SHE, et al. Commercial GaSb cell and circuit development for the Midnight Sun(?) TPV stove. Thermophotovoltaic Generation of Electricity:4th NREL Conference:Denver, October,1998[C]. AIP Conf. Proc.,1999, 460:480-487.
    [28]MAUK M G.. Survey of Thermophotovoltaic (TPV) Devices [M]//A Krier. Springer, Germany:Mid-infrared Semiconductor Optoelectronics,2005:689-731.
    [29]ANDREEV V M, KHVOSTIKOV V P, KHVOSTIKOVA O A, et al. Solar thermophotovoltaic system with high temperature tungsten emitter.31th IEEE Photovoltaic Specialist Conference and Exhibition, Orlando, January 3-7,2005[C]. Conference record of the thirty-first IEEE.
    [30]ANDREEV V M, KHVOSTIKOV V P, KHVOSTIKOVA O A, et al. Solar Thermophotovoltaic Converters:Efficiency Potentialities. Thermophotovoltaic Generation of Electricity:6th NREL Conference:Freiburg, June,2004[C]. AIP Conf. Proc.,2004,738:96-104.
    [31]ANDREEV V M, GRILIKHES V A, KHVOSTIKOV V P, et al. Concentrator PV modules and solar cells for TPV systems[J]. Sol. Energy Mater. Sol. Cells.,2004,84: 3-17.
    [32]KHVOSTIKOV V P, KHVOSTIKOVA O A, GAZARYAN P Y, et al. Photovoltaic Cells Based on GaSb and Ge for Solar and Thermophotovoltaic Applications[J]. J. Sol. Energ., 2007,129:291-297.
    [33]ANDREEV V M, VLASOV A S, KHVOSTIKOV V P, et al. Solar Thermophotovoltaic Converters Based on Tungsten Emitters[J]. J. Sol. Energ.,2007,129:298-303.
    [34]STONE KENNETH W, CHUBB DONALD L, WILT DAVID M, et al. Testing and modeling of a solar thermophotovoltaic power system. Thermophotovoltaic Generation of Electricity:2nd NREL Conference:Colorado Springs, July 24-27,1994[C]. AIP Conf. Proc.,1994,358:199-209.
    [35]SHOCK A, OR C, KUMAR V, et al. Small radioisotope thermophotovoltaic (RTPV) generators. Thermophotovoltaic Generation of Electricity:2nd NREL Conference: Colorado Springs, July,1995[C]. AIP Conf. Proc.,1994,358:81-97.
    [36]YUGAMI HIROO, SASA HIROMI, YAMAGUCHI MASAFUMI. Thermophotovoltaic systems for civilian and industrial applications in Japan[J]. Semicond. Sci.Technol,2003, 18:S239-S246
    [37]FaberMaunsell Ltd. Micro and mini CHP markets, assessment and development plan-EU SAVE report[R]. Technical report, European Comission, Directorate-General Energy and Transport, April 2002.
    [38]FRASS L M, AVERY J E, HUANG H X. Thermophotovoltaic furnace generature for the home using low bandgap GaSb cells[J]. Semicond. Sci.Technol,2003,18:247-253
    [39]FRASS L M, MINKIN LEONID. TPV History from 1990 to Present & Future Trends. Thermophotovoltaic Generation of Electricity:7th NREL Conference:Madrid, September 25-27,2006[C]. AIP Conf. Proc.,2007,890:17-23.
    [40]MORRISON ORION, SEAL MICHAEL, WEST EDWARD, CONNELLY WILLIAM, et al. Use of a thermophotovoltaic generator in a hybrid electric vehicle. Thermophotovoltaic Generation of Electricity:4th NREL Conference:Denver, October, 1998[C]. AIP Conf. Proc.,1999,460:488-496
    [41]JX Crystals, Inc. Glass project fact sheet:Thermophotovoltaic Electric Power Generation Using Exhaust Heat, September 2001 [R]. Office of Industrial Technologies Energy Efficiency and Renewable Energy-U.S. Department of Energy, Washington, DC.
    [42]刘超,增一平.锑化物半导体材料与器件应用研究进展[J].半导体技术,2009,34:525-530.
    [43]LEVINSHTEIN M, RUMYANTSEV S, SHUR M. Handbook Series on Semiconductor Parameters I [M]. Singapore:Word Scientific Publishing Co. Pte. Ltd,1999.
    [44]MADELUNG OTFRIED. Semiconductors:Data Handbook[M].3rd ed. Springer,2004.
    [45]VURGAFTMANA I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. Appl. Phys.,2001,89:5815.
    [46]RAZEGHI M.Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices [J]. The European J. Appl. Phy.,2003, 23(3):1492205.
    [47]KROEMERA H. The 6.1A family (InAs, GaSb, AlSb) and its heterostructures:a selective review[J]. Physica:E,2004,20(324):1962203.
    [48]ROGALSHI A. Material considerations for third generation infrared photon detectors [J]. Infrared Physics & Technology,2007,50(223):2402252.
    [49]MICKLETHWAITE W F M, JOHNSON A J. InSb:Materials and Devices[M]//P. Capper, C.T. Elliott. Infrared Detectors and Emitters:Materials and Devices, Boston, Kluwer Academic Publishers,2000:177-204.
    [50]WIMMERS J T, SMITH D S. Characteristics of InSb photovoltaic detectors at 77K and below[C]. Proceedings of SPIE,1983,364:123-131
    [51]WIMMERS J T, DAVIS R M, NIBLACK C A, et al. Indium antimonide detector technology at Cincinnati Electronics Corporation[C]. Proceedings of SPIE,1988,930: 125-138.
    [52]ROGALSKI A. InAs1-xSbx infrared detectors[J]. Progress in Quantum Electronics,1989, 13:191-231
    [53]ROGALSKI A. New Ternary Alloy Systems for Infrared Detectors[M]. Bellingham: SPIE Optical Engineering Press,1994.
    [54]BUBULAC L O, ANDREWS A M, GERTNER E R, et al. Backside-illuminated InAsSb/GaSb broadband detectors[J]. Appl. Phys. Lett.,1980,36:734-736.
    [55]OSBOURN G C, InAsSb strained-layer superlattice for long wavelength detector applications[J]. J. Vac. Sci. Technol. B.,1984,2:176-178.
    [56]MICHEL E, RAZEGHI M. Recent advances in Sb-based materials for uncooled infrared photodetectors[J]. Opto-Electronics Review,1998,6:11-23.
    [57]ASHLEY T, DEAN A B, ELLIOTT C T, et al. A heterojunction minority carrier barrier for InSb devices[J], Semicond. Sci.Technol.,1993,8:S386-S389.
    [58]STOYANOV N D, MIKHAILOVA M P, ANDREICHUK O V, et al. Photodiodes for a 1.5-4.8 μm Spectral Range Based on Type-II GaSb/InGaAsSb Heterostructures[J]. Semiconductors,2001,35:453-458.
    [59]ANDREEV I A, IL'INSKAYA N D, KUNITSYNA E V, et al. High-Efficiency GaInAsSb/GaAlAsSb Photodiodes for 0.9-to 2.55-μm Spectral Range with a Large-Diameter Active Area[J]. Semiconductors,2003,37:949-954.
    [60]ANDREEV I A, KUNITSYNA E V, MIKHALOVA M P, et al. Long-wavelength photodiodes based on Ga1-xInxAsySb1-y with composition near the miscibility boundary[J]. Semiconductors,1999,33:216-220.
    [61]HILL C J, YANG R Q. MBE growth optimization of Sb-based interband cascade lasers[J]. J. Cryst. Growth,2005,278(124):1672172.
    [62]YAMAMOTO N. Next-generation optical communications through nanotechnology[J]. NICT News,2005,353:324.
    [63]H'RKONEN A, GUINA M, OKHOTNIKOV O, et al.12W antimonide-based vertical external cavity surface emitting laser operating at 22μm[J]. Optics Express,2006,14(14): 647926484.
    [64]DUCANCHEZ A, CERUTTI L, GRECH P, et al. Room temperature continuous wave operation of electrically-injected Sb-based RC-LED emitting near 213μm[J]. Superlattices and Microstructures,2008,44(1):62269.
    [65]KURTZ S R, BIEFELD R M, ALLERMAN A A, Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 μm[J]. Appl. Phys. Lett.1996,68:1332.
    [66]AARDVARK A, MASON N J, WALKER P J. The growth of antimonides by MOVPE[J]. Prog. Crystal Growth Character. Mater.,1997,35:207-241.
    [67]WATKINS S P, PITTS O J, DALE C, et al. Heavily carbon-doped GaAsSb grown on InP for HBT applications[J]. J. Cryst. Growth.,2000,221:59-65.
    [68]MCDERMOTT B T, GARTNER E R, PITTMAN S, et al. Growth and doping of GaAsSb via metalorganic chemical vapor deposition for InP heterojunction bipolar transistors[J]. Appl. Phys. Lett.1996,68:1386.
    [69]SU, JUANG Y K, WU F S, et al. Influence of growth temperature upon the In solid composition in InxGa1-xSb epilayers grown by metalorganic chemical vapor deposition[J]. J. Appl. Phys.,1991,70:1421.
    [70]HALL J T, MORIWAKI M M, BIEFELD R M, et al. Long-storage-time MIS capacitors formed on InSb films grown by MOCVD[J]. J. Electron. Mater.,1990,19:815-820
    [71]TAIRA K, FUNATO K, NAKAMURA F, et al. InAs quantum-well-base InAs/GaSb hot-electron transistors [J]. J. Appl. Phys.,1991,69:4454.
    [72]KHAN-CHEEMA U M, MASON N J, WALKER P J, et al. High pressure studies of negative differential resistance in InAs/GaSb resonant conduction heterostructures[J]. J. Phys. Chem. Solids.,1995,56:463-467.
    [73]张宝林.Ⅲ-Ⅴ族锑化物的金属有机化学气相沉积及性质研究[D].长春:中国科学院长春物理研究所,1999.
    [74]CHERNG M J, JEN H R, LARSEN C A, et al. MOVPE growth of GaInAsSb[J]. J. Cryst. Growth.,1986,77:408-417.
    [75]STRINGFELLOW G B, Miscibility gaps in quaternary Ⅲ/Ⅴ alloys[J]. J. Cryst. Growth., 1982,58:194-202.
    [76]KUAN T S, KUECH T F, WANG W I, et al. Long-range order in AlxGa1-xAs[J]. Phys. Rev. Lett.,1985,54:201-204.
    [77]STRINGFELLOW G B. and CHEN G S., Atomic ordering in Ⅲ/Ⅴ semiconductor alloys[J]. J. Vac. Sci. Technol. B,1991,9:2182-2188.
    [78]WEI S H and ZUNGER A, Band gaps and spin-orbit splitting of ordered and disordered aluminum gallium arsenide and gallium arsenide antimonide alloys[J]. Phys. Rev. B, 1989,39:3279-3304.
    [79]CHERNG M J, JEN H R, Larsen C A, et al. MOVPE growth of GaInAsSb[J]. J. Cryst. Growth.,1986,77:408-417.
    [80]CHENG M J, STRINGFELLOW G B, KISKER D W, et al. GaInAsSb metastable alloys grown by organometallic vapor phase epitaxy[J]. Appl. Phys. Lett.1986,48:419.
    [81]LI S W, JIN Y X, ZHANG B L, et al. Study of GaInAsSb epilayer by scanning electron acoustic microscopy [J]. Solid State Commun.1996,97:975-977。
    [82]LUQUE A, HEGEDUS S. Handbook of Photovoltaic Science and Engineering [M]. Chichester:John Wiley & Sons Ltd.,2003.
    [83]SHOCKLEY M, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys.1961,32:510-519.
    [84]FOURSPRING P M, DEPOY D M, BEAUSANG J F, et al. Thermophotovoltaic spectral control. AIP Conf. Proc.738 (2004) 171-179.
    [85]BITNAR B, Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications, Semicond. Sci. Technol.,2003,18:S221-S227.
    [86]SULIMA O V, BETT A W, MAUK M G, et al. Diffusion of Zn in TPV materials:GaSb, InGaSb, InGaAsSb and InAsSbP. Thermophotovoltaic Generation of Electricity, Fifth Conference:Rome, September,2002[C]. AIP Conf. Proc.,2003,653:402-413.
    [87]CHARACHE G W, EGLEY J L, DANIELSON L R, et al. Current Status of Low-Temperature Radiator Thermophotovoltaic Devices.25th IEEE Photovoltaic Specialist Conference, Washington, D.C., May 13-17,1996[C]. Conference record of the twenty-fifth IEEE,1996.
    [88]P.S. Dutta, J.M. Borrego, H. Ehsani, et al. GaSb and GaInSb thermophotovoltaic cells using diffused junction technology in bulk substrates. Thermophotovoltaic Generation of Electricity,5th Conference:Rome, September,2002[C], AIP Conf. Proc.,2003,653: 392-401.
    [89]ANDREEV V, KHVOSTIKOV V, KHVOSTIKOVA O, et al. Low-Bandgap PV and Thermophotovoltaic Cell. Proc.3rd World Conf. on Photovoltaic Solar Energy:Osaka, May 11-18,2003[C]. Anchorage:IEEE,2004,1:15-18.
    [90]M.G. Mauk, O.V. Sulima, J.A. Cox, et al. Low-bandgap (0.3 to 0.5 eV) InAsSbP thermophotovoltaics. Proc.3rd World Conf. on Photovoltaic Solar Energy:Osaka, May 11-18,2003[C]. Anchorage:IEEE,2004,1:224-227.
    [91]GEVORKYAN V A, AROUTIOUNIAN V M, GAMBARYAN K M, et al. Liquid-phase electro-epitaxial growth of low-bandgap p-InAsPSb/n-InAs and p-InAsP/n-InAs diodes heterostructures for thermo-photovoltaic application[J].Thin-Solid Films,2004,415-452: 124-127.
    [92]FRAAS L M, GIRARD G R, AVERY J E, et al. GaSb booster cells for over 30% efficient solar-cell stacks[J]. J. Appl. Phys.,1989,66(8):386623870.
    [93]ANDREEV V M, KHVOSTIKOV V P, RUMYANTSEV V D, et al. Single-junction GaSb and tandem GaSb/InGaAsSb and AlGaAsSb/GaSb thermophotovoltaic cells.28th IEEE Photovoltaic Specialist Conference, Anchorage, September 15-22,2000[C]. Conference record of the twenty-eighth IEEE,2000.
    [94]RUIZ C M, VIGIL O, ALGORA C, et al. Transparent conducting oxides as antireflection coatings for GaSb TPV Cells. Thermophotovoltaic Generation of Electricity:6th NREL Conference:Freiburg, January,2004[C]. AIP Conf. Proc.,2004,738:221-229.
    [95]YUGAMIH, KOBAYASHIK, SAI H. A broadband antireflection for GaSb by means of subwavelength grating (SWG) structures. Thermophotovoltaic Generation of Electricity, 5th Conference:Rome, September,2002[C]. AIP Conf. Proc.,2003,653:482-486.
    [96]STOLLWERCK G, SULIMA O V, BETT A W, et al. Characterization and simulation of GaSb device-related properties[J]. IEEE Trans. Electron. Dev.,2000,47:448-447.
    [97]MARTIN D, ALGORA C. Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modeling[J]. Semicond. Sci.Technol.,2004,19:1040-1052.
    [98]BETT A W, SULIMA O V. GaSb photovoltaic cells for applications in TPVgenerators[J]. Semicond. Sci.Technol.,2003,18:S184-S190.
    [99]AICHER T, KASTNER P, GOPINATH A, et al. Development of a Novel TPV Power Generator. Thermophotovoltaic Generation of Electricity:6th NREL Conference: Freiburg, January,2004[C]. AIP Conf. Proc.,2004,738:71-78.
    [100]FRAAS L M, AVERY J E, DANIELS W E, et al. TPV Tube Generators for Apartment Building and Industrial Furnace Applications. Thermophotovoltaic Generation of Electricity:5th NREL Conference:Rome, September,2002[C]. AIP Conf. Proc.,2003,653:38-48.
    [101]FRAAS L, AVERY J, MALFA E, et al. Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners. Thermophotovoltaic Generation of Electricity:5th NREL Conference:Rome, September,2002[C]. AIP Conf. Proc.,2003,653:61-70.
    [102]QIU K, HAYDEN A C S. Electric Power Generation Using Low Bandgap TPV Cells in a Gas-fired Heating Furnace. Thermophotovoltaic Generation of Electricity:5th NREL Conference:Rome, September,2002[C]. Melville:AIP Conf. Proc.,2003,653:49-58.
    [103]HUANG R K, RAM R J, MANFRA M J, et al. Heterojunction thermophotovoltaic devices with high voltage factor[J]. J. Appl. Phys.,2007,101:046102.
    [104]HITCHCOCK C, GUTMANN R, BORREGO J, et al., GaInSb and GaInAsSb thermophotovoltaic device fabrication and characterization. Thermophotovoltaic Generation of Electricity:3rd International Conference on Thermophotovoltaic Generation of Electricity:Colorado, May,1997[C]. Woodbury:AIP Conf. Proc.1997, 401:89-103.
    [105]CHOI H K, WANG C A, TURNER G W, et al. High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window[J]. Appl.Phys.Lett.1997,71: 3758-3760.
    [106]WANG C A, CHOI H K, OAKLEY D C, et al. Extending the cutoff wavelength of lattice-matched GaInAsSb/GaSb thermophotovoltaic devices. Thermophotovoltaic Generation of Electricity:4th NREL Conference:Denver, October,1998[C]. Woodbury: AIP Conf. Proc.,1999,460:256-265.
    [107]KHALFIN V B, GARBUZOV D Z, LEE H, et al. Interfacial recombination in In(A1)GaAsSb/GaSb thermophotovoltaic cells. Thermophotovoltaic Generation of Electricity:4th NREL Conference:Denver, October,1998[C]. AIP Conf. Proc., Woodbury:1999,460:247-277.
    [108]HITCHCOCK C W, GUTMANN R J, EHSANI H, et al. Ternary and quaternary antimonide devices for thermophotovoltaic applications [J]. J. Cryst. Growth.,1998,195: 363-372.
    [109]SHELLENBARGER Z A, TAYLOR G C, SMELTZER R K, et al. High performance InGaAsSb TPV cells via multiwafer OMVPE growth. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity:Rome, September 2002[C]. Melville:AIP Conf. Proc.,2003,653:314-23.
    [110]HITCHCOCK C, GUTMANN R, BORREGO J, et al. GaInSb and GaInAsSb thermophotovoltaic fabrication and characterization Thermophotovoltaic Generation of Electricity. Thermophotovoltaic Generation of Electricity:3rd International Conference on Thermophotovoltaic Generation of Electricity:Colorado, May,1997[C]. Woodbury: AIP Conf. Proc.1997,401:89-103.
    [111]SHELLENBARGER Z A, MAUK M G, DI N L, et al. Recent progress in InGaAsSb/GaSb TPV devices.25th IEEE Photovoltaic Specialist Conference, Washington, D.C., May 13-17,1996[C]. NewYork:IEEE,1996. p81-84.
    [112]BOUGNOT G, DELANNOY F, FOUCARAN A, et al. Growth of GaInAsSb alloys by MOCVD and characterization of GaInAsSb/GaSb p-n photodiodes[J]. J. Electrochem. Soc.1988,135:1783-1788.
    [113]CHARACHE G W, EGLEY J J, DANIELSON L R, et al. Current status of low-temperature radiator thermophotovoltaic devices.25th IEEE Photovoltaic Specialist Conference, Washington, D.C., May 13-17,1996[C]. NewYork:IEEE,1996. p137-140.
    [114]SOUTH J T, SHELLENBARGER Z A, MAUK M G, et al.1997 AlxGa1-xSb window layers for InGaAsSb/GaSb thermophotovoltaic cells. Thermophotovoltaic Generation of Electricity:3rd International Conference on Thermophotovoltaic Generation of Electricity:Colorado, May,1997 [C]. Woodbury:AIP Conf. Proc.1997, 401:545-553.
    [115]SHELLENBARGER Z A, MAUK M G, COX J A, et al. Improvements in GaSb-based thermophotovoltaic cells. Thermophotovoltaic Generation of Electricity,3rd Conference:Springs, May 18-21,1997[C]. Woodbury:AIP Conf. Proc.,1997,401: 117-128.
    [116]SULIMA O V, BECKERT R, BETT A W, et al. InGaAsSb photovoltaic cells with enhanced open-circuit voltage. Proc.3rd World Conf. on Photovoltaic Solar Energy: Osaka, May 11-18,2003[C]. Anchorage:IEEE,2004,1:199-204.
    [117]MANASEVIT H M. Single-crystal GaAs on insulating substrates[J]. Appl. Phys. Lett.,1968,12:156-159.
    [118]SCOTT T R, KING G, WILSON J M. UK Patent,778,383.8[P].1954.
    [119]MIEDERTER W, ZIEGLER G, DOTZER R. German Patent, 1,176,102[P].1962.
    [120]SEKI Y, TANNO K, LIDA K, et al. Properties of epitaxial GaAs layers from a Tiethylgallium and Arsine system[J]. J. Electrochem. Soc.,1975,122:1108-1112.
    [121]陆大成,段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009.
    [122]彭新村.中红外InAsSb材料的MOCVD生长特性研究[D].长春:吉林大学电子科学与工程学院,2007.
    [123]SHAW D W. Kinetic aspects in the vapor phase epitaxy of Ⅲ-Ⅴ compounds [J]. J. Cryst. Growth.,1975,31:130-141.
    [124]REEP R H, GHANDHI S K. Deposition GaAs epitaxy layer by organometallic CVD[J]. J. Electrochem. Soc.,1983,131:675-684.
    [125]LI S H, LARSEN C A, STRINGFELLOW G B, et al. Decomposition studies of triisopropylantimony and triallylantimony[J]. J. Electron. Mater,1991,20:457-463
    [126]LARSEN C A, JR R W G, STRINGFELLOW G B. Decomposition mechanisms of trivinylantimony and reactions with trimethylgallium[J]. Chem. Mater,1991,3:96-100.
    [127]BU Y, LIN M C, BERRY A D, et al. Low pressure chemical vapor deposition of InSb using neopentylstibine and trimethylindium[J]. J. Vac. Sci. Technol. A,1991,13: 230-236.
    [128]HENDERSHOT D G, PAZIK J C, BERRY A D. Synthesis, characterization, and chemical vapor deposition properties of primary and secondary neopentylstibine. New antimony precursors for MOCVD[J]. Chem. Mater.,1992,4:833-837.
    [129]HILL C W, TAO M, GEDRIDGE R W, et al. Pyrolysis of diisopropylantimony hydride:A new precursor for organometallic vapor phase epitaxy [J]. J. Electron. Mater, 1994,23:447-451.
    [130]CAO D S, CHEN C H, HILL C W, et al. Decomposition studies of tertiarybutyldimethylantimony[J]. J. Electron. Mater,1992,21:583-588.
    [131]SHIN J, HSU Y, HSU T C, et al. InSb, GaSb, and GaInSb grown using trisdimethylaminoantimony[J]. J. Electron. Mater,1995,24:1563-1569.
    [132]SHIN J, A. VERMA A, STRINGFELLOW G B, et al. Trisdimethylaminoantimony: a new Sb source for low temperature epitaxial growth of InSb[J]. J. Cryst. Growth.,1994, 143:15-21.
    [133]GRAHAM R M, JONES A C, MASON N J. Improved materials for MOVPE growth of GaSb and InSb[J]. Semicond. Sci.Technol.,1993,8:1797-1802.
    [134]CHEN C H, HUANG K T, DROBECK D L, et al. Tertiarybutyldimethylantimony for InSb growth[J]. J. Cryst. Growth.,1992,124:142-149.
    [135]BUGLASS J G, MCLEAN T D, PARKER D G. A Controllable Etchant for Fabrication of GaSb Devices[J]. J. Electrochem. Soc.,1986,133:2565-2567.
    [136]ROBERTS J S, MASON N J, ROBINSON M. Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs[J]. J. Cryst. Growth.,1984,68:422-430.
    [137]CLARK I O, FRIPP A L, JESSER W A. MOCVD manifold switching effects on growth and characterization[J]. J. Cryst. Growth.,1991,109:246-251
    [138]YANG C C, CHI G C, HUANG C K, et al. The improvement of GaN epitaxial layer quality by the design of reactor chamber spacing[J]. J. Cryst. Growth.,1999,200:32-38.
    [139]LEVINSHTEIN M, RUMYANTSEV S, SHUR M. Handbook Series on Semiconductor Parameters II [M]. Singapore:Word Scientific Publishing Co. Pte. Ltd, 1999.
    [140]KIM J D, KIM D S, WU D, et al.8-13μm InAsSb heterojunction photodiode operating at near room temperature [J]. Appl. Phys. Lett.,1995,67:2645-2647.
    [141]KURTZ S R, DAWSON L R, ZIPPERIAN T E, et al. High-detectivity (>1×1010cmHz1/2W-1), InAsSb strained-layer superlattice, photovoltaic infrared detector[J]. IEEE Trans. Electron. Dev.,1990,11:54-56.
    [142]BIEFELD R M. The preparation of InAs1-xSbx alloys and strained-layer superlattices by MOCVD[J]. J. Cryst. Growth.,1986,77:392-399.
    [143]BIEFELD R M, HILLS C R, LEE S R. Strain relief in compositionally graded InAsxSb1-x buffer layers and InAsxSb1-x/InSb strained-layer superlattices grown by MOCVD[J]. J. Cryst. Growth.,1988,91:515-526.
    [144]KURTZ S R, R M BIEFELD R M, ZIPPERIAN T E. MOCVD-grown InAsSb strained-layer superlattice infrared detectors with photoresponses≥10μm[J]. Semicond. Sci.Technol.,1990,5:S24-S26.
    [145]TOURNIE E, PITARD F, JOULLIE A, et al. High temperature liquid phase epitaxy of (100) oriented GaInAsSb near the miscibility gap boundary[J]. J. Cryst. Growth.,1990, 104:683-694.
    [146]MANAEVIT H M. Recollections and reflections of MO-CVD[J]. J. Cryst. Growth., 1981,55:1-9.
    [147]NATAF G, VERIE C. Epitaxial growth of InAs1-xSbx alloys by MOCVD[J]. J. Cryst. Growth.,1981,55:87-91.
    [148]FANG Z M, MA K Y, JAW D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy[J]. J. Appl. Phys.,1990,67: 7034-7039.
    [149]CHIANG P K, BEDAIR S M. Growth of InSb and InAs1-xSbx by OM-CVD[J]. J. Electrochem. Soc.,1984,131:2422-2426.
    [150]CHIANG P K, BEDAIR S M. p-n junction formation in InSb and InAs1-xSbx by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett.,1985,46:383-385.
    [151]BIEFELD R M. The preparation of InAs1-xSbx alloys and strained-layer superlattices by MOCVD[J]. J. Cryst. Growth.,1986,77:392-399.
    [152]SRIVASTAVA A K, ZYSKIND J L, LUM R M, et al. Electrical characteristics of InAsSb/GaSb heteroj unctions [J]. Appl. Phys. Lett.,1986,49:41-43.
    [153]BIEFELD R M, HILLS C R, LEE S R. Strain relief in compositionally graded InAsxSb1-x buffer layers and InAsxSb1-x/InSb strained-layer superlattices grown by MOCVD[J]. J. Cryst. Growth.,1988,91:515-526.
    [154]SEKI H, KOUKITU A. Solid composition of alloy semiconductors grown by MOVPE, MBE, VPE hand ale[J]. J. Cryst. Growth.,1989,98:118-126.
    [155]BIERWAGEN O, MASSELINK W T. Self-organized growth of InAs quantum wires and dots on InP (001):The role of vicinal substrates [J]. Appl. Phys. Lett.,2005,86: 113110.
    [156]FUSTER D, GONZALEZ M U, GONZALEZ L, et al. Size control of InAs4nP(001) quantum wires by tailoring P/As exchange[J]. Appl. Phys. Lett.,2004,85:1424-1426.
    [157]ASAI H. Anisotropic lateral growth in GaAs MOCVD layers on (001) substrates [J]. J. Cryst. Growth.,1987,80:425-433.
    [158]KAWAGUCHI K, EKAWA M, AKIYAMA T, et al. Surfactant-related growth of InAs1-xSbx quantum structures on InP(001) by metalorganic vapor-phase epitaxy[J]. J. Cryst. Growth.,2006,291:154-159.
    [159]STRINGFELLOW G B, SHURTLEFF J K, LEE R T, et al. Surface processes in OMVPE-the frontiers[J]. J. Cryst. Growth.,2000,221:1-11.
    [160]STRINGFELLOW G B. Thermodynamic aspects of OMVPE[J]. J. Cryst. Growth., 1984,70:133-139.
    [161]STRINGFELLOW G B. Thermodynamic aspects of organometallic vapor phase epitaxy[J]. J. Cryst. Growth.,1983,62:225-229.
    [162]STRINGFELLOW G B. Organometallic Vapor-Phase Epitaxy:Theory and Practice[M].2nd ed. London:Academic Press,1999.
    [163]SEKI H, KOUKITU A. Thermodynamic analysis of metalorganic vapor phase epitaxy of III-V alloy semiconductors [J]. J. Cryst. Growth.,1986,74:172-180.
    [164]KOUKITU A, SEKI H. Thermodynamic analysis of the MOVPE growth of quaternary III-V alloy semiconductors [J]. J. Cryst. Growth.,1986,76:233-242.
    [165]FANG Z M, MA K Y, COHEN R M, et al. Effect of growth temperature on photoluminescence of InAs grown by organometallic vapor phase epitaxy[J]. Appl. Phys. Lett.,1991,59:1446-1448.
    [166]WANG C A, SHIAU D A, HUANG R K, et al. Organometallic vapor phase epitaxy of n-GaS band n-GaInAsSb for low resistance ohmic contacts[J]. J. Cryst. Growth.,2004, 261:379-384.
    [167]HARRISON P. Quantum wells, wires and dots[M].2nd ed, Chichester:John wiley & sons,2005.
    [168]CONIBEER C. Third-generation photovoltaics[J]. Materialstoday,2007,10:42-50.
    [169]LUQUE A, MARTI A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels[J]. Phys. Rev. Lett.,1997,78:5014-5017.
    [170]LUQUE A, MARTI A. A Metallic Intermediate Band High Efficiency Solar Cell[J]. Prog. Photovoltaics:Res. Appl.,2001,9:73-86.
    [171]KEEVERS M J, GREEN M A. Extended infrared response of silicon solar cells and the impurity photovoltaic effect[J]. Sol. Energy Mater. Sol. Cells.,1996,41-42:195-204.
    [172]WURFEL P. Limiting efficiency for solar cells with defects from a three-level model[J]. Sol. Energy Mater. Sol. Cells.,1993,29:403-413.
    [173]NAVRUZ T S, SARITAS M. Efficiency variation of the intermediate band solar cell due to the overlap between absorption coefficients [J]. Sol. Energy Mater. Sol. Cells., 2008,92:272-282.
    [174]MARTI A, LOPEZ N, ANTOLIN E, et al. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell[J]. Sol. Energy Mater. Sol. Cells.,2006, 511-512:638-644.
    [175]HANNA M C, NOZIK A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers[M]. J. Appl. Phys.,2006,100: 074510.
    [176]BENISTY H, SOTOMAYOR-TORRES C M, WEISBUCH C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems[J]. Phys. Rev. B,1991,44: 10945-10948.
    [177]BENISTY H. Reduced electron-phonon relaxation rates in quantum-box systems: Theoretical analysis[J]. Phys. Rev. B,1995,51:13281-13293.
    [178]SCHALLER R D, KLIMOV V I. High Efficiency Carrier Multiplication in PbSe Nanocrystals:Implications for Solar Energy Conversion[J]. Phys. Rev. Lett.,2004,92: 186601.
    [179]SCHALLER, SYKORA M, KLIMOV V I, et al. Seven excitons at a cost of one: Redefine the limits for conversion efficiency of photons into charge carriers. Nano Lett., 2006,6:424.
    [180]FORBES D, SINHAROY S, RAFFAELLE R, et al. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter[C]. Proceedings of the 19th Space Photovoltaic Research and Technology Conference, Glenn Research Center, February 2007,p209-215.
    [181]CORNET C, DORE F, BALLESTAR A, et al. InAsSb/InP quantum dots for midwave infrared emitters:A theoretical study[J]. J. Appl. Phys.,2005,98:126105.
    [182]UTZMEIER T, POSTIGO P A, TAMAYO J, et al. Transition from self-organized InSb quantum-dots to quantum dashes[J]. Appl. Phys. Lett.,1996,69:2674.
    [183]CRAIGHEAD H G, HOWARD R E, JACKEL L D, et al.10-nm linewidth electron beam lithography on GaAs[J]. Appl. Phys. Lett.,1983,42:38.
    [184]EAGLESHAM D J, CERULLO M. Dislocation-free Stranski-Krastanow growth of Ge on Si(100)[J]. Phys. Rev. Lett.,1990,64:1943-1946.
    [185]SCHEEL H J. Historical aspects of crystal growth technology[J]. J. Cryst. Growth., 2000,211:1-12.
    [186]QIU Y, UHL D. Self-assembled InAsSb quantum dots on (001) InP substrates [J]. Appl. Phys. Lett.,2004,84:1510-1512.
    [187]QIU Y, UHL D. Effect of thin GaAs interface layer on InAs quantum dots grown on InGaAs/InP using metalorganic vapor phase epitaxy[J]. J. Cryst. Growth.,2003,257: 225-230.
    [188]MATSUURA T, MIYAMOTO T, KAGEYAMA T, et al. Surfactant Effect of Sb on GaInAs Quantum Dots Grown by Molecular Beam Epitaxy[J]. Jpn. J. Appl. Phys.,2004, 43:L605-L607.
    [189]ZINKE-ALLMANG M, Stoyan STOYANOV S. Surface Diffusion Coefficients on Stranski-Krastanov Layers[J]. Jpn. J. Appl. Phys.,1990,29:L1884-L1887.
    [190]SAINT-GIRONS G, MICHON A, SAGNES I, et al. Thermodynamic analysis of the shape, anisotropy and formation process of InAs/InP(001) quantum dots and quantum sticks grow by metalorganic vapor phase epitaxy[J]. Surface Science,2007,601: 2765-2768
    [191]LEI W, TAN H H, JAGADISH C. Formation and shape control of InAsSb/InP (001) nanostructures[J]. Appl. Phys. Lett.,2004,95:013108.
    [192]KAWAGUCHI K, MATSUDA M, EKAWA M, et al. Formation of InAs1-xSbx quantum dots on vicinal InP(001) for 1.55-μm DFB laser applications[J]. J. Cryst. Growth.,2008,310:2999-3003.
    [193]BIMBERG D, Marius GRUNDMANN M, LEDENTSOV N N. Quantum Dot Heterostructures[M]. Chichester:John Wiley & Sons,1999.
    [194]CONVERTINO A, CERRIL, LEO G, et al. Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region[J]. J. Cryst. Growth.,2004,261:458-465.
    [195]MISHRA U K, SINGH J. Semiconductor Device Physics and Design[M]. Dordrecht: Springer,2008.
    [196]SZE S M, NG K K. Physics of Semiconductor Devices[M].3rd ed, Hoboken:John Wiley & Sons,2007.
    [197]CHUBB D L. Thermophotocoltaic Energy Conversion[M]. Amsterdam:Elsevier B.V.,2007.
    [198]GREEN M A. Limits on the Open-circuit Voltage and Efficiency of Silicon Solar Cells Imposed by Intrinsic Auger Processes[J]. IEEE Trans. Electron. Dev.,1984, ED-31: 671-678.
    [199]WOLF M A, WOLF M. I-V Characteristics and Performance of Silicon Solar Cells Between Low-and High-Level Injection Part Ⅰ:The Modeling Method[J]. IEEE Trans. Electron. Dev.,1984, ED-31:984-689.
    [200]MOON R L, ANTYPAS G A, JAMES L W. Bandgap and lattice constant of GaInAsP as a function of alloy composition[J].
    [201]ADACHI S. Physical Properties of III-V Semiconductor Compounds:InP, InAs, GaAs, GaP, InGaAs, and InGaAsP[M]. New York:John Wiley & Sons,1992.
    [202]CA UGHEY D M, THOMAS R E. Carrier Mobilities in Silicon Empirically Related to Doping and Field[J]. Proc. IEEE,1967,55:2192-2193.
    [203]SOTOODEH M, KHALID A H, REZAZADEH A A. Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes[J]. J. Appl. Phys., 2000,87:2890-2900.
    [204]ZIERAK M, BORREGO J M, BHAT I, et al. Modeling of InGaSb thermophotovoltaic cells and materials. Thermophotovoltaic Generation of Electricity, 3rd Conference:Springs, May 18-21,1997[C]. Woodbury:AIP Conf. Proc.,1997,401: 55-64.
    [205]ARHENKIEL R. Minority carrier lifetime in compound semiconductors [M]. London: Academic Press,1988.
    [206]BORREGO J M, SAROOP S, GUTMANN R J, et al. Photon recycling and recombination processes in 0.53eV p-type InGaAsSb[J]. J. Appl. Phys.,2001,89: 3753-3759.
    [207]BEATTIE A R. Quantum efficiency in InSb[J]. J. Phys. Chem. Solids,1962,24: 1049-1056.
    [208]ROGALSKI A, CIUPA R, LARKOWSKI W. Near room-temperature InAsSb photodiodes:Theoretical predictions and experimental data[J]. Solid-State Electron., 1996,39:1593-1600.
    [209]TIAN Y, ZHOU T, ZHANG B. The effect of Auger Mechanism on n+-p GaInAsSb infrared photovoltaic detectors[J]. IEEE Trans. Electron. Dev.,1999,6:656-660.
    [210]KINGSTON R H. Deterction of optical and infrared radiation[M]. Heidelberg: Springer Berlin,1978.
    [211]KUMAR R J, GUTMANN R J, BORREGO J M, et al. Recombination Parameters for Antimonide-Based Semiconductors Using the Radio Frequency Photoreflectance Technique[J]. J. Electron. Mater,2004,33:94-100.
    [212]ANIKEEV S, DONETSKY D, BELENKY G, et al. Measurement of the Auger recombination rate in p-type0.54eVGaInAsSb by time-resolved photoluminescence[J]. Appl. Phys. Lett.,2003,83:3317-3319.
    [213]OLSEN J M, AHRENKIEL R K, DUNLAVY D J, KEYES B, et al. Ultralow recombination velocity at GaInP/GaAs heterointerfaces[J]. Appl. Phys. Lett.,1989,55: 1208-1210.
    [214]ADACHI S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y[J]. J. Appl. Phys.,1989,66:6030-6040.
    [215]ADACHI S. Optical dispersion relations for Si and Ge[J]. J. Appl. Phys.,1989,66: 3224-3231.
    [216]GONZALEZ-CUEVAS J A, REF AAT T F, ABEDIN M N, et al. Calculations of the temperature and alloy composition effects on the optical properties of AlxGa1-xAsySb1-y and Gaxn1-xAsySb1-y in the spectral range 0.5-6 Ev[J]. J. Appl. Phys.,2007,102:014504.
    [217]MUNOZ M, WEI K, POLLAK F H, et al. Optical constants of GaxIn1-xAsySb1-y lattice matched to GaSb (001):Experiment and modeling[J]. J. Appl. Phys.,2000,87: 1780-1787.
    [218]MUNOZ M, WEI K, POLLAK F H. Spectral ellipsometry of GaSb:Experiment and modeling[J]. Phys. Rev. B,1999,50:8105-8110.
    [219]CLUGSTON D A, BASORE P A. PC1D version 5:32-bit solar cell modeling on personal computers[C]. Conf. Rec.26th IEEE Photovoltaics Specialists Conf., Anaheim, 1997,p.207-210.
    [220]NEUBERGER M. Ⅲ-Ⅴ Ternary Semiconducting Compounds-Data Tables [M]. New York:Plenum,1972.
    [221]CODERRE W M, WOOLLEY J C. Electrical Properties of InAsxSb1-x Alloys[J]. Can. J. Phys.,1968,46:1207.
    [222]WOOLLEY J C, WARNER J. Preparation of InAs-InSb Alloys[J]. J. Electrochem. Soc.,1964,111:1142.
    [223]YONEZAWA T. Computer-Simulation Methods in the Study of Noncrystalline Materials[J]. Science,1993,260:635-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700