CNTNAP2、NRNX1、SHANK3多态性与汉族儿童孤独症的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤独症是一种广泛发育障碍性疾病,以社会交往障碍、语言发育障碍、兴趣狭窄和刻板重复的行为方式为基本临床特征。孤独症被认为是儿童广泛性发育障碍(Pervasive developmental disorder, PDD)的一个亚型。阿斯伯格综合征(Asperger disorder, AS)、广泛性发育障碍未注明(PDD not otherwise specified, PDD-NOS)和儿童瓦解性精神障碍具有相似的临床特征而被归类为孤独症谱群疾病(ASD),他们均属于儿童广泛性发育障碍疾病。孤独症的病因学复杂,包括了遗传和环境的因素的影响,双生子和家系研究的结果显示遗传因素在孤独症的致病中起了重要作用,孤独症的遗传度高达80-90%。在中国人群中,孤独症患病率高达0.11%,中国人口数高达13亿,孤独症患者给社会造成极大的负担。因此,研究中国汉族人群的孤独症的病因具有重要意义。而突触在神经系统中具有重要作用,与突触结构功能相关的基因CNTNAP2,NRXN1和SHANK3可能与中国汉族人群的孤独症的易感性相关,因此有必要研究这三个基因是否为汉族人的孤独症的易感基因。
     方法:在采用芯片技术进行基因分型之前,我们采用PCR-RFLP技术对161个孤独症核心家系的CNTNAP2基因的三个SNPs位点进行了基因分型,并采用haploview4.1软件进行了家系为基础的传递不平衡检验。为进一步研究中国汉族儿童的CNTNAP2, NRXN1和SHANK3基因多态性与孤独症的相关性,采用Illumina CNV 370-Duo芯片对280个孤独症的核心家系人员,共455例孤独症患者及97例对照进行全基因组SNP分型。其余1000例对照来自安徽医科大学采用Illumina 610芯片进行基因分型的数据。从中选取CNTNAP2、NRXN1、SHANK3所有SNPs基因分型数据,采用haploview4.1软件进行家系为基础的传递不平衡检验和病例-对照关联分析,并分别构建单体型。
     结果:1、家系为基础的传递不平衡检验和病例-对照研究的结果均显示CNTNAP2基因的rs7785603,rs10085579,rs2972110位点与孤独症显著关联,这几个SNPs的一些单体型与孤独症的易感性相关。
     2、家系为基础的传递不平衡检验和病例-对照研究的结果均显示NRXN1基因的rs1518551,rs719645位点与孤独症显著关联,这几个SNPs的一些单体型与孤独症的易感性相关。
     3、家系为基础的传递不平衡检验和病例-对照研究的结果均显示SHANK3基因的rs8137951位点与孤独症显著关联,Block 2的GA、AG单体型与孤独症的易感性相关。
     结论:本研究结果显示CNTNAP2基因、NRXN1基因、SHANK3基因的遗传变异为中国汉族人孤独症的易感因素,研究结果支持CNTNAP2基因、NRXN1基因、SHANK3基因为孤独症易感基因。但考虑到孤独症这样的神经发育疾病的复杂性,及本研究相对较小的样本量和样本的遗传异质性,因此,有必要加大样本量对其进一步研究。
Autism is a pervasive developmental disorder mainly characterized by limited or absent verbal communication, lacking of reciprocal social interaction or responsiveness and restricted, stereotypical, and ritualized patterns of interests and behavior. Autism together with childhood disintegrative disorder, pervasive not otherwise specified (PDD-NOS, or atypical autism) and Asperger syndrome share the similar characteristics and are all included as autism spectrum disorder (ASD), also known as pervasive developmental disorder (PDD). The etiology is rather heterogeneous with the involvement of both genetic and nongenetic factors. Nevertheless, twin and family studies have indicated a primal role of genetic factors in the etiology of autism. In such studies, autism shows heritability as high as 80-90%. Autism was reported to affect approximately 0.11% of the population in China. Considering that the population is over 1.3 billion, autism presents a significant disease burden in China. Therefore, it is important to investigate the etiology of autism in the Chinese Han population. Synapses play an important role in the nervous system, the CNTNAP2, NRXN1 and SHANK3 related with the structure and function of synapses may be associated with autism that be demonstrated by some studies, so it is necessary to study the genes whether are autistic susceptible gene of the Chinese Han population.
     Methods:Before the chip technology is used for genotyping, we genotyped the three SNPs of CNTNAP2 gene in 161 autistic trios by using PCR-RFLP technique, then a family-based transmission disequilibrium test is performed by using haploview4.1 software. Furthermore, attempt to investigate association of CNTNAP2, NRXN1 and SHANK3 polymorphisms with autism in Chinese Han children; genotyping was carried out by using Illumina CNV 370-Duo chip in 280 autistic trios,455 autistic children and 97 controls.1000 controls were genotyped by using Illumina 610 chip in the Anhui Medical University. The genotype data of CNTNAP2、NRXN1、SHANKS were selected. Family based association studies and case-control was performed by using haploview 4.1 and haplotypes were constructed respectively.
     Results:1. The results of family association studies and case-control study showed that the rs7785603, rs10085579, rs2972110 of CNTNAP2 gene is associated with the increased risk for autism, and the haplotypes which included alleles of SNPs associated with autism also showed evidence of association.2. The results of family association studies and case-control study showed that the rs1518551, rs719645 of NRXN1 gene is associated with the increased risk for autism, and the haplotypes which included alleles of SNPs associated with autism also showed evidence of association.3. The results of family association studies and case-control study showed that the rs8137951 of SHANK3 gene is associated with the increased risk for autism, and haplotypes GA, AG of Block 2 also showed evidence of association.
     Conclusion:
     Our study showed that the genetic variability of CNTNAP2 gene, NRXN1 gene and SHANK3 gene are risk factors for autism in the Chinese Han population, which support the CNTNAP2 gene, NRXN1 gene and SHANK3 gene are susceptible gene of autism. Given the complex nature of a multifactorial neurodevelopmental disorders such as autism and the relatively small size of the study sample and their heterogeneity, further investigations, with larger sample size, are required to confirm whether the CNTNAP2 gene, NRXN1 gene and SHANK3 gene are associated with autism in the Chinese Han population.
引文
[1]Kanner L, Autistic disturbances of affective contact. Acta Paedopsychiatr, 1968,35(4):100-136.
    [2]Fombonne E, The epidemiology of autism:a review. Psychol Med,1999,29(4): 769-786.
    [3]Newschaffer C J, Croen L A, Daniels J, et al., The epidemiology of autism spectrum disorders. Annu Rev Public Health,2007,28(235-258.
    [4]Bertrand J, Mars A, Boyle C, et al., Prevalence of autism in a United States population:the Brick Township, New Jersey, investigation. Pediatrics, 2001,108(5):1155-1161.
    [5]Wong V C, Hui S L, Epidemiological study of autism spectrum disorder in China. J Child Neurol,2008,23(1):67-72.
    [6]Happe F, Ronald A, The' fractionable autism triad':a review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychol Rev, 2008,18(4):287-304.
    [7]Maestrini E, Marlow A J, Weeks D E, et al., Molecular genetic investigations of autism. J Autism Dev Disord,1998,28(5):427-437.
    [8]Trottier G, Srivastava L, Walker C D, Etiology of infantile autism:a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci, 1999,24(2):103-115.
    [9]Bespalova I N, Buxbaum J D, Disease susceptibility genes for autism. Ann Med, 2003,35(4):274-281.
    [10]Rutter M, Genetic studies of autism:from the 1970s into the millennium. J Abnorm Child Psychol,2000,28(1):3-14.
    [11]A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet,1998,7(3):571-578.
    [12]A genomewide screen for autism:strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet,2001,69(3):570-581.
    [13]Molloy C A, Keddache M, Martin L J, Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Mol Psychiatry, 2005,10(8):741-746.
    [14]Alarcon M, Abrahams B S, Stone J L, et al., Linkage, association, and
    gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet,2008,82(1):150-159.
    [15]Arking D E, Cutler D J, Brune C W, et al., A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet,2008,82(1):160-164.
    [16]Allen-Brady K, Robison R, Cannon D, et al., Genome-wide linkage in Utah autism pedigrees. Mol Psychiatry,2009,
    [17]McCauley J L, Li C, Jiang L, et al., Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet,2005,6(1.
    [18]Posthuma D, Luciano M, Geus E J, et al., A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet,2005,77(2): 318-326.
    [19]Weiss L A, Arking D E, Daly M J, et al., A genome-wide linkage and association scan reveals novel loci for autism. Nature,2009,461(7265):802-808.
    [20]Elia J, Gai X, Xie H M, et al., Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry,2009,
    [21]Glessner J T, Wang K, Cai G, et al., Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature,2009,459(7246):569-573.
    [22]Marshall C R, Noor A, Vincent J B, et al., Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet,2008,82(2):477-488.
    [23]Blanpied T A, Ehlers M D, Microanatomy of dendritic spines:emerging principles of synaptic pathology in psychiatric and neurological disease. Biol Psychiatry,2004,55(12):1121-1127.
    [24]Scheiffele P, Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci,2003,26(485-508.
    [25]Gerrow K, El-Husseini A, Cell adhesion molecules at the synapse. Front Biosci, 2006,11(2400-2419.
    [26]Okabe S, Molecular anatomy of the postsynaptic density. Mol Cell Neurosci, 2007,34(4):503-518.
    [27]Poliak S, Gollan L, Martinez R, et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron,1999,24(4):1037-1047.
    [28]Abrahams B S, Tentler D, Perederiy J V, et al., Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci U S A,2007,104(45): 17849-17854.
    [29]Vemes S C, Newbury D F, Abrahams B S, et al., A functional genetic link between distinct developmental language disorders. N Engl J Med,2008,359(22): 2337-2345.
    [30]Verkerk A J, Mathews C A, Joosse M, et al., CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics, 2003,82(1):1-9.
    [31]Belloso J M, Bache I, Guitart M, et al., Disruption of the CNTNAP2 gene in a t(7;15) trans location family without symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet,2007,15(6):711-713.
    [32]Poot M, Beyer V, Schwaab I, et al., Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics,11(1):81-89.
    [33]Strauss K A, Puffenberger E G, Huentelman M J, et al., Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med, 2006,354(13):1370-1377.
    [34]Zweier C, de Jong E K, Zweier M, et al., CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet,2009,85(5): 655-666.
    [35]Bakkaloglu B, O'Roak B J, Louvi A, et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet,2008,82(1):165-173.
    [36]Biederer T, Sudhof T C, CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem,2001,276(51):47869-47876.
    [37]Philippe A, Martinez M, Guilloud-Bataille M, et al., Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet,1999,8(5):805-812.
    [38]Ushkaryov Y A, Petrenko A G, Geppert M, et al., Neurexins:synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science, 1992,257(5066):50-56.
    [39]Missler M, Sudhof T C, Neurexins:three genes and 1001 products. Trends Genet, 1998,14(1):20-26.
    [40]Garcia-Fresco G P, Sousa A D, Pillai A M, et al., Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc Natl Acad Sci U S A,2006,103(13):5137-5142.
    [41]Rowen L, Young J, Birditt B, et al., Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics,2002,79(4): 587-597.
    [42]Tabuchi K, Sudhof T C, Structure and evolution of neurexin genes:insight into the mechanism of alternative splicing. Genomics,2002,79(6):849-859.
    [43]Paraoanu L E, Becker-Roeck M, Christ E, et al., Expression patterns of neurexin-1 and neuroligins in brain and retina of the chick embryo:Neuroligin-3 is absent in retina. Neurosci Lett,2006,395(2):114-117.
    [44]Zeng Z, Sharpe C R, Simons J P, et al., The expression and alternative splicing of alpha-neurexins during Xenopus development. Int J Dev Biol,2006,50(1):39-46.
    [45]Dean C, Scholl F G, Choih J, et al., Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci,2003,6(7):708-716.
    [46]Nam C I, Chen L, Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A,2005,102(17): 6137-6142.
    [47]Tobaben S, Sudhof T C, Stahl B, Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexin 1 alpha. J Biol Chem,2002,277(8):6359-6365.
    [48]Li G, Lee D, Wang L, et al., N-terminal insertion and C-terminal ankyrin-like repeats of alpha-latrotoxin are critical for Ca2+-dependent exocytosis. J Neurosci,2005,25(44):10188-10197.
    [49]Beglopoulos V, Montag-Sallaz M, Rohlmann A, et al., Neurexophilin 3 is highly localized in cortical and cerebellar regions and is functionally important for sensorimotor gating and motor coordination. Mol Cell Biol,2005,25(16): 7278-7288.
    [50]Hata Y, Davletov B, Petrenko A G, et al., Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron,1993,10(2):307-315.
    [51]Sugita S, Saito F, Tang J, et al., A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol,2001,154(2):435-445.
    [52]Kikuno R, Nagase T, Ishikawa K, et al., Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res,1999,6(3):197-205.
    [53]Sudhof T C, Neuroligins and neurexins link synaptic function to cognitive disease. Nature,2008,455(7215):903-911.
    [54]Reissner C, Klose M, Fairless R, et al., Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci U S A,2008,105(39):15124-15129.
    [55]Yamagata M, Sanes J R, Weiner J A, Synaptic adhesion molecules. Curr Opin Cell Biol,2003,15(5):621-632.
    [56]Varoqueaux F, Jamain S, Brose N, Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol,2004,83(9):449-456.
    [57]Graf E R, Zhang X, Jin S X, et al., Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell,2004,119(7): 1013-1026.
    [58]Levinson J N, Chery N, Huang K, et al., Neuroligins mediate excitatory and inhibitory synapse formation:involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem,2005,280(17): 17312-17319.
    [59]Dean C, Dresbach T, Neuroligins and neurexins:linking cell adhesion, synapse formation and cognitive function. Trends Neurosci,2006,29(1):21-29.
    [60]Sankaranarayanan S, Atluri P P, Ryan T A, Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci,2003,6(2):127-135.
    [61]Washbourne P, Bennett J E, McAllister A K, Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci,2002,5(8): 751-759.
    [62]Graf E R, Kang Y, Hauner A M, et al., Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci, 2006,26(16):4256-4265.
    [63]Boucard A A, Chubykin A A, Comoletti D, et al., A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha-and beta-neurexins. Neuron,2005,48(2):229-236.
    [64]Geppert M, Khvotchev M, Krasnoperov V, et al., Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem, 1998,273(3):1705-1710.
    [65]Zhang W, Rohlmann A, Sargsyan V, et al., Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N-and P/Q-type Ca2+ channels. J Neurosci,2005,25(17):4330-4342.
    [66]Sons M S, Busche N, Strenzke N, et al., alpha-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction. Neuroscience,2006,138(2):433-446.
    [67]Kim H G, Kishikawa S, Higgins A W, et al., Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet,2008,82(1):199-207.
    [68]Zahir F R, Baross A, Delaney A D, et al., A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1 alpha. J Med Genet, 2008,45(4):239-243.
    [69]Wisniowiecka-Kowalnik B, Nesteruk M, Peters S U, et al., Intragenic rearrangements in NRXN1 in three families with autism spectrum disorder, developmental delay, and speech delay. Am J Med Genet B Neuropsychiatr Genet,
    [70]Bonaglia M C, Giorda R, Borgatti R, et al., Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet,2001,69(2):261-268.
    [71]Sugiyama Y, Kawabata I, Sobue K, et al., Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods, 2005,2(9):677-684.
    [72]Boeckers T M, The postsynaptic density. Cell Tissue Res,2006,326(2):409-422.
    [73]Sheng M, Hoogenraad C C, The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem,2007,76(823-847.
    [74]Gerrow K, Romorini S, Nabi S M, et al., A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron,2006,49(4): 547-562.
    [75]Meyer G, Varoqueaux F, Neeb A, et al., The complexity of PDZ domain-mediated interactions at glutamatergic synapses:a case study on neuroligin. Neuropharmacology,2004,47(5):724-733.
    [76]Sala C, Piech V, Wilson N R, et al., Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron,2001,31(1):115-130.
    [77]Cusmano-Ozog K, Manning M A, Hoyme H E,22q13.3 deletion syndrome:a recognizable malformation syndrome associated with marked speech and language delay. Am J Med Genet C Semin Med Genet,2007,145C(4):393-398.
    [78]Wilson H L, Wong A C, Shaw S R, et al., Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet, 2003,40(8):575-584.
    [79]Bonaglia M C, Giorda R, Mani E, et al., Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet, 2006,43(10):822-828.
    [80]Durand C M, Betancur C, Boeckers T M, et al., Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet,2007,39(1):25-27.
    [81]Philippe A, Boddaert N, Vaivre-Douret L, et al., Neurobehavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood. Pediatrics, 2008,122(2):e376-382.
    [82]Jeffries A R, Curran S, Elmslie F, et al., Molecular and phenotypic characterization of ring chromosome 22. Am J Med Genet A,2005,137(2): 139-147.
    [83]Manning M A, Cassidy S B, Clericuzio C, et al., Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics,2004,114(2):451-457.
    [84]Moessner R, Marshall C R, Sutcliffe J S, et al., Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet,2007,81(6):1289-1297.
    [85]Gauthier J, Spiegelman D, Piton A, et al., Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet,2009,1508(3): 421-424.
    [86]Sheng M, Kim E, The Shank family of scaffold proteins. J Cell Sci,2000,113 (Pt 11)(1851-1856.
    [87]Lim S, Naisbitt S, Yoon J, et al., Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem,1999,274(41):29510-29518.
    [88]Boeckers T M, Bockmann J, Kreutz M R, et al., ProSAP/Shank proteins-a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem,2002,81(5): 903-910.
    [89]Ehlers M D, Synapse structure:glutamate receptors connected by the shanks. Curr Biol,1999,9(22):R848-850.
    [90]Roussignol G, Ango F, Romorini S, et al., Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci,2005,25(14): 3560-3570.
    [91]Garber K, Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science,2007,317(5835):190-191.
    [92]Qin J, Jia M, Wang L, et al., Association study of SHANK3 gene polymorphisms with autism in Chinese Han population. BMC Med Genet,2009,10(61.
    [1]Kanner L, Eisenberg L, Early infantile autism,1943-1955. Psychiatr Res Rep Am Psychiatr Assoc,1957,7):55-65.
    [2]Rutter M, Diagnosis and definition of childhood autism. J Autism Child Schizophr,1978,8(2):139-161.
    [3]Fombonne E, The epidemiology of autism:a review. Psychol Med,1999,29(4): 769-786.
    [4]Happe F, Ronald A, The fractionable autism triad':a review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychol Rev, 2008,18(4):287-304.
    [5]Maestrini E, Marlow A J, Weeks D E, et al., Molecular genetic investigations of autism. J Autism Dev Disord,1998,28(5):427-437.
    [6]Trottier G, Srivastava L, Walker C D, Etiology of infantile autism:a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci, 1999,24(2):103-115.
    [7]Bespalova I N, Buxbaum J D, Disease susceptibility genes for autism. Ann Med, 2003,35(4):274-281.
    [8]Rutter M, Genetic studies of autism:from the 1970s into the millennium. J Abnorm Child Psychol,2000,28(1):3-14.
    [9]Vorstman J A, Staal W G, van Daalen E, et al., Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry,2006,11(1):1,18-28.
    [10]Reddy K S, Cytogenetic abnormalities and fragile-X syndrome in Autism Spectrum Disorder. BMC Med Genet,2005,6(3.
    [11]Martin C L, Ledbetter D H, Autism and cytogenetic abnormalities:solving autism one chromosome at a time. Curr Psychiatry Rep,2007,9(2):141-147.
    [12]Casas K A, Mononen T K, Mikail C N, et al., Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am J Med Genet A,2004,130A(4):331-339.
    [13]Harvard C, Malenfant P, Koochek M, et al., A variant Cri du Chat phenotype and autism spectrum disorder in a subject with de novo cryptic microdeletions involving 5p15.2 and 3p24.3-25 detected using whole genomic array CGH. Clin Genet,2005,67(4):341-351.
    [14]Lukusa T, Vermeesch J R, Holvoet M, et al., Deletion 2q37.3 and autism: molecular cytogenetic mapping of the candidate region for autistic disorder. Genet Couns,2004,15(3):293-301.
    [15]Vincent J B, Herbrick J A, Gurling H M, et al., Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet,2000,67(2):510-514.
    [16]Wolff D J, Clifton K, Karr C, et al., Pilot assessment of the subtelomeric regions of children with autism:detection of a 2q deletion. Genet Med,2002,4(1):10-14.
    [17]Depienne C, Moreno-De-Luca D, Heron D, et al., Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry,2009,66(4):349-359.
    [18]Freitag C M, The genetics of autistic disorders and its clinical relevance:a review of the literature. Mol Psychiatry,2007,12(1):2-22.
    [19]Berg J S, Brunetti-Pierri N, Peters S U, et al., Speech delay and autism spectrum behaviors are frequently associated with duplication of the 7q11.23 Williams-Beuren syndrome region. Genet Med,2007,9(7):427-441.
    [20]Vorstman J A, Morcus M E, Duijff S N, et al., The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry,2006,45(9):1104-1113.
    [21]Borg I, Squire M, Menzel C, et al., A cryptic deletion of 2q35 including part of the PAX3 gene detected by breakpoint mapping in a child with autism and a de novo 2;8 translocation. J Med Genet,2002,39(6):391-399.
    [22]Castermans D, Volders K, Crepel A, et al., SCAMP5, NBEA and AMISYN:three candidate genes for autism involved in secretion of large dense-core vesicles. Hum Mol Genet,19(7):1368-1378.
    [23]Ishikawa-Brush Y, Powell J F, Bolton P, et al., Autism and multiple exostoses associated with an X;8 translocation occurring within the GRPR gene and 3'to the SDC2 gene. Hum Mol Genet,1997,6(8):1241-1250.
    [24]Muhle R, Trentacoste S V, Rapin I, The genetics of autism. Pediatrics, 2004,113(5):e472-486.
    [25]Alarcon M, Abrahams B S, Stone J L, et al., Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet,2008,82(1):150-159.
    [26]Duvall J A, Lu A, Cantor R M, et al., A quantitative trait locus analysis of social responsiveness in multiplex autism families. Am J Psychiatry,2007,164(4): 656-662.
    [27]Ma D Q, Cuccaro M L, Jaworski J M, et al., Dissecting the locus heterogeneity of autism:significant linkage to chromosome 12q14. Mol Psychiatry,2007,12(4): 376-384.
    [28]Schellenberg G D, Dawson G, Sung Y J, et al., Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry,2006,11(11):1049-1060,1979.
    [29]Szatmari P, Paterson A D, Zwaigenbaum L, et al., Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet,2007,39(3): 319-328.
    [30]A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet,1998,7(3):571-578.
    [31]A genomewide screen for autism:strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet,2001,69(3):570-581.
    [32]Molloy C A, Keddache M, Martin L J, Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Mol Psychiatry, 2005,10(8):741-746.
    [33]Wassink T H, Piven J, Vieland V J, et al., Evaluation of FOXP2 as an autism susceptibility gene. Am J Med Genet,2002,114(5):566-569.
    [34]Buxbaum J D, Silverman J, Keddache M, et al., Linkage analysis for autism in a subset families with obsessive-compulsive behaviors:evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry,2004,9(2):144-150.
    [35]Ramoz N, Reichert J G, Smith C J, et al., Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry,2004,161(4):662-669.
    [36]Segurado R, Conroy J, Meally E, et al., Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry,2005,162(11):2182-2184.
    [37]Yonan A L, Palmer A A, Smith K C, et al., Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction. Genes Brain Behav,2003,2(5):303-320.
    [38]Sutcliffe J S, Delahanty R J, Prasad H C, et al., Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet,2005,77(2):265-279.
    [39]Klauck S M, Poustka F, Benner A, et al., Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet,1997,6(13):2233-2238.
    [40]Ramoz N, Reichert J G, Corwin T E, et al., Lack of evidence for association of the serotonin transporter gene SLC6A4 with autism. Biol Psychiatry,2006,60(2): 186-191.
    [41]Auranen M, Vanhala R, Varilo T, et al., A genomewide screen for autism-spectrum disorders:evidence for a major susceptibility locus on chromosome 3q25-27. Am J Hum Genet,2002,71(4):777-790.
    [42]Gauthier J, Bonnel A, St-Onge J, et al., NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population. Am J Med Genet B Neuropsychiatr Genet,2005,132B(1):74-75.
    [43][43] Jamain S, Quach H, Betancur C, et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet, 2003,34(1):27-29.
    [44]Lawson-Yuen A, Saldivar J S, Sommer S, et al., Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet,2008,16(5): 614-618.
    [45]Allen-Brady K, Robison R, Cannon D, et al., Genome-wide linkage in Utah autism pedigrees. Mol Psychiatry,2009,
    [46]McCauley J L, Li C, Jiang L, et al., Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet,2005,6(1.
    [47]Posthuma D, Luciano M, Geus E J, et al., A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet,2005,77(2): 318-326.
    [48]Weiss L A, Arking D E, Daly M J, et al., A genome-wide linkage and association scan reveals novel loci for autism. Nature,2009,461(7265):802-808.
    [49]Jacob S, Brune C W, Carter C S, et al., Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett, 2007,417(1):6-9.
    [50]Lerer E, Levi S, Salomon S, et al., Association between the oxytocin receptor (OXTR) gene and autism:relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry,2008,13(10):980-988.
    [51]Marui T, Koishi S, Funatogawa I, et al., No association of FOXP2 and PTPRZ1 on 7q31 with autism from the Japanese population. Neurosci Res,2005,53(1): 91-94.
    [52]Wang L, Jia M, Yue W, et al., Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet, 2008,147B(4):434-438.
    [53]Elia J, Gai X, Xie H M, et al., Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry,2009,
    [54]Glessner J T, Wang K, Cai G, et al., Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature,2009,459(7246):569-573.
    [55]Marshall C R, Noor A, Vincent J B, et al., Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet,2008,82(2):477-488.
    [56]McCarroll S A, Extending genome-wide association studies to copy-number variation. Hum Mol Genet,2008,17(R2):R135-142.
    [57]Redon R, Ishikawa S, Fitch K R, et al., Global variation in copy number in the human genome. Nature,2006,444(7118):444-454.
    [58]Bucan M, Abrahams B S, Wang K, et al., Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet,2009,5(6):e1000536.
    [59]Kumar R A, KaraMohamed S, Sudi J, et al., Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet,2008,17(4):628-638.
    [60]Mefford H C, Sharp A J, Baker C, et al., Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med,2008, 359(16):1685-1699.
    [61]Sebat J, Lakshmi B, Malhotra D, et al., Strong association of de novo copy number mutations with autism. Science,2007,316(5823):445-449.
    [62]Weiss L A, Shen Y, Korn J M, et al., Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med,2008,358(7):667-675.
    [63]Lehman N L, The ubiquitin proteasome system in neuropathology. Acta Neuropathol,2009,118(3):329-347.
    [64]O'Dushlaine C, Kenny E, Heron E, et al., Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry,
    [65]Wolffe A P, Matzke M A, Epigenetics:regulation through repression. Science, 1999,286(5439):481-486.
    [66]Jaenisch R, Bird A, Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet,2003,33 Suppl(245-254.
    [67]Couzin J, Breakthrough of the year. Small RNAs make big splash. Science, 2002,298(5602):2296-2297.
    [68]Kalebic T, Epigenetic changes:potential therapeutic targets. Ann N Y Acad Sci, 2003,983(278-285.
    [69]Szpecht-Potocka A, Gos M, Struniawski R, et al., [Angelman syndrome-the research model of epigenetic mechanisms expression genes regulation]. Med Wieku Rozwoj,2009,13(2):123-130.
    [70]Samaco R C, Hogart A, LaSalle J M, Epigenetic overlap in autism-spectrum neurodevelopmental disorders:MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet,2005,14(4):483-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700