大鼠癫痫持续状态后海马miRNA表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     应用miRNA微阵列芯片技术,对大鼠癫痫持续状态(status epilepticus, SE)后海马区脑组织与正常大鼠脑组织中miRNA的表达谱进行对比研究,筛选差异表达miRNA。并对其中差异较大的miRNA在脑组织和外周血的表达量进行检测,运用生物信息学对差异表达miRNA靶基因进行预测和验证。探讨SE后相关miRNA对中枢神经系统损伤的作用机制。
     方法
     1.建立模型:采用6-8周龄健康雄性SD大鼠,建立氯化锂-匹罗卡品致痫大鼠SE模型。于造模成功后24小时取脑组织和外周血与正常雄性SD大鼠进行比较。
     2. miRNA微阵列芯片筛选差异表达miRNA:提取大鼠脑组织海马区的miRNA,采用miRNA微阵列芯片技术研究SE后大鼠海马区脑组织与正常大鼠海马区脑组织中miRNA表达谱的差异。
     3.荧光定量RT-PCR验证差异表达的miRNA:选取有明显差异表达的miRNA,采用荧光定量RT-PCR对其在脑组织海马区的表达进行验证。并对其在大鼠外周血中的表达进行检测,对比脑组织和外周血中的表达差异。
     4.生物信息学分析预测靶基因:利用MiRanda软件、TargetScan软件和PicTar软件预测相关差异表达的miRNA的靶基因。
     5. Western Blot检测靶基因:根据预测的结果,采用WesternBlot对相关靶基因在SE后大鼠海马区的表达进行检测。
     结果
     1.SE大鼠和正常大鼠海马组织差异表达miRNA:运用miRNA微阵列芯片,在SE后大鼠海马区脑组织中检测出上调的miRNA基因37个,下调的28个。其中上调大于5倍的miRNA基因为miR-34a、miR-22、miR-125a、miR-213、miR-30c、miR-26a、miR-375、miR-99a、miR-24、miR-124a、miR-101-1。表达差异最大的是miR-34a(25.86倍),差异最小的是miR-188(1.42倍)。下调大于5倍的基因有miR-21、miR-29a、Let-7e、miR-181、miR-215、miR-128a、miR-181b,其中miR-21下调最明显为27.97倍。
     2.荧光定量RT-PCR验证差异表达miRNA:选择上调最明显的3个(miR-34a、miR-22和miR-125a)和下调最明显的2个(miR-21和miR-29a),采用实时荧光定量PCR对SE后大鼠脑组织海马区和外周血中差异miRNA的表达进行检测和对比。miR-34a、miR-125a和miR-22表达上调,miR-21表达下调,与芯片结果一致;miR-29a未见与芯片一致的结果。所有目标miRNA在脑组织和外周血的变化趋势均一致;miR-34a、miR-125a和miR-34a在脑组织中表达量高于外周血,miR-22和miR-21脑组织中的表达量低于外周血。
     3.靶基因预测结果:利用生物信息学方法对miR-34a、miR-125a、miR-22和miR-21进行靶基因预测,结果提示miR-34a和miR-125a的上调可能调控Bcl-2,miR-21的下调可能调控Caspase-3的表达;这些靶基因都被认为与神经元凋亡有关。
     4. Western-Blot检测预测靶基因的表达:对SE后大鼠海马组织的Bcl-2和Caspase-3的蛋白表达进行检测,结果与预测的一致,Bcl-2的表达下调,Caspase-3的蛋白表达上调;这些都将促进神经元凋亡。
     结论
     1.建立了癫痫持续状态后大鼠和正常大鼠海马区脑组织的miRNA差异表达谱。
     2.发现miR-34a、miR-22、miR-125a、miR-21和miR-29a在大鼠脑组织和外周血中的变化趋势一致,有密切的相关性,为进一步将外周血检测miRNA用于相关研究提供依据。
     3.miR-34a和miR-125a的靶基因可能是Bcl-2,miR-21的靶基因可能是Caspase-3,它们参与SE后神经元凋亡的调节。
Objective.
     This study compared the different of miRNA expression in hippocampal region of brain tissue between the Lithium chloride pilocarpine SE model rat and the normal rat brain tissue by using the miRNA microarray chip technology. Futher, the miRNA which showed much more different between the two group were chioced and their expression in the brain tissue and in the peripheral blood were measured by real time PCR. Bio-informatics is used in predicting and examining of the target gene. Discussions also been brought on how the related miRNA injuring the central nervous system of rats after SE.
     Method
     1.Setted up model:Origin 6-8 weeks healthy male SD rats, then set up the Lithium chloride-pilocarpine SE model.24 hours after model setting, take the brain tissue and peripheral blood to compare with normal male SD rat's brain tissue.
     2.Screened the differential expression of miRNA by using miRNA microarray chip technology:extracted miRNAs in the hippocampus of rat brain tissue. Using miRNA microchip technology to study on the miRNA expression difference between hippocampus brain tissue of SE rat and brain tissue of normal rat.
     3.Verified the differential expression of miRNA Ration examination by quantitative RT-PCR:Significantly differentially expressing miRNAs were detected by quantitative RT-PCR in hippocampus brain tissue. Also tested the expression in peripheral blood of rat and compared the expression difference between hippocampus brain tissue and peripheral blood.
     4.Predicted the target genes by bioinformatics analysis:Software of Miranda, TargetScan and PicTar were used to predict the target gene of significantly differentially expressing miRNAs.
     5.Detected on the target genes using Western Blot:According to the prediction result, using Western Blot inspected the expression of target genes in hippocampus brain tissue of SE rats and normal rats.
     Result
     1. Differentially expression miRNA in hippocampus brain tissue of SE rats and normal rats:Using miRNA Microarray chip technology,37 miRNA raise up gene were found in the hippocampus brain tissue of SE rat. Among those, raise up five times higher miRNA gene is miR-34a、miR-22、miR-125a、miR-213、miR-30c、miR-26a、miR-375、miR-99a、miR-24、miR-124a、miR-101-1. miR-34a has the maximum expression difference (25.86 times) while miR-188 has the minimum expression difference (1.42 times). Lower 5 times genes are miR-21、miR-29a、Let-7e、miR-181、miR-215、miR-128a、miR-181b, the miR-21 has the sharpest lowering which is 27.97 times.
     2.Validated the differentially expressed miRNAs by quantitative RT-PCR:Chose the most obviously 3 increased miRNA (miR-34a、miR-22和miR-125a) and 2 decreased (miR-21和miR-29a). By using quantitative RT-PCR, the differentially expressed miRNAs in hippocampus brain tissue and peripheral blood were detected and compared. In the five miRNA under test,the miR-34a、miR-125a and miR-22's expression was increased while miR-21 decreased which was consistent with chip test results. Then the result of miR-29a was not. All the target miRNA changing trends in the brain tissue and peripheral blood tissue were consistent. The miR-34a, miR-125a and miR-34a expression in brain tissue was higher than in peripheral blood tissue. And the miR-22 and miR-21 expression in brain tissue was lower than in the peripheral blood tissue.
     3. Predicted results on target genes:By use of bioinformatics methods, miR-34a, miR-125a, miR-22 and miR-21's target genes were predicted. The results showed that the upregulation of miR-34a and miR-125a could control the expression of Bcl-2 and downturn miR-21 was likely to control the expression of Caspase-3. These target genes were considering related to neuronal apoptosis.
     4.Detected the expression of the predicted target genes by using Western Blot:Tested on the protein of Bcl-2 and Caspase-3 in hippocampus brain tissue of SE rats and normal rats by using Western-Blot. The results were consistent with the prediction. Bcl-2's expression decreased while the expression of Caspase-3 protein increased. All those would promote neuronal apoptosis.
     Conclusion.
     1. Generated the differential expression profiles of miRNAs in SE rat's hippocampus tissue and normal rat's brain tissue.
     2. Found out that miR-34a, miR-22, miR-125a, miR-21 and miR-29a in the rat brain and peripheral blood have the same changing trends and which are closely related. It provides a basis further research in this field.
     3. Target genes of MiR-34a and miR-125a would be the Bcl-2 and target genes of miR-21 would be Caspase-3 which participated in the SE regulation of neuronal apoptosis.
引文
[1]尚伟,刘伟红,张珑,等.Fas、caspase-3蛋白在颞叶癫痫病灶内的表达与神经元凋亡[J].中国神经精神疾病杂志,2005,31(5):359-361.
    [2]侯晓华,赵姝,林志国,等.顽固性颞叶癫痫患者海马或颞叶BDNF及其受体TrkB的测定[J].中国神经免疫学和神经病学杂志,2008,15(6):423-426.
    [3]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science,2005,309(5732):310-311.
    [4]Kim VN,Nam IW.Genomics of microRNA.Trends Gen et 2006;22:165-173.
    [5]Lee R C,FeinbaumR L,AmbmsV.The Celegars heterochronic gene lin-4 enco des small RNAs with antisense complementarity to lirr14. Cell.1993,75 (5):843-854.
    [6]Reinhart B J,Slack F J,Basson M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature.2000,403 (6772): 901-906.
    [7]Pasquinelli A E,Reinhart B J,SIack F,et al.Conservation of the sequence and temporal expression of let-7 hetemchmnic regulatory RNA.Nature, 2000.408(6808):86-89.
    [8]Bentwich I,A vnielA,K arovY,et al.Identification of hundreds of conserved and nonconserved human microRNAs.Nat Genet.2005,37:766-770.
    [9]Berezikov E,Guryev V,van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes.Cell.2005,120:21-24.
    [10]Lee R C. Ambros V. An extensive class of small RNAs in Caenorhabditis elegans.Science.2001,294:862-64.
    [11]ReinhartB J,Weinstein E QRhoadesM W,et al.MicroRNAs in plants.Genes Dev. 2002,16(13):1616-1626.
    [12]McManusM T,Sharp P A.Gene silencing in mammals by small interfering RNAs.Nature Reviews Genetics.2002,3(10):737-747.
    [13]Hutvagner G,M cLachlan J,Pasquinelli A E, et al.A cellular function for the RNA interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Science.2001,293:834-838.
    [14]Grishok A,Pasquinelli A,Conte D,et al.Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control Celegans developmental timing. Cell.2001,106:23-24.
    [15]Ketting RF,Sylvia EJ,Bernstein FE,et al.Dicerfunctions in RNA interference and in synthesis of small RNA involved in developmental timing in Celegans. Genes Dev.2001,15:2654-2659.
    [16]Schwarz D S,Hutvagner G,Du T,et al. Asymmetry in the assembly of the RNAi enzyme complex.Cell.2003,115:199-208.
    [17]Khvorova A,Reynolds A,Jayasena S D.Functional siRNAs and miRNAs exhibit strand bias.Cell.2003,115:209-216.
    [18]Lee Y,Ahn C,Han J,et al.The nuclear RNase III Drosha initiates microRNA processing.Nature.2003,425:415-419.
    [19]Calin GA,Liu CQSevignani C,et al.Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc.Natl Acad Sci USA.2002,99(24):15524-9.
    [20]Michael Z,Michael,Susan M, et al.Reduced Accumulation of Specific MicroRNAs in Colorectal Neoplasia.Mol cancer Res.2003,1(12):882-91.
    [21]Peggy S,Wayne Tam,Liping Sun,et al.Accumulation of miR-155 and BIC RNA in human B cell lymphomas.Proc Natl Acard Sci USA.2005,102 (10):3627-32.
    [22]Junichi T,Hiroyuki K,Kiyoshi Y,et al.Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.Cancer Res.2004,64(11):3753-6.
    [23]Gao FB.Posttranscriptional control of neuronal development by microRNA networks[J].Trends Neurosci,2008;31(1):20-26.
    [24]Johnston RJ,Hobert O.A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans.Nature.2003 Dec 18;426(6968):845-9.
    [25]Kim J,Inoue K,Ishii J,et al.A MicroRNA feedback circuit in midbrain dopamine neurons [J].Science,2007,317(5842):1220-1224.
    [26]Dostie J,Mourelatos Z,Yang M,et al.Numerous microRNPs in neuronal cells containing novel microRNAs [J].RNA,2003,9(2):180-186.
    [27]Nelson P T,Wang W X,Rajeev B W. MicroRNAs(miRNAs) in neurodegenerative diseases[J].Brain Pathol,2008,18(1):130-138.
    [28]Gregory R I,Yan K P,Amuthan G,et al.The Microprocessor complex mediates the genesis of microRNAs [J].Nature,2004,43(7014):235-240.
    [29]Chan JA,Krichevsky AM,Kosik KS.MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J].Cancer Res,2005,65(14):6029-6033.
    [30]Volinia S,Calin GA,Liu CG,et al.A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acard Sci USA. 2006,103(7):2257-61.
    [31]Murakami Y,Yasuda T,Saigo K,et al.Comprehensive analysis of microRNA expression patterns in hepatocllular carcinoma and non-tumorous tissue[J].2006,25(17):2537-45.
    [32]Calin GA,Liu CQSevignani C,et al.MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias[J]. Proc Natl Acad Sci USA.2004,101(32):11755-60.
    [33]Ciafre SA,Galardi S,Mangiola A,et al.Extensive modulation of a set of microRNAs in primary glioblastoma[J].Biochem Biophys Res Commun. 2005,334(4):1351-8.
    [34]He H,Jazdzewski K,Li W,et al.The role of microRNA genes in papillary thyroid carcinoma[J]. Proc Natl Acad Sci USA.2005,102(52):19075-80.
    [35]KrichevskyA M,KingK S,Donahue CP,et al.A microRNA array reveals extensive regulation of microRNAs during brain development. RNA.2003,9(10):1274-81.
    [36]Smirnova L,Grafe A,Seiler A,et al.Regulation of miRNA expression during neural cell specification.Eur J Neurosci.2005,21(6):1469-77.
    [37]Lei P,Li Y,Chen X,et al.Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res.2009,1284:191-201.
    [38]文全庆,贾延劫,王明闯,等.大鼠脑缺血急性期脑组织miRNA的表达变化[J].重庆医科大学学报,2008,33(1):23-40.
    [39]Sempere LF,Freemantle S,Pitha-RoweI,et al.Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol.2004,5(3):13.
    [40]Mitchell PS,Parkin R K,Kroh EM, et al.Circulating microRNAs as stable blood-based markers for cancer detection[J].Proc Natl Acad Sci USA,2008,105 (30):10513-10518.
    [41]Resnike KE,Alder H,Hagan J P,et al.The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel realtime PCR platform[J].Gynecol Oncol,2009,112(1):55-59.
    [42]Chm SS,Shing TK,Hung EC,et al.Detection and characterization of placental microRNAs in maternal plasma[J].Clin Chem,2008,54(3):482490.
    [43]Gutierrez,L, Mauriat M, Pelloux J, et al. Towards a systematic validation of references n real-time RT-PCR. Plant Cell,2008,20(8):1734-1735.
    [44]Udvardi M, Czechowski T, Scheible W R. Eleven golden rules of real-time quantitative PCR. Plant Cell,2008,20(5):1736-1737.
    [45]Valoczi A,Hornyik C,Varga N,et al.Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes[J].Nucleic Acids Res.2004,32(22):175-187.
    [46]Schmittgen TD,Jiang J,Liu Q,et al.A high-throughput method to monitor the expression of microRNA precursors[J].Nucleic Acids Res.2004,32(4):43-57.
    [47]Sempere LF,Freemantle S,Pitha-Rowe I,et al.Expression profiling of mammalian microRNA uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation[J].Genome Biol.2004,5(3):13-24.
    [48]Jiang S,Xie Q,Zhang W,et al.Preparation of anti-mouse caspase-12 mRNA hammerhead ribozyme and identification of its activity in vitro[J].World J Gastroenterol.2005,11(26):4094-7.
    [49]Onafuwa-Nuga AA,King SR,Telesnitsky A,et al.Nonrandom packaging of host RNAs in moloney murine leukemia virus[J].J Virol.2005,79(21):13528-37.
    [50]Lagos-Quintana M,Rauhut R,Yalcin A,et al.Identification of Tissue-Specific MicroRNAs from Mouse[J].Curr Biol.2002,12(9):735-9.
    [51]Liu CQCalin GA,Meloon B,et al.An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues[J].Proc Natl Acad Sci USA.2004,101(26):9740-4.
    [52]Kapsimali M,Kloosterman WP,de Bruijn E,et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system[J]. Genome Biol,2007,8:R173.
    [53]戚艳婷,赵喻,张智,等.miR-34a在神经元中的表达特征及功能研究.分子细胞生物学报.2009,42(3):217-223.
    [54]Martinou JC,Dubois-Dauphin M,Staple JK,et al. Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia[J].Neuron,1994,13:1017-1030.
    [55]Farlie PQDringen R,Rees SM,et al.Bcl-2 transgene expression can protect neurons against developmental and induced cell death[J].Proc Natl Acad Sci USA,1995,92:4397-4401.
    [56]Bommer GT,Gerin I,Feng Y,et al.P53 mediated activation of miRNA34 candidate tumor-suppressor genes[J].Curr Biol,2007,17:1298-1307.
    [57]Duan W,Gao L,Wu X,et al.MicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cells[J].Int J Cancer,2009,11:1-8.
    [58]Lionetti M,Agnelli L,Mosca L,et al. Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles[J].Genes Chromosomes Cancer.2009;48(6):521-31.
    [59]Xiong J,Yu D,Wei N,et al.An estrogen receptor alpha suppressor,microRNA-22, isdownregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples[J].FEBS Joumal.2010,277(7):1684-1694.
    [60]W Li,R Duan,F Kooy,et al.Germline mutation of microRNA-125a is associated with breast cancer[J].Med Genet,2009;46:358-360.
    [61]Guo X, Wu Y, Hartley RS.MicroRNA-125a represses cell growth by targeting HuR in breast cancer.RNA [J].Biol.2009;6(5):573-83.
    [62]Chan JA,Krichevsky AM,Kosik KS.MicroRNA-21 is an Antiapoptotic Factor in Human Glioblastoma Cells[J].Cancer Res.2005,65 (14):6029-33.
    [63]Ciafre SA,Galardi S,Magiola A,et al.Extensive modulation of a set of microRNAs in primary glioblastoma[J].Biochem Biophys Res Commun. 2005;334(4):1351-8.
    [64]Meng F,Henson R,Lang M,et al.Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcioma cell lines[J].Gastroenterology,2006;130(7):2113-29.
    [65]Si ML,Zhu S,Wu H,et al.miR-21-mediated tumor growth[J].Oncogene. 2007;26(19):2799-803.
    [66]Zhu S,Si ML,Wu H,et al.MicroRNA-21 targets the tumor suppressor gene tropomyosin 1(TPM1)[J]. Biol Chem.2007; 282(19):14328-36.
    [67]Loffer D,Brocke-Heidrich K,Pfeifer G,et al.Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer[J]. Blood.2007;110(4):1330-3.
    [68]Zhu S,Wu H,Wu F,et al.MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J].Cell Res.2008;18(3):350-9.
    [69]Lund E,Guttinger S,Calado A,et al.Nuclear export of microRNA precursors[J].Science.2004;303(5654):95-98.
    [70]Asangani IA,Rasheed SA,Nikolova DA,et al.MicroRNA-21(miR-21) post-transcriptionally downregulaters tumor suppressor PDCD4 and stimulates invasion,intravasation and metastasis in colorectal cancer[J]. Oncogene. 2008;27(15):2128-36.
    [71]Fujita S,Ito T,Mizutani T,et al.miR-21Gene expression triggered by Ap1 is sustained through a double-negative feedback mechanism[J].Mol Biol.2008; 378(3):492-504.
    [72]Rossi L,Bonmassar E,Faraoni I.Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro[J].Pharmacol Res.2007;56(3):248-53.
    [73]Blower PE,Chung JH,Verducci JS,et al.MicroRNAs modulate the chemosensitivity of tumor cells.Mol Cancer Ther.2008;7(1):1-9.
    [74]Corsten MF,Miranda R,Kasmieh R,et al.MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas[J].Cancer Res.2007; 67(19): 8994-9000.
    [75]Chen X,Ba Y,Ma L,et al.Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J].Cell Res,2008,18(10):997-1006.
    [76]Lawr IE CH,Gal S,Dunlop HM,et al.Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J].B r J Haem atol,2008,141(5):672-675.
    [77]Resn IKE KE,Alder H,HAGAN J P,et al.The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel realtime PCR platform[J].Gynecol Oncol,2009,112(1):55-59.
    [78]Moss EQLee RC,Ambros V.The cold shock domain protein LIN-28 controls developmental timing in C elegans and is regulated by the lin-4. Cell.1997,88(5):637-46.
    [79]Reinhart BJ,Slack FJ,Basson M,et al.The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature.2000,403(6772):901-6.
    [80]Abrahante JE,Daul AL,Li M,et al.The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs.Dev Cell.2003,4(5):625-37.
    [81]Lai EC.MicroRNAs are complementary to3'UTR motifs that mediate negative post-transcriptional regulation.Nat Genet.2002,30(4):363-4.
    [82]Chen CZ,Li L,Lodish HF,et al.(2003).MicroRNAs modulate hematopoietic lineage differentiation.Science.2004,303(5654):83-6.
    [83]Xu P,Vernooy SY,Guo M,et al.The Drosophila MicroRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol.2003,13(9):790-5.
    [84]Brennecke J,Stark A,Russell R B,et al.Principles of microRNA-target recognition.PLoS Biol.2005,3:e85.
    [85]Enright A J,John B,Gaul U,et al.MicroRNA targets in Drosophila. Genome Biol.2003,5:Rl.
    [86]Smith T F,Waterman M S.Identification of common molecular subsequences.J Mol Biol.1981,147:195-197.
    [87]Kiriakidou M,Nelson P T,Kouranov A,et al.A combined computational experimental approach predicts human microRNA targets.Genes Dev,2004,18: 1165-1178.
    [88]Rehmsmeier M,Steffen P,Hochsmann M,et al.Fast and effective prediction of microRNA/target duplexes.RNA,2004,10:1507-1517.
    [89]Lewis B P,Shih I H,Jones-Rhoades M W,et al.Prediction of mammalian microRNA targets.Cell.2003,115:787-798.
    [90]Rusinov V,Baev V,Minkov I N,et al.MicroInspector:a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res,2005, 33:W696-W700.
    [91]Krek A,Grun D,Poy M N,et al.Combinatorial microRNA target predictions.Nat Genet.2005,37:495-500.
    [92]Saetrom O,Ola Snove J,Saetrom P.Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms.RNA,2005,11:995-1003.
    [93]Saetrom P.Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. Bioinformatics. 2004,20:3055-3063.
    [94]Kim S K,Nam J W,Rhee J K,et al.MiTarget:microRNA target gene prediction using a support vector machine.BMC Bioinform.2006,7:411.
    [95]Miranda K C,Huynh T,Tay Y,et al.A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell.2006,126:1203-1217.
    [96]Griffiths-Jones S,Bateman A,Marshall M,et al.Rfam:an RNA family database.Nucleic Acids Res.2003,31:439-441.
    [97]Rigoutsos I,Floratos A.Combinatorial pattern discovery in biological sequences:The TEIRESIAS algorithm. Bioinformatics.1998,14:55-67.
    [98]Lytle J R,Yario T A,Steitz J A.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci USA.2007,104:9667-9672.
    [99]Thadani R,Tammi M T.MicroTar:predicting microRNA targets from RNA duplexes.BMC Bioinform.2006,7 Suppl5:S20.
    [100]Iorio MV,Ferracin M,Liu CQet al.MicroRNA gene expression deregulation in human breast cancer.Cancer Res.2005,65(16):7065-7.
    [101]Srinivasan A,Foster LM,Testa MP,et al.Bcl-2 expression in neural cells blocks activation of ice/ced-3 family proteases during apoptosis. J Neurosci,1996,16:5654-5660.
    [102]Kuida K,Zheng TS,Na S,et al.Decreased apoptosis in the brain and premature lethality in cpp32-deficient mice. Nature.1996,384:368-372.
    [103]Keane RW,Srinivasan A,Foster LM,et al.Activation of cpp32 during apoptosis of neurons and astrocytes.J Neurosci Res.1997,48:168-180.
    [104]Borges K,GearingM,McdermottD L,et al.Neuronal and glialpathological changes during epileptogenesis in the mouse pilocarpine model[J].Exp Neurol.2003,182(1):21-34.
    [105]Brandt C,GlienM,Potschka H,et al.Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats[J].Epilepsy Res.2003,55(1-2):83-103.
    [106]Chan JA,Krichevsky AM,Kosik KS.MicroRNA-21 is all antiapoptotic factor in human glioblastoma cells. Cancer Res.2005,65:6029-6033.
    [107]Brigitte VP,Estelle K,HerveK,et al.Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy.Neurobiol Dis,2004;17:385-402.
    [108]Samland H,Huitron Resendiz S,Masliah E,et al.Campbell L Profound increase in sensitivity to glutamatergic-but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6.J Neurosci Res. 2003;73:176-187.
    [109]孙艺平,张万琴,洪昭雄等.癫痫敏感大鼠脑内GFAP2免疫反应活性的变化.神经科学,1996;3:73-78.
    [110]孙艺平,孙长凯,范明等.NO对红藻氨酸癫痫发作和IL-6表达的影响.中国药理学通报.2003;19:397-400.
    [111]赵文元,刘建民,卢亦成,等.海马神经元癫痫样放电模型中神经元凋亡的研究[J].中国神经精神疾病杂志.2002,28(6):447-448.
    [112]尚伟,刘伟红,张珑,等.Fas、caspase-3蛋白在颞叶癫痫病灶内的表达与神经元凋亡[J].中国神经精神疾病杂志.2005,31(5):359-361.
    [113]Jefferys J GR.Models and mechanisms of experimental epilepsies[J]. Epilepsia.2003,44(12):44.
    [114]Cross DJ,Cavazos J E.Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model[J]. Epilepsy Res.2007,73(2):156.
    [115]Lothman EW,BertramIII EH.Epileptogenic Effects of status epilepticus. Epilepsia.1993;34(suppl.1):s59-s70.
    [116]Lothman EW,Bertram EH,Stringer JI.Functional anatomy of hippocampal seizures. Prog Neurobiol.1991;37:1-82.
    [117]VanLandinghamKE,Lothman EW.Self-sustaining limibic status epilepticus:I. Acute and chronic metabolic studies:limibic hypermetabolism and neocortical hypometabolism.Neurology.1991;41:1942-9.
    [118]Andr eV,Dub eC,Franois J,et al.Pathogenesis and pharmacology of epilepsy in the lithium-pilocarpine model[J].Epilepsia.2007;48 (5):41.
    [119]Tsujimoto Y,Finger LR,Yunis J,et al.Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18)chromosome translocation[J].Science.Nov 1984;226:1097—1099.
    [120]Monney L,Otter I,Olivier R,et al. Bcl-2 overexpression blocks activation of the death protease CPP32/Yama/apopainBiochem Biophys Res Commun, 1996;221:340.
    [121]Frankfurt OS,Robb JA,Sugarbaker EV,et al.Apoptosis in breast carcinomas detected with monoclonal antibody to single-stranded DNA:relation to bcl—2 expression,hormone receptors,and lymph node metastases[J].Cell Growth Differ.Mar 1997;3:465.
    [122]Hockenbery DM,Oltvai ZN,Yin XM,et al.Bcl-2 functions in an antioxidant pathway to prevent apoptosis[J].Cell,1993;75:241-251.
    [123]Ruan X,Li Z,Wang Q,et al.BCL-2 protein changes within the hippocampus cells in coriaria lactone-induced GTC seizure in rats[J].J Tongji Med Univ.Jan 1996;16(1):63-4.
    [124]Kurschner C,Morgan JI. Analysis of interaction sites in homo-and heteromeric complexes containing Bcl-2 family members and the cellular prion protein.Mol Brain Res.1996;37:249-258.
    [125]Zhang LX,Smith MA,Li XL,et al.Apoptosis of hippocampal neurons after amygdala kindled seizures.Mol Brain Res.1998;55:198-208.
    [126]Yachnis AT,Powell SZ,Olmsted JJ,et al.Distinct neurode-velopmental patterns of bcl-2 and bcl-x expression are altered in glioneuronal hamartias of the human temporal lobe.J Neuropathol Exp Neurol.1997;56:186-98.
    [127]Henslludl DC,Clark RS,Adelson PD,et al.Alteration in Bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy[J].Neurology.2000,55(2):250-257.
    [128]李天富,吕传真.癫痫神经元凋亡的caspase机制[J].中国临床神经科学,2003;11(2):209-211.
    [129]Ekert PG,Silkc J,Vaux DI.Caspase inhibitors[J].Cell Death Differ, 1999,6(11):1081-1086.
    [130]Yi X,Yin XM,Dong Z.Inhibition of bid-induced apoptosis by Bcl-2:tbid insertion,bax translocation and bax/bak oligomerization suppressed [J].J Biol Chem,2003;278:16992-16999.
    [131]Qian YZ,Shipley JB,LevaSseur JE,et al.Dissociation of heat shock proreins expression with isehemic tohrance by whole body hyperthermia in rat heart[J].J Mol Cell Cardiol,1998;30:1163-1172.
    [132]Dybdahl B,Slordahl SA,Waage A,et al.Myocardial ischaemia and the inflammatory response:release of heat shock pmtein 70 after myocardial infarction[J].Heart,2005;91:299-304.
    [133]牛廷献,罗晓红,史智勇等.红藻氨酸致痫大鼠海马区神经元凋亡的动态变化[J].中国行为医学科学,2006;15(4):297-310.
    [134]Fetsch JF,Laskin WB,Tavassoli FA,et al.Superficial angiomyxoma (cutaneoua myxoma).A clinicopatholgic study of 17 cases arising in the genital region[J].Int I Gynecol Pathol,1997,16:325-34.
    [135]David CH,Jun C,Roger PS.Involvement of easpase-3-like protease in the mechanism of cell death following focally evoked limbic seizures[J]. J Neurochem,2000;74:1215-1223.
    [136]Alexei K,Karen G.Introcerebral injection of Caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-envoked status epilepticus.Mol Brain Res,2000,75:216-224.
    [137]Steeper TA,Rosai J.Aggressive angiomyxoma of the female genital pelvis and perineum:report of nine cases of a distinctive type of gynecologic soft-tissue neoplasm[J].Am J Surg Pathol,1983,7:463-75.
    [138]罗非君,钟林,肖献忠等.参麦对山毒索诱导的小鼠腹腔巨噬细胞凋亡的保护作用[J].中国现代医学杂志,2001;11(1):12.
    [1]Berezikov E,Guryev V,van de Belt J,et al.Phylogenetic shadowing and computational identification of human microRNA genes.Cell,2005,120 (1):21-4.
    [2]Eddy SR.Non-coding RNA genes and the modern RNA world.Nat Rev Cancer,2001,2(12):919-29.
    [3]Prescott EM,Proudfoot NJ.Transcriptional collision between conver gent genes in budding yeast.Proc Natl Acad Sci USA,2002,99(13):8796-801.
    [4]Hastings ML,Milcarek C,Martincic K,et al.Expression of the thyroid hormone receptor gene,erbAalpha,in B lymphocytes:alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels.Nucleic Acids Res,1997,25(21):4296-300.
    [5]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5):843-54.
    [6]Lagos-Quintana M,Rauhut R,Lendeckel W,et al.Identification of novel genes coding for small expressed RNAs[J].Science,2001,294:853-858.
    [7]Lau NC,Lim LP,Weinstein EQet al. An abundant class of tiny RNA with probable regulatory roles in caenorhabditis elegans[J]. Science,2001,294(5543):858-862.
    [8]Chalfie M,Horvitz HR,Sulston JE.Mutations that lead to reiterations in the cell lineages of C.elegans.Cell,1981,24(1):59-69.
    [9]Ambros V. The functions of animal microRNAs. Nature,2004,431 (7006):350-5.
    [10]Reinhart BJ,Slack FJ,Basson M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature,2000,403(6772):901-6.
    [11]McManus MT,Sharp PA.Gene silencing inmammalsby small interfering RNAs.Nature Reviews Genetics,2002,3(10):737-74.
    [12]Lee RC.Ambros V.An extensive class of small RNAs in Caenorhabditis elegans.Science,2001,294:862-64.
    [13]Reinhart BJ,Weinstein EG,Rhoades MW,et al.MicroRNAs in plants.Genes Dev,2002,16(13):1616-162.
    [14]Lee Y,Kim M,Han J,et al.MicroRNA genes are transcribed by RNA polymerase
    [15]Cai X,Hagedorn CH,Cullen BR.Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs.Rna,2004, 10(12):1957-66.
    [16]Kim VN.MicroRNA biogenesis:coordinated cropping and dicing.Nat Rev Mol Cell Biol,2005,6(5):376-85.
    [17]Han J,Lee Y,Yeom KH,et al.The Drosha-DCR8 complex in primary microRNA processing.Genes Dev,2004,18(24):3016-27.
    [18]Frankel LB,Christoffersen NR,Jacobsen A,et al.Programmed Cell Death 4(PDCD4)Is an important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells.J Biol Chem,2008,283(2):1026-33.
    [19]Kiriakidon M,Nelson PT,Kouranov A,et al.A combined computational-experimental approach predicts human microRNA target.Genes Dev,2004, 18(10):1165-78.
    [20]Bohnsack MT,Czaplinski K,Gorlich D.Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna,2004,10(2):185-91.
    [21]Lee Y,Ahn C,Han J,et al.The nuclear RNaseⅢ Drosha initiates microRNA processing.Nature,2003,425:415-419.
    [22]Rana TM.Illuminating the silence:understanding the structure and function of small RNAs.Nat Rev Mol Cell Biol,2007,8(1):23-26.
    [23]Zeng Y,Cullen BR.Sequence requirements for micro RNA processing and function in human cells.RNA,2003,9(1):112-123.
    [24]Bemstein E,Candy AA,Hmnmond SM,et al.Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature,2001,409(6818):363-366.
    [25]Pasquinelli AE,Reinhart BJ,Slack FJ,et al.Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA.Natrue,2000,408(6808):86-89.
    [26]Griffiths-Jones S.The microRNA registry.Nucleic Acids Res,2004,32(Database issue):D109-D111.
    [27]Valoczi A,Hornyik C,Varga N,et al.Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes.Nucleic Acids Res,2004,32(22):175-188.
    [28]Sioud M,Rosok O.Profiling microRNA expression using sensitive cDNA probes and filter arrays.Biotechniques,2004,37(4):574-6,578-80.
    [29]Grad Y,Aach J,Hayes GD,et al.Computational and experimental identification of C.elegans microRNAs.MolC ell,2003,11(5):1253—1263.
    [30]Allawi HT,Dahlberg JE,Olson S,et al.Quantitation of microRNAs using a modified Invader assay.RNA,2004,10(7):1153—1161.
    [31]Hartig JS,Grune I,Najafi-Shoushtari SH.et al.Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes.J Am Chem Soc,2004,126(3): 722-723.
    [32]Zeng Y,Cullen BR.Sequencer equirements for microRNA processing and function in human cells.RNA,2003,9(1):112—123.
    [33]Abelson JF,Kwan KY,O'Roak BJ,et al.Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science,2005,310(5746):317-320.
    [34]Mehler MF,Mattick JS.Noncoding RNAs and RNA editing in brain development,functional diversification,and neurological disease. Physiol Rev,2007,87(3):799-823.
    [35]Kanellopoulou C,Muljo SA,Kung AL,et al.Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing.Genes Dev,2005, 19(4):489-501.
    [36]Bemstein E,Kim S Y,Carmell M A,et al.Dicer is essential for mouse development.Nat Genet,2003,35(3):215-217.
    [37]Schaefer A,O'Carroll D,Tan C L,et al.Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med,2007,204(7):1553-1558.
    [38]Kim J,Inoue K,Ishii J,et al.A microRNA feedback circuit in midbrain dopamine neurons.Science,2007,317(5842):1220-1224.
    [39]Hebert SS,Horre K,Nicola L,et al.Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACEl/β-secretase expression.Proc Natl Acad Sci USA,2008,105(17):6415-6420.
    [40]Wang WX,Rajeev BW,Stromberg AJ,et al.The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci,2008,28(5):1213-1223.
    [41]Lukiw W J.MicroRNA speciation in fetal,adult and Alzheimer's disease hippocampus.Neuroreport,2007,18(3):297-300.
    [42]EL Akuffo,JB Davis,Steven M F,et al.The discovery and early validation of novel plasma biomarkers in mild-to-moderate Alzheimer's disease patients responding to treatment with rosiglitazone.Biomarkers,2008,13(6):618-636.
    [43]Drzezga A,Kurz A.Basic pathologies of neurodegenerative dementias and their relevance for state of the art molecular imaging studies. Eur J Nucl Med Mol Imaging,2008,35:S4-S11.
    [44]JP Cogswella,J Wardb,Ian A,et al.Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways.Disease Mechanism:Apolipoprotein E,2008, T162.
    [45]Kim J,Inoue K,Ishii J,et al.A MicroRNA feedback circuit in midbrain dopamine nenrous.Science,2007,317(5842):1220-1224.
    [46]Hebert SS,De Strooper B.Molecular biology miRNAs in neurodegeneration. Science,2007,317(5842):1179-1180.
    [47]Cuellar TL,Davis TH,Nelson PT,et al.Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration.Proc Natl Acad Sci USA,2008,105(14):5614-5619.
    [48]Wang G,van der Walt JM,Mayhew G,et al.Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein.Am J Hum Genet,2008,82(2):283-289.
    [49]Chan J A,Krichevsky A M,Kosik K S.MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.Cancer Res,2005,65(14):6029-6033.
    [50]Bottoni A,Zatelli M C,Ferracin M,et al.Identification of diferentially expressed microRNAs by microarray:a possible role for microRNA genes in pituitary adenomas.J Cell Physiol,2007,210(2):370-377.
    [51]Bottoni A,Piccin D,Tagliati F,et al.miR-15a and miR-16-1 down-regulation in pituitary adenomas.J Cell Physiol,2005,204(1):280-285.
    [52]Jeyaseelan K,Lim K Y,Armugam A.MicroRNA expression in the blood and brain of rats subjected to transient focal isebemia by middle cerebral artery occlusion.Stroke,2008,39(3):959-966.
    [53]Gupta A,Gattner J J,Sethupathy P.Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript.Nature,2006,442(7098): 82-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700