联合应用肢体远隔缺血后处理和七氟烷后处理对大鼠心肌缺血再灌注损伤的保护作用及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血再灌注损伤(ischemia reperfusion injury)的概念是在1960年由等Jennings首次提出,此后该问题成为了困扰医学工作者的一个难题。为了减轻心肌缺血再灌注损伤并最终缩小心肌梗死面积,在临床上和实验研究中均采取了多种干预措施。其中缺血预处理(ischemia preconditioning)强大的心肌保护作用已得到公认,但临床缺血事件的不可预测性使其更多地是停留在了理论层面。除了短暂缺血之外,多种刺激均可诱发缺血预处理样保护作用。吸入麻醉药七氟烷后处理的心肌保护作用已经在动物和人体研究中得到了证实,七氟烷后处理的主要优点是操作简单和实施容易,并且能够与其他多种心肌保护干预措施联合应用,对于减轻心肌缺血再灌注损伤是一种极具临床应用前景的干预措施。肢体远隔缺血后处理(limb remote ischemic postconditioning)是通过在上肢或下肢等部位实施远隔缺血刺激,以保护心肌对抗缺血再灌注损伤。肢体远隔缺血后处理的主要优点是实施简单、无需有创操作和不需要额外的费用,具有广阔的临床应用前景。
     低氧诱导因子1(hypoxia-inducible factor1, HIF-1)能够在转录水平调节多种基因的表达,在细胞和组织缺血适应过程中发挥着至关重要的作用。其下游基因血红素氧化酶1(Heme oxygenase1, HO-1)和诱生型一氧化氮合酶(inducible nitric oxide synthase, iNOS)具有保护心肌对抗缺血再灌注损伤的作用。丝氨酸/苏氨酸激酶Akt和细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK1/2)是再灌注损伤救援激酶途径(reperfusion injury salvage kinase pathway, RISK途径)的重要组成成分,是各种不同干预措施发挥心肌保护作用的交汇点。在缺血再灌注过程中, RISK途径激活能够对心肌损伤产生强大的保护作用。
     本实验从临床应用出发,拟观察联合应用两种极具应用前景的干预措施—七氟烷后处理和肢体远隔缺血后处理能否获得有益的协同性心肌保护作用。同时对缺血缺氧过程中关键转录因子HIF-1的表达情况以及RISK途径的激活情况进行观察,以初步探讨这两种干预措施发挥作用的机制。全部实验共分三个部分:
     第一部分:联合应用肢体远隔缺血后处理和七氟烷后处理组处理对心肌缺血再灌注损伤的保护作用
     采用8周龄、体重250-320g的健康Sprague Dawley (SD)大鼠建立在体心肌缺血再灌注损伤模型,共分六个实验组(每组10只大鼠):空白对照组(CON组)、缺血再灌注损伤组(IR组)、缺血预处理组(IPC组)、肢体远隔缺血后处理组(LRIPOC组)、七氟烷后处理组(SEVPOC组)以及联合应用肢体远隔缺血后处理和七氟烷后处理组(COMBINE组)。所有大鼠开胸后采用5-0丝线将冠状动脉左前降支(left anterior descending coronary artery, LAD)套扎做成活结。除CON组之外,所有大鼠均接受阻断LAD局部心肌缺血30min和开放LAD心肌血流再灌注120min的处理。IR组不采取任何其他措施;IPC组结扎LAD前进行3个循环(每个循环为5min缺血-5min再灌注)的缺血预处理,总处理时间为30min;LRIPOC组在心肌缺血15min时采用止血带结扎大鼠双侧后肢造成缺血10min,并在再灌注前5min开放后肢血流灌注;SEVPOC组在开放LAD实施再灌注前5min经小动物麻醉机的挥发罐吸入1MAC的七氟烷,直至再灌注后5min;COMBINE组在心肌缺血15min时采用止血带结扎大鼠双侧后肢造成肢体缺血10min,再灌注前5min开放后肢血流灌注,并吸入1MAC的七氟烷,直至再灌注后5min。实验过程中维持大鼠直肠体温在37-38℃范围内,连续监测心率(heart rate, HR)、收缩压(systolic blood pressure, SBP)、舒张压(diastolic blood pressure, DBP)、平均动脉压(mean arterial pressure, MAP)和Ⅱ导联ECG,并计算HR和SBP的乘积(rate-pressure product, RPP)作为心肌氧耗指数。记录实验中心律失常情况并进行评分。在再灌注120min时抽取动脉血标本,采用ELISA试剂盒检测大鼠血清乳酸脱氢酶(lactic dehydrogenase, LDH)、肌酸激酶心肌型同工酶(creatine kinase MB isoenzyme, CK-MB)和心肌肌钙蛋白I(cardiac Troponin-Ⅰ, cTnⅠ),并采用伊文思蓝和氯化三苯基四氮唑(TTC)双重染色测定梗死面积(infarct size, IS%)。
     排除实验中不合格的大鼠,最终共有49只大鼠纳入实验,其中CON组9只,IR组、LRIPOC组、SEVPOC组、COMBINE组个IPC组各8只。各组大鼠的一般情况、缺血面积占左心室比值各组间比较差异均无统计学意义。
     与IR组相比,LRIPOC组、SEVPOC组和COMBINE组再灌注初期发生心律失常的动物数有所减少和心律失常的持续时间有不同程度的缩短,但是差异无统计学意义。与IPC组相比,IR组、LRIPOC组、SEVPOC组和COMBINE组再灌注初期发生心律失常的动物数显著增多,心律失常持续时间和心律失常评分明显升高。
     血清LDH浓度的总体组间比较差异有显著统计学意义(F=51.503,P<0.01)。与CON组相比,IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组血清LDH浓度明显升高;与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组血清LDH浓度明显降低;与IPC组相比,COMBINE组血清LDH浓度无显著统计学差异,但LRIPOC组和SEVPOC组血清LDH浓度明显升高;LRIPOC组和SEVPOC组血清LDH浓度比较差异无显著统计学意义;与COMBINE组相比,LRIPOC组和SEVPOC组血清LDH浓度明显升高。
     血清CK-MB浓度的总体组间比较差异有显著统计学意义(F=32.244,P<0.01)。与CON组相比,血清CK-MB浓度在IPC组和COMBINE组无显著统计学差异,在IR组、LRIPOC组和SEVPOC组明显升高;与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组血清CK-MB浓度明显降低;与IPC组相比,LRIPOC组和SEVPOC组血清CK-MB浓度的明显升高;与COMBINE组相比,LRIPOC组和SEVPOC组血清CK-MB浓度无显著统计学差异。
     血清cTnI浓度的总体组间比较差异有显著统计学意义(F=81.511,P<0.01)。与CON组相比,IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组血清cTnl浓度明显升高;与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组血清cTnI浓度明显降低;与IPC组相比,血清cTnI浓度在COMBINE组无显著统计学差异,在LRIPOC组和SEVPOC组明显升高;LRIPOC组和SEVPOC组血清cTnI浓度比较差异无显著统计学意义;与COMBINE组相比,LRIPOC组和SEVPOC组血清cTnI浓度明显升高。
     各组的心肌梗死面积(IS%值)为:CON组,(3.7±3.4)%;IR组,(64.2±13.6))%:LRIPOC组,(45.8±15.6)%;SEVPOC组,(43.6±9.7)%;COMBINE组,(30.9±11.3)%;IPC组,(22.0±5.0)%。IS%值的总体组间比较差异具有显著统计学意义(F=33.333,P<0.01)。心肌梗死面积两组之间的比较结果如下:与CON组相比,IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组心肌梗死面积明显增大;与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组心肌梗死面积明显缩小;与IPC组相比,心肌梗死面积在COMBINE组无显著统计学差异,在LRIPOC组和SEVPOC组明显增大;与COMBINE组相比,LRIPOC组和SEVPOC组心肌梗死面积明显增大。
     第二部分:HIF-1在联合应用远隔缺血后处理和七氟烷后处理心肌保护作用中的地位
     采用8周龄、体重250-320g的健康SD大鼠建立在体心肌缺血再灌注损伤模型,即结扎大鼠LAD实施局部心肌缺血30min后开放LAD实施心肌血流再灌注60min。共分五个实验组(每组5只大鼠):缺血再灌注损伤组(IR组)、缺血预处理组(IPC组)、肢体远隔缺血后处理组(LRIPOC组)、七氟烷后处理组(SEVPOC组)以及联合应用肢体远隔缺血后处理和七氟烷后处理组(COMBINE组)。实验过程中维持大鼠直肠温度在37-38℃范围内。再灌注末,再次结扎大鼠LAD,并迅速摘取大鼠心脏。留取结扎线以下颜色灰白的左心室组织作为缺血区心肌组织,留取右心室作为非缺血区心肌组织;同时留取大鼠后肢肌肉(触发远隔缺血后处理的组织)和前肢肌肉(非触发组织)。采用实时定量PCR技术检测(2-ΔΔct法)组织内HIF-1α、HO-1和iNOS基因的表达。
     非缺血心肌组织目的基因的表达情况如下:
     非缺血区心肌组织内HIF-1αmRNA表达量的均值是按照IR组、LRIPOC组、SEVPOC组.COMBINE组和IPC组的顺序递增。与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组非缺血区心肌组织内HIF-1α mRNA表达量明显增高;与IPC组相比,LRIPOC组、SEVPOC组和COMBINE组非缺血区心肌组织内HIF-1α mRNA表达量明显降低;与LRIPOC组相比,非缺血区心肌组织内HIF-1α mRNA表达量在SEVOPOC组无显著统计学差异,在COMBINE组明显增高。与SEVPOC组相比,COMBINE组非缺血区心肌组织内HIF-1αmRNA的表达量明显增高。
     非缺血心肌组织内HO-1mRNA表达量的均值是按照IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。与IR组相比,非缺血心肌组织内HO-1mRNA表达量在LRIPOC组和SEVPOC组无显著统计学差异,在COMBINE组和IPC组明显增高;与IPC组相比,非缺血心肌组织内HO-1mRNA表达量在COMBINE组无显著统计学差异,在LRIPOC组和SEVPOC组明显降低。与LRIPOC组相比,SEVPOC组和COMBINE组非缺血心肌组织内HO-1mRNA表达量明显增高;与SEVPOC组相比,COMBINE组非缺血心肌组织内HO-1mRNA表达量明显增高。
     非缺血心肌组织内iNOS mRNA表达量的均值是按照IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。与IR组相比,非缺血心肌组织内iNOS mRNA表达量在LRIPOC组无显著统计学差异,在SEVPOC组、COMBINE组和IPC组明显增高;与IPC组相比,非缺血心肌组织内iNOS mRNA表达量在COMBINE组无显著统计学差异,在LRIPOC组和SEVPOC组明显降低;与LRIPOC组相比,非缺血心肌组织内iNOS mRNA表达量在SEVPOC组无显著统计学差异,在COMBINE组明显增高;与SEVPOC组相比,COMBINE组非缺血心肌组织内iNOS mRNA表达量无显著统计学差异。
     缺血心肌组织目的基因的表达情况如下:
     缺血区心肌组织内HIF-1α mRNA表达量的均值是按照IR组、LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内HIF-1α mRNA表达量明显增高;与IPC组相比,LRIPOC组、SEVPOC组和COMBINE组缺血区心肌组织内HIF-1α mRNA表达量明显降低;LRIPOC组、SEVPOC组和COMBINE组缺血区心肌组织内HIF-1α mRNA表达量比较差异无显著统计学意义。
     缺血区心肌组织内HO-1mRNA的表达量的均值是按照IR组、IPC组、SEVPOC组、COMBINE组和LRIPOC组的顺序递增。与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内HO-1mRNA表达量明显增高;LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内HO-1mRNA表达量比较差异无显著统计学意义。
     缺血区心肌组织内iNOS mRNA表达量的均值是按照IR组、SEVPOC组、IPC组、COMBINE组和LRIPOC组的顺序递增。与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内iNOS mRNA表达量明显增高;与IPC组相比,缺血区心肌组织内iNOS mRNA表达量在SEVPOC组和COMBINE组无显著统计学差异,在LRIPOC组明显增高;与LRIPOC组相比,SEVPOC组和COMBINE组缺血区心肌组织内iNOS mRNA表达量明显降低。
     第三部分PI3K/Akt和ERKl/2信号转导通路在联合应用远隔缺血后处理和七氟烷后处理心肌保护作用中的地位
     采用8周龄、体重250-320g的健康SD大鼠建立在体心肌缺血再灌注损伤模型,即结扎大鼠LAD实施心肌缺血30min,然后开放LAD实施心肌血流再灌注60min。共分五个实验组(每组5只大鼠):缺血再灌注损伤组(IR组)、缺血预处理组(IPC组)、肢体远隔缺血后处理组(LRIPOC组)、七氟烷后处理组(SEVPOC组)以及联合应用肢体远隔缺血后处理和七氟烷后处理组(COMBINE组)。实验过程中维持大鼠直肠温度在37-38℃。再灌注期末,再次结扎LAD,并迅速摘取心脏。留取结扎线以下颜色灰白的左心室组织作为缺血区心肌组织,留取右心室作为非缺血区心肌组织。采用Western-Blot技术检测大鼠心肌组织内Akt、磷酸化p-Akt、ERK1/2和磷酸化p-ERK1/2的表达情况,并计算p-Akt与Akt的比值以及p-ERK1/2与ERK1/2的比值。
     结果显示:缺血区心肌组织内p-Akt/Akt比值的各组间比较是IR组的数值最小,并按照LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。缺血区心肌组织内p-Akt/Akt比值的组间比较结果如下:与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内p-Akt/Akt比值明显升高;与IPC组相比,LRIPOC组、SEVPOC组和COMBINE组缺血区心肌组织内p-Akt/Akt比值明显降低;与LRIPOC组相比,缺血区心肌组织内p-Akt/Akt比值在SEVPOC组无显著统计学差异,在COMBINE组明显升高;与SEVPOC组相比,COMBINE组缺血区心肌组织内p-Akt/Akt比值明显升高。
     非缺血区心肌组织内p-Akt/Akt比值与缺血区心肌组织相似,同样也是IR组的数值最小,并按照LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。非缺血区心肌组织内p-Akt/Akt比值的组间比较结果如下:与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组非缺血区心肌组织内p-Akt/Akt比值明显升高;与IPC组相比,非缺血区心肌组织内p-Akt/Akt比值在LRIPOC组和SEVPOC组明显降低,在COMBINE组无显著统计学差异;与LRIPOC组相比,非缺血区心肌组织内p-Akt/Akt比值在SEVPOC组无显著统计学差异,在COMBINE组明显升高;与SEVPOC组相比,COMBINE组非缺血区心肌组织内p-Akt/Akt比值明显升高。
     缺血区心肌组织内p-ERK/ERK比值的各组间比较是IR组的数值最小,并按照LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。缺血区心肌组织内p-ERK/ERK比值的组间比较结果如下:与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组缺血区心肌组织内p-ERK/ERK比值明显升高;与IPC组相比,缺血区心肌组织内p-ERK/ERK比值在LRIPOC组和SEVPOC组明显降低,在COMBINE组无显著统计学差异;与LRIPOC组相比,缺血区心肌组织内p-ERK/ERK比值在SEVPOC组无显著统计学差异,在COMBINE组明显升高;与SEVPOC组相比,COMBINE组缺血区心肌组织内p-ERK/ERK比值明显升高。
     非缺血区心肌组织内p-ERK/ERK比值与缺血区心肌组织相似,同样也是IR组的数值最小,并按照LRIPOC组、SEVPOC组、COMBINE组和IPC组的顺序递增。非缺血区心肌组织内p-ERK/ERK比值的组间比较结果如下:与IR组相比,LRIPOC组、SEVPOC组、COMBINE组和IPC组非缺血区心肌组织内p-ERK/ERK比值明显升高;与IPC组相比,非缺血区心肌组织内p-ERK/ERK比值在LRIPOC组和SEVPOC组明显降低,在COMBINE组无显著统计学差异;与LRIPOC组相比,非缺血区心肌组织内p-ERK/ERK比值在SEVPOC组无显著统计学差异,在COMBINE组明显升高;与SEVPOC组相比,COMBINE组非缺血区心肌组织内p-ERK/ERK比值明显升高。
     结论
     通过本实验,我们得出以下结论:
     1.在大鼠在体心肌缺血再灌注损伤模型,肢体远隔缺血后处理和七氟烷后处理均能有效减轻心肌缺血再灌注损伤;联合应用两种干预措施能够进一步减轻心肌缺血再灌注损伤。
     2.肢体远隔缺血后处理和七氟烷后处理均能诱发系统性保护作用,即两种干预措施均能诱发缺血区心肌、非缺血区心肌、缺血区下肢肌肉内HIF-1α、HO-1和iNOS基因表达加强;联合应用两种干预措施能够进一步增强上述基因的表达。
     3.肢体远隔缺血后处理和七氟烷后处理均能诱导Akt和ERK1/2磷酸化,提示这两种干预措施对心肌缺血再灌注损伤的保护作用是通过激活RISK途径实现的。
Since the phenomenon of ischemia-reperfusion injury was first reported by Jennings in the year of1960, it has been perplexing researchers for more than half a century. In order to attenuate ischemia reperfusion injury (IRI) and finally reduce infarct size of myocardium, lots of interventions have been invented. Ischemic preconditioning-the most powerful therapeutic strategy is confined to laboratory study because of the unpredictability of an acute myocardial infarction. Besides the classical stimulus of short-term ischemia, there are several stimuli that may induce a preconditioning-like effect. The cardioprotection of sevoflurane has been proven by laboratory and clinical trials and may be a tool to win our battle against the ischemia-reperfusion injury. While remote ischemic postconditioning is elicited by one or cycles of non-lethal ischemia-reperfusion to an organ or tissue remote from the heart. Its cardioprotective effect has been translated into the clinical setting with the discovery that the remote stimulus can be non-invasively induced using a standard blood pressure cuff placed on the upper arm or leg.
     Hypoxia inducible factor1is an important transcriptive factor that regulates the expression of more than a hundred of genes related to hypoxia adaptation. Its downstream genes heme oxygenase1and inducible nitric oxide synthase have been proven involved in cardioprotection. Akt and ERK1/2are important components of the reperfusion injury salvage kinase (RISK) pathway, and the convergent point of many irrelevant measures. Activation of the RISK signaling pathway can exert strong protective effect against IRI.
     Multi-model therapy has become a research focus in the IRI cardioprotection field in an attempt to augment the beneficial effect of strategies with different mechanism. This experiment was designed to investigate:1) cardioprotection of sevoflurane postconditioning and remote ischemic postconditioning;2) whether there is synergistic cardioprotection by combining the two strategies;3) role of HIF-1α, HO-1and iNOS in the two strategies;4) role of Akt and ERK1/2in the two strategies. This study was divided into three parts.
     Part One Experimental study on cardioprotection of combining sevoflurane postconditioning and remote limb ischemic postconditioning against ischemia reperfusion injury in rat heart in vivo
     Sixty healthy male Sprague Dawley rats were randomly allocated into six groups:(1) control group (CON);(2) ischemia reperfusion group (IR);(3) ischemic preconditioning group (IPC);(4) limb remote ischemic postconditioning group (LRIPOC);(5) sevoflurane postconditioning group (SEVPOC);(6) combination of limb remote ischemic postconditioning and sevoflurane postconditioning group (COMBINE). After left thoracotomy, a5-0silk ligature was passed below a main branch of the left coronary artery. The ends of the ligature were passed through a propylene tube to form a snare. Rats except the ones in the control group endured regional ischemia reperfusion injury by occlusion of the LAD for30min and then loosening for120min. In IR group, no additional intervention was performed. In IPC group, rats underwent three consercutive5-min LAD occlusion followed by5-min reperfusion before the30-min LAD ligation. In LRIPOC group, after15min of LAD ligation, blood flow in the bilateral hind limbs was stopped for10min and opened at5min before reperfusion. In SEVPOC group, rats received a10-min episode of1MAC sevoflurane5min before reperfusion and5min after reperfusion. In COMBINE group, after15min of LAD ligation, blood flow in the bilateral hind limbs was stopped for10min and opened at5min before reperfusion, and rats began a10-min episode of1MAC sevoflurane just at the time when the remote ischemia stimulus was stopped. The rectal temperature was sustained at37℃~38℃. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and lead Ⅱ electrocardiogram were continuously monitored. Arterial blood sample were taken at120min of reperfusion, and the concentration of serum LDH, CK-MB and cTnI were measured by rat ELISA kits. At the end of reperfusion, infarct size (IS%) was assessed by Evans Blue and triphenyltetrazolium chloride staining.
     Forty-nine rats were finally included in this experiment (9in the CON group,8in any of the rest groups) and results showed that rat's body weight, rectal temperature and the hemodynamic parameter did not differ among the six groups (P>0.05).
     Compared with IPC group, the number of rats suffering ischemic arrhythmia and arrhythmia score were significantly increased in IR group, LRIPOC group, SEVPOC group and COMBINE group. Sevoflurane could postphone ischemic arrhythmia.
     Serum concentration of LDH and cTnI in the IR group, LRIPOC group, SEVPOC group, COMBINE group and IPC group were significantly higher when compared with CON group. Compared with IR group, they were significantly lower in the LRIPOC group, SEVPOC group, COMBINE group and IPC group. They were similar in the LRIPOC group and SEVPOC group, and both were significantly higher than in COMBINE group. They were similar in COMBINE group and IPC group. Serum concentration of CK-MB in the IR group, LRIPOC group and SEVPOC group was higher when compared with CON group. Compared with IR group, it was significantly lower in LRIPOC group, SEVPOC group, COMBINE group and IPC group. It was higher in LRIPOC group and SEVPOC group than in IPC group but was not statistically higher than COMBINE group.
     IS%in the IR group, LRIPOC group, SEVPOC group, COMBINE group and IPC group was significantly higher when compared with CON group. Compared with IR group, it was significantly lower in LRIPOC group, SEVPOC group, COMBINE group and IPC group. It was similar in LRIPOC group and SEVPOC group, and both were significantly higher than COMBINE group. It was similar in COMBINE group and IPC group.
     Part Two Experimental study on the expression of HIF-la, HO-1and iNOS in limb remote ischemic postconditioing and sevoflurane postconditioning
     Twenty-five healthy male SD rats were randomly allocated into five groups:(1) ischemia reperfusion group;(2) ischemic preconditioning group;(3) limb remote ischemic postconditioning group;(4) sevoflurane postconditioning group;(5) combination of limb remote ischemic postconditioning and sevoflurane postconditioning group. After left thoracotomy, a5-0silk ligature was passed below a main branch of the left coronary artery. The ends of the ligature were passed through a propylene tube to form a snare. Rats endured regional ischemia reperfusion injury by occlusion of the LAD for30min and then loosening for60min. Hearts were excised at the termination of experiments. The part of the anterior wall of the left ventricular myocardium near the cardiac apex was separated as the ischemic myocardium, and the right atrium was separated as the non-ischemic myocardium, and skeletal muscle of the hind limb was excised as the remote ischemic tissue and skeletal muscle of the fore limb was also excised as the remote non-ischemic tissue. Real time quantitative polymerase chain reaction (RQ-PCR) was used to quantify the gene expression of hypoxia inducible factor1αand heme oxygenase1and inducible nitrix oxide synthase in these tissues.
     In the non-ischemic myocardium, the expression of HIF-1αmRNA was escalated in an order of IR group, LRIPOC group, SEVPOC group, COMBINE group and IPC group. HIF-1αin IR group was significantly lower than in the other groups. The mRNA expression was significantly higher in COMBINE group than in IR group, LRIPOC group and SEVPOC group, and significantly lower than in IPC group. There was no difference between LRIPOC group and SEVPOC group. There is no difference between COMBINE group and IPC group in the expression of HO-1mRNA, and they were higher than in IR group, LRIPOC group and SEVPOC group. There is no difference between the expression of HO-1mRNA in LRIPOC group and SEVPOC group and they were higher than in IR group but without statistical differences. The expression of iNOS mRNA was significantly lower in IR group than in other groups. It was significantly higher in COMBINE group than in IR group, LRIPOC group, SEVPOC group, but significantly lower than in IPC group. There was no difference between LRIPOC group and SEVPOC group.
     In the ischemic myocardium, the expression of HIF-lamRNA was significantly lower in IR group than in other groups and it was significantly higher in IPC group than in other groups. There was no difference among LRIPOC group, SEVPOC group and COMBINE group. The expression of HO-1mRNA was significantly lower in IR group than in the other groups. There was no significant difference among LRIPOC group, SEVPOC group, COMBINE group and IPC group. The expression of iNOS mRNA was significantly lower in IR group than in other groups and it was significantly higher in LRIPOC group than in other groups. There was no difference among SEVPOC group, COMBINE group and IPC group.
     In the fore limb, the HIF-lamRNA expression was similar in IR group, LRIPOC group and SEVPOC group, and they were significantly lower than in IPC group and COMBINE group. There was no significant difference between IPC group and COMBINE group. The expression of HO-1mRNA was escalated in an order of IR group, SEVPOC group, LRIPOC group, IPC group and COMBINE group. However, there was no significant difference among IR group, SEVPOC group and LRIPOC group. There was no significant difference among SEVPOC group and LRIPOC and IPC group. The expression of iNOS was significantly higher in COMBINE group than in other groups. There was no difference between the other groups.
     In the hind limb, the expression of HIF-1αmRNA was escalated in an order of IR group, LRIPOC group, SEVPOC group, IPC group and COMBINE group. There was no difference between LRIPOC group and SEVPOC group. There was no difference between SEVPOC group and COMBINE group. No differences existed between COMBINE group and IPC group. The expression of HO-1mRNA was escalated in in an order of IR group, SEVPOC group, LRIPOC group, IPC group and COMBINE group. There was no difference between SEVPOC group and LRIPOC group. It was significantly lower in IPC group than in COMBINE group, but significantly higher than in IR group, SEVPOC group and LRIPOC group. The expression of iNOS mRNA was escalated in an order of IR group, LRIPOC group, SEVPOC group, IPC group and COMBINE group. There was no significant difference between IR group and LRIPOC group. There was no significant difference between IPC group and COMBINE group. Part Three Experimental study on the expression of Akt and ERK in limb remote ischemic postconditioing and sevoflurane postconditioning
     Twenty-five healthy male Sprague Dawley rats were randomly allocated into five groups:(1) ischemia reperfusion group;(2) ischemic preconditioning group;(3) limb remote ischemic postconditioning group;(4) sevoflurane postconditioning group;(5) combination of remote ischemic postconditioning and sevoflurane postconditioning group. After left thoracotomy, a5-0silk ligature was passed below a main branch of the left coronary artery. The ends of the ligature were passed through a propylene tube to form a snare. Rats endured regional ischemia reperfusion injury by occlusion of the LAD for30min and then loosening for60min. Hearts were removed at the termination of experiments. The part of the anterior wall of the left ventricular myocardium near the cardiac apex was separated as the ischemic myocardium, and the right atrium was separated as the non-ischemic myocardium. Western-Blot was used to examine the expression of Akt, p-Akt, ERK1/2and p-ERK1/2and caculated ratios of p-Akt/Akt and (p-ERK1/2)/(ERK1/2).
     In the ischemic myocardium, the ratio of p-Akt/Akt was escalated in an order of LRIPOC group, SEVPOC group, COMBINE group and IPC group. There was no significant difference between RIPOC group and SEVPOC group. While in the non-ischemic myocardium, the p-Akt/Akt ratio was also escalated in an order of LRIPOC group, SEVPOC group, COMBINE group and IPC group. There was no difference between COMBINE group and IPC group.
     In the ischemic myocardium, the ratio of (p-ERK1/2)/(ERK1/2) was escalated in an order of LRIPOC group, SEVPOC group, COMBINE group and IPC group. There was no significant difference between LRIPOC group and SEVPOC group. There was no significant difference between COMBINE group and IPC group. While in the non-ischemic myocardium, the (p-ERK1/2)/(ERK1/2) ratio was also escalated in an order of IR group, LRIPOC group, SEVPOC group, COMBINE group and IPC group. There was no significant difference between LRIPOC group and SEVPOC group. There was no significant difference between COMBINE group and IPC group.
     Conclusions
     Based on the results of all experiments, the following conclusion can be drawn:
     1. Remote limb ischemic postconditioning and sevoflurane postconditioning provides cardioprotection against ischemia-reperfusion injury in rat hearts in vivo. Combination of the two interventions can produce an augmented protective effect.
     2. Both limb remote ischemic postconditioning and sevoflurane postconditioning can trigger system response to ischemia reperfusion injury. They provoke gene expression of HIF-la, HO-1and iNOS in ischemic myocardium, non-ischemic myocardium, hind limb skeletal muscle and fore limb skeletal muscle.
     3. Both limb remote ischemic postconditioning and sevoflurane postconditioning can induce the phosphorylation of Akt and ERK1/2, so the RISK signaling pathway participates in the cardioprotection of the two interventions.
引文
[1]Mangano DT. Perioperative cardiac morbidity [J]. Anesthesiology,1990, 72(1):153-184.
    [2]Ginks WR, Sybers HD, Maroko PR, Covell JW, Sobel BE, Ross JJr. Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion [J]. J Clin Invest,1972,51(10):2717-2723.
    [3]Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog [J]. Arch Pathol, 1960,70:68-78.
    [4]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium [J]. Circulation,1986, 74(5):1124-1136.
    [5]Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol,2003,285(2):H579-H588.
    [6]Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance:reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit [J]. Circulation,1997,96(5):1641-1646.
    [7]Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion [J]. Circulation,1993,87(3):893-899.
    [8]Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue [J]. Circulation, 1996,4(9):2193-2200.
    [9]Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, Juhasz ED, Szekely L, Szelid Z, Turner MS, Ashrafian H, Frenneaux MP, Andreka P. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs [J]. Heart,2007,93(6):749-752.
    [10]Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, Deanfield JE, MacAllister RJ. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP channel dependent mechanism [J]. Circulation,2007,116(12):1386-1395.
    [11]Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors [J]. Basic Res Cardiol, 2005,100(5):404-412.
    [12]Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P. The paradigm of postconditioning to protect the heart [J]. J Cell Mol Med,2008,12(2):435-458.
    [13]Xiong J, Liao X, Xue FS, Yuan YJ, Wang Q, Liu JH. Remote ischemia conditioning-an endogenous cardioprotective strategy from outside the heart [J]. Chin Med J,2011,124(14):2209-2215.
    [14]Obal D, Preckel B, Scharbatke H, Mullenheim J, Hoterkes F, Thamer V, Schlack W. One MAC of sevoflurane provides protection against reperfusion injury in the rat heart in vivo [J]. Br J Anaesth,2001,87(6):905-911.
    [15]Obal D, Scharbatke H, Barthel H, Preckel B, Mullenheim J, Schlack W. Cardioprotection against reperfusion injury is maximal with only two minutes of sevoflurane administration in rats [J]. Can J Anesth,2003,50(9):940-945.
    [16]Preckel B, Schlack W, Comfere T, Obal D, Barthel H, Thamer V. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo [J]. Br J Anaesth,1998, 81(6):905-912.
    [17]Oguchi T, Kashimoto S, Yamaguchi T, Nakamura T, Kumazawa T. Comparative effects of halothane, enflurane, isoflurane and sevoflurane on function and metabolism in the ischaemic rat heart [J]. Br J Anaesth,1995,74(5):569-575.
    [18]Lecour S. Multiple protective pathways against reperfusion injury:a SAFE path without Aktion [J]? J Mol Cell Cardiol,2009,46(5):607-609.
    [19]Eckle T, Grenz A, Kohler D, Redel A, Falk M, Rolauffs B, Osswald H, et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice [J]. Am J Physiol Heart Circ Physiol,2006,291(5):H2533-H2540.
    [20]Vessey DA, Li L, Kelley M, Karliner JS. Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia [J]. Biochem Biophys Res Commun,2008,375(3):425-429.
    [21]Semenza GL. HIF-l:mediator of physiological and pathophysiological responses to hypoxia [J]. J Appl Physiol,2000,88(4):1474-1480.
    [22]Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury [J]. Circulation, 2003,108(1):79-85.
    [23]Kant R, Diwan V, Jaggi AS, Singh N, Singh D. Remote renal preconditioning-induced cardioprotection:a key role of hypoxia inducible factor-prolyl 4-hydroxylases [J]. Mol Cell Biochem,2008,312(l-2):25-31.
    [24]Kerendi F, Kirshbom PM, Halkos ME, Wang NP, Kin H, Jiang R, Zhao ZQ, Kanter KR, Guyton RA, Vinten-Johansen J. Thoracic Surgery Directors Association Award. Cobalt chloride pretreatment attenuates myocardial apoptosis after hypothermic circulatory arrest [J]. Ann Thorac Surg,2006,81(6):2055-2062.
    [25]Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, Izumo S, Kelley J, Gao X, Browder W, Williams DL, Kao RL, Li C. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism [J]. Cardiovasc Res,2008,8(3):546-553.
    [26]Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway:a common target for both ischemic preconditioning and postconditioning [J]. Trends Cardiovasc Med,2005,15(2):69-75.
    [27]Peart JN, Gross GJ. Cardioprotection following adenosine kinase inhibition in rat hearts [J]. Basic Res Cardiol,2005,100(4):328-336.
    [28]Tarnavski 0. Mouse surgical models in cardiovascular research [J]. Methods Mol Biol,2009,573:115-137.
    [29]Kawada T, Yamazaki T, Akiyama T, Kitagawa H, Shimizu S, Mizuno M, Li M, Sugimachi M. Vagal stimulation suppresses ischemia-induced myocardial interstitial myoglobin release [J]. Life Sci,2008,83(13-14):490-495.
    [30]Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion [J]. J Cardiovasc Pharmacol Ther.2006, 11(1):55-63.
    [31]Oozawa S, Mori S, Kanke T, Takahashi H, Liu K, Tomono Y, Asanuma M, Miyazaki I, Nishibori M, Sano S. Effects of HMGB1 on ischemia-reperfusion injury in the rat heart [J]. Circ J,2008,72(7):1178-1184.
    [32]Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning:the essential role of the mitochondrial permeability transition pore [J]. Cardiovasc Res,2007,75(3):530-535.
    [33]Groban L, Vernon JC, Butterworth J. Intrathecal morphine reduces infarct size in a rat model of ischemia-reperfusion injury [J]. Anesth Analg,2004, 98(4):903-909.
    [34]Turan NN, Basgut B, Aypar E, Ark M, Iskit AB, Cakici I. Chemical preconditioning effect of 3-nitropropionic acid in anesthetized rat heart [J]. Life Sci,2008,82(17-18):928-933.
    [35]Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo [J]. Circulation, 2002,106(23):2881-2883.
    [36]Peoples GE, McLennan PL, Howe PR, Groeller H. Fish oil reduces heart rate and oxygen consumption during exercise [J]. J Cardiovasc Pharmacol,2008, 2(6):540-547.
    [37]Pourkhalili K, Hajizadeh S, Tiraihi T, Akbari Z, Esmailidehaj M, Bigdeli MR, Khoshbaten A. Ischemia and reperfusion-induced arrhythmias:role of hyperoxic preconditioning [J]. J Cardiovasc Med (Hagerstown),2009,10(8):635-642.
    [38]Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M. One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model [J]. Cardiovasc Drugs Ther,2009,23(4):327-331.
    [39]Yellon DM, Hausenloy DJ. Myocardial reperfusion injury [J]. N Engl J Med, 2007,357(11):1121-1135.
    [40]Meldrum DR. Mechanisms of cardiac preconditioning:ten years after the discovery of ischemic preconditioning [J]. J Surg Res,1997,73(1):1-13.
    [41]Gumina RJ, Gross GJ. If ischemic preconditioning is the gold standard, has a platinum standard of cardioprotection arrived [J]? Comparison with NHE inhibition. J Thromb Thrombolysis,1999,8(1):39-44.
    [42]Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA; NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia. Myocardial protection at a crossroads:the need for translation into clinical therapy [J]. Circ Res,2004,95(2):125-134.
    [43]Penttila HJ, Lepojarvi MV, Kaukoranta PK, Kiviluoma KT, Ylitalo KV, Peuhkurinen KJ. Ischemic preconditioning does not improve myocardial preservation during off-pump multivessel coronary operation [J]. Ann Thorac Surg,2003,75(4):1246-1252.
    [44]Koneru B, Fisher A, He Y, Klein KM, Skurnick J, Wilson DJ, de la Torre AN, Merchant A, Arora R, Samanta AK. Ischemic preconditioning in deceased donor liver transplantation:a prospective randomized clinical trial of safety and efficacy [J]. Liver Transpl,2005,11 (2):196-202.
    [45]Warltier DC, al-Wathiqui MH, Kampine JP, Schmeling WT. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane [J]. Anesthesiology,1988,69(4):552-565.
    [46]Cason BA, Gamperl AK, Slocum RE, Hickey RF. Anesthetic-induced preconditioning:previous administration of isoflurane decreases myocardial infarct size in rabbits [J]. Anesthesiology,1997,87(5):1182-1190.
    [47]Schlack W, Preckel B, Stunneck D, Thamer V. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart [J]. Br J Anaesth,1998,81(6):913-919.
    [48]Kevin LG, Katz P, Camara AK, Novalija E, Riess ml, Stowe DF. Anesthetic preconditioning:effects on latency to ischemic injury in isolated hearts [J]. Anesthesiology,2003,99(2):385-391.
    [49]Redel A, Stumpner J, Tischer-Zeitz T, Lange M, Smul TM, Lotz C, Roewer N, Kehl F. Comparison of isoflurane-, sevoflurane-, and desflurane-induced pre- and postconditioning against myocardial infarction in mice in vivo [J]. Exp Biol Med (Maywood),2009,234(10):1186-1191.
    [50]Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo [J]. Anesth Analg,2005,101(5):1252-1260.
    [51]Deyhimy DI, Fleming NW, Brodkin IG, Liu H. Anesthetic preconditioning combined with postconditioning offers no additional benefit over preconditioning or postconditioning alone [J]. Anesth Analg,2007,105(2):316-324.
    [52]De Hert SG, Longrois D, Yang H, Fleisher LA. Does the use of a volatile anesthetic regimen attenuate the incidence of cardiac events after vascular surgery [J]? Acta Anaesthesiol Belg,2008,59(1):19-25.
    [53]De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, Rodrigus IE, Van der Linden PJ. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients [J]. Anesthesiology,2003,99(2):314-323.
    [54]Landoni G, Bignami E, Oliviero F, Zangrillo A. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia [J]. Ann Card Anaesth, 2009,12(1):4-9.
    [55]Zangrillo A, Testa V, Aldrovandi V, Tuoro A, Casiraghi G, Cavenago F, Messina M, Bignami E, Landoni G. Volatile agents for cardiac protection in noncardiac surgery:a randomized controlled study [J]. J Cardiothorac Vasc Anesth,2011, 25(6):902-907.
    [56]Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning:underlying mechanisms and clinical application [J]. Cardiovasc Res,2008,79(3):377-386.
    [57]Kanoria S, Seifalian AM, Williams R, Davidson BR. Hind limb remote preconditioning of the liver:a role for nitric oxide and HO-1[J]. Transplantation, 2007,83(3):363-364.
    [58]Li CM, Zhang XH, Ma XJ, Luo M. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury [J]. Scand Cardiovasc J,2006, 40(5):312-317.
    [59]Ebert TJ, Harkin CP, Muzi M. Cardiovascular responses to sevoflurane:a review [J]. Anesth Analg,1995,81(6 Suppl):Sll-S22.
    [60]Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery:first clinical application in humans [J]. J Am Coll Cardiol,2006,47(11):2277-2282.
    [61]Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery:a randomised controlled trial [J]. Lancet,2007,370(9587):575-579.
    [62]B(?)tker HE, Kharbanda R, Schmidt MR, B(?)ttcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, S(?)rensen HT, Redington AN, Nielsen TT. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction:a randomised trial [J]. Lancet,2010, 375(9716):727-734.
    [63]郭宗林.多巴胺治疗急性心肌梗死溶栓中一过性低血压的疗效观察[J].社区医学杂志,2004,2(6):21-22.
    [64]徐秋萍,郭丰,张舸,平玉坤,丁晨彦,张烨斐.急性心肌梗死溶栓中一些特殊问题的研究[J].中国急救医学,2001,21(7):389-391.
    [65]Rusy BF, Komai H. Anesthetic depression of myocardial contractility:a review of possible mechanisms [J]. Anesthesiology,1987,67(5):745-766.
    [66]Stowe DF, Dujic Z, Bosnjak ZJ, Kalbfleisch JH, Kampine JP. Volatile anesthetics attenuate sympathomimetic actions on the guinea pig SA node [J]. Anesthesiology, 1988,68(6):887-894.
    [67]Park WK, Pancrazio JJ, Suh CK, Lynch C 3rd. Myocardial depressant effects of sevoflurane. Mechanical and electrophysiologic actions in vitro [J]. Anesthesiology,1996,84(5):1166-1176.
    [68]Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris [J]. Circulation,1978,57(3):549-556.
    [69]Wilkinson PL, Moyers JR, Ports T, Chatterjee K, Ullyott D, Hamilton WK. Rate-pressure product and myocardial oxygen consumption during surgery forcoronary artery bypass [J]. Circulation,1979,60(2 Pt 2):170-173.
    [70]Larsen JR, Sivesgaard K, Christensen SD, H(?)nge JL, Hasenkam JM. Heart rate limitation and cardiac unloading in sevoflurane post-conditioning [J]. Acta Anaesthesiol Scand,2012,56(1):57-65.
    [71]Takamatsu T. Arrhythmogenic substrates in myocardial infarct [J]. Pathol Int, 2008,58(9):533-543.
    [72]Jiang H, Hu X, Lu Z, Wen H, Zhao D, Tang Q, Yang B. Effects of sympathetic nerve stimulation on ischemia-induced ventricular arrhythmias by modulating connexin43 in rats [J]. Arch Med Res,2008,39(7):647-654.
    [73]Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction [J]. J Am Coll Cardiol,2008, 51(23):2266-2275.
    [74]Hamlin RL. Animal models of ventricular arrhythmias [J]. Pharmacol Ther,2007, 113(2):276-295.
    [75]Grech ED, Ramsdale DR. Termination of reperfusion arrhythmia by coronary artery occlusion [J]. Br Heart J,1994,72(1):94-95.
    [76]Chiladakis JA, Vlachos N, Patsouras N, Mazarakis A, Manolis AS. Usefulness of reperfusion ventricular arrhythmias in non-invasive prediction of early reperfusion and sustained coronary artery patency in acute myocardial infarction [J]. J Thromb Thrombolysis,2001,12(3):231-236.
    [77]Osmancik PP, Stros P, Herman D. In-hospital arrhythmias in patients with acute myocardial infarction-the relation to the reperfusion strategy and their prognostic impact [J]. Acute Card Care,2008,10(1):15-25.
    [78]Evrengul H, Seleci D, Tanriverdi H, Kaftan A. The antiarrhythmic effect and clinical consequences of ischemic preconditioning [J]. Coron Artery Dis,2006, 17(3):283-288.
    [79]Gong JS, Yao YT, Fang NX, Li LH. Sevoflurane postconditioning attenuates reperfusion-induced ventricular arrhythmias in isolated rat hearts exposed to ischemia/reperfusion injury [J]. Mol Biol Rep,2012,39(6):6417-6425.
    [80]Regueiro-Purrinos M, Fernandez-Vazquez F, de Prado AP, Altonaga JR, Cuellas-Ramon C, Ajenjo-Silverio JM, Orden A, Gonzalo-Orden JM. Ventricular arrhythmias and mortality associated with isoflurane and sevoflurane in a porcine model of myocardial infarction [J]. J Am Assoc Lab Anim Sci,2011,50(1):73-78.
    [81]Ahmed LA, Salem HA, Attia AS, Agha AM. Comparative study of the cardioprotective effects of local and remote preconditioning in ischemia/reperfusion injury [J]. Life Sci,2012,90(7-8):249-256.
    [82]张秀明,李健斋,魏明竟,等.现代临床生化检验学[M].北京:人民军医出版社,2001:187-188.
    [83]Murphy JT, Horton JW, Purdue GF, Hunt JL. Evaluation of troponin-Ⅰ as an indicator of cardiac dysfunction after thermal injury [J]. J Trauma,1998, 45(4):700-704.
    [84]O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity [J]. Toxicology,2008,245(3):206-218.
    [85]马红莺CK-MB、LDH、cTnI在急性心肌梗死诊断中价值的比较[J].中国误诊学杂志,2007,11(7):2472-2473.
    [86]Romic E, Unic A, Derek L, Pehar M. Biochemical markers in the diagnosis of acute coronary syndrome [J]. Acta Med Croatica,2009,63(1):15-19.
    [87]Inserte J, Barba I, Hernando V, Garcia-Dorado D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium [J]. Cardiovasc Res,2009, 81(1):116-122.
    [88]Brener SJ, Lytle BW, Schneider JP, Ellis SG, Topol EJ. Association between CK-MB elevation after percutaneous or surgical revascularization and three-year mortality [J]. J Am Coll Cardiol,2002,40(11):1961-1967.
    [89]Fellahi JL, Gue X, Richomme X, Monier E, Guillou L, Riou B. Short-and long-term prognostic value of postoperative cardiac troponin I concentration in patients undergoing coronary artery bypass grafting [J]. Anesthesiology,2003, 99(2):270-274.
    [90]Sharma SK, Kini A, Marmur JD, Fuster V. Cardioprotective effect of prior β-blocker therapy in reducing creatine kinase-MB elevation after coronary intervention:benefit is extended to improvement in intermediate-term survival [J]. Circulation,2000,102(2):166-172.
    [91]Chen D, Cheng B, Zhou HY, Li LH. The effect of sevoflurane postconditioning on cardioprotection against ischemia-reperfusion injury in rabbits [J]. Mol Biol Rep,2012,39(5):6049-6057.
    [92]Schlack W, Preckel B, Barthel H, Obal D, Thamer V. Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo [J]. Br J Anaesth,1997,79(1):88-96.
    [93]Ferreira R. The reduction of infarct size--forty years of research [J]. Rev Port Cardiol,2010,29(6):1037-1053.
    [94]Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death.1. Myocardial infarct size vs duration of coronary occlusion in dogs [J]. Circulation,1977,56(5):786-794.
    [95]Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion [J]. Cell Death Differ,2008,15(4):686-690.
    [96]Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction [J]. N Engl J Med,2000,342(9):626-633.
    [97]Jurgensen JS, Rosenberger C, Wiesener MS, Warnecke C, Horstrup JH, Grafe M, Philipp S, Griethe W, Maxwell PH, Frei U, Bachmann S, Willenbrock R, Eckardt KU. Persistent induction of HIF-1α and -2α in cardiomyocytes and stromal cells of ischemic myocardium [J]. FASEB J,2004,18(12):1415-1417.
    [98]Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA. Hypoxia-inducible factor 1-a reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse [J]. J Am Coll Cardiol,2005,46(11):2116-2124.
    [99]Date T, Mochizuki S, Belanger AJ, Yamakawa M, Luo Z, Vincent KA, Cheng SH, Gregory RJ, Jiang C. Expression of constitutively stable hybrid hypoxia-inducible factor-1α protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury [J]. Am J Physiol Cell Physiol,2005, 288(2):C314-C320.
    [100]Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase [J]. Proc Natl Acad Sci U S A,1968, 61(2):748-755.
    [101]Otterbein LE, Choi AM. Heme oxygenase:colors of defense against cellular stress [J]. Am J Physiol Lung Cell Mol Physiol,2000,279(6):L1029-L1037.
    [102]McCoubrey WK Jr, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3 [J]. Eur J Biochem,1997,247(2):725-732.
    [103]Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite [J]. Proc Natl Acad Sci U S A,1989,86(1):99-103.
    [104]Maeshima H, Sato M, Ishikawa K, Katagata Y, Yoshida T. Participation of altered upstream stimulatory factor in the induction of rat heme oxygenase-1 by cadmium[J]. Nucleic Acids Res,1996,24(15):2959-2965.
    [105]Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin [J]. J Biol Chem,1993,268(20):14678-14681.
    [106]Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice [J]. Circ Res,2001,89(2):168-173.
    [107]Tang YL, Tang Y, Zhang YC, Agarwal A, Kasahara H, Qian K, Shen L, Phillips MI. A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia [J]. Gene Ther,2005,12(15):1163-1170.
    [108]Zhu Y, Zhang Y, Ojwang BA, Brantley MA Jr, Gidday JM. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning:role of HIF-la and heme oxygenase-1 [J]. Invest Ophthalmol Vis Sci,2007,48(4):1735-1743.
    [109]Pachori AS, Melo LG, Hart ml, Noiseux N, Zhang L, Morello F, Solomon SD, Stahl GL, Pratt RE, Dzau VJ. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury [J]. Proc Natl Acad Sci U S A,2004,101(33):12282-12287.
    [110]Lu MJ, Chang H, Chang CC, Wang BW, Shyu KG. Temporal and spatial expression of hypoxia-inducible factor-la and vascular endothelial growth factor in a rat model of myocardial ischemia with or without reperfusion [J]. J Formos Med Assoc,2005,104(10):707-714.
    [111]Tsuchihashi S, Fondevila C, Kupiec-Weglinski JW. Heme oxygenase system in ischemia and reperfusion injury [J]. Ann Transplant,2004,9(1):84-87.
    [112]Peers C, Steele DS. Carbon monoxide:a vital signalling molecule and potent toxin in the myocardium [J]. J Mol Cell Cardiol,2012,52(2):359-365.
    [113]Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide [J]. J Clin Invest,1995,96(6):2676-2682.
    [114]Sammut IA, Foresti R, Clark JE, Exon DJ, Vesely MJ, Sarathchandra P, Green CJ, Motterlini R. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1 [J]. Br J Pharmacol,1998,125(7):1437-1444.
    [115]Christova T, Diankova Z, Setchenska M. Heme oxygenase--carbon monoxide signalling pathway as a physiological regulator of vascular smooth muscle cells [J]. Acta Physiol Pharmacol Bulg,2000,25(1):9-17.
    [116]Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation [J]. Am J Physiol Lung Cell Mol Physiol,2010,299(6):L891-L897.
    [117]Gopinathan V, Miller NJ, Milner AD, Rice-Evans CA. Bilirubin and ascorbate antioxidant activity in neonatal plasma [J]. FEBS Lett,1994,349(2):197-200.
    [118]Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance [J]. Science,1987, 235(4792):1043-1046.
    [119]Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Ferritin:a cytoprotective antioxidant strategem of endothelium [J]. J Biol Chem,1992,267(25):18148-18153.
    [120]Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron [J]. Proc Natl Acad Sci U S A,1991,88(3):688-692.
    [121]Pachori AS, Smith A, McDonald P, Zhang L, Dzau VJ, Melo LG. Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway [J]. J Mol Cell Cardiol,2007,43(5):580-592.
    [122]Salinas M, Wang J, Rosa de Sagarra M, Martin D, Rojo AI, Martin-Perez J, Ortiz de Montellano PR, Cuadrado A. Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo [J]. FEBS Lett,2004,578(1-2):90-94.
    [123]Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning [J]. Cardiovasc Res,2001,52(2):181-198.
    [124]Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M. Positive effects of nitric oxide on left ventricular function in humans [J]. Eur Heart J,2006, 27(14):1699-1705.
    [125]Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury [J]. Cardiovasc Res,2004,61(3):402-413.
    [126]Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, Dawn B. The late phase of preconditioning and its natural clinical application-gene therapy [J]. Heart Fail Rev,2007,12(3-4):189-199.
    [127]Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P. Post-conditioning reduces infarct size in the isolated rat heart:role of coronary flow and pressure and the nitric oxide/cGMP pathway [J]. Basic Res Cardiol,2006,101(2):168-179.
    [128]张一帅,杨晶,彭军,李元建,胡长平.神经元型一氧化氮合酶在心脏功能调节中的作用[J].中国药理学通报,2009,25(3):281-281.
    [129]马丽雅,张辉锋.一氧化氮合酶(NOS)与心血管疾病[J].临床医学研究,2010,27(2):349-351.
    [130]Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G. Microdialysis-based analysis of interstitial NO in situ:NO synthase-independent NO formation during myocardial ischemia [J]. Cardiovasc Res,2007,74(1):46-55.
    [131]Heusch G, Boengler K, Schulz R. Cardioprotection:nitric oxide, protein kinases, and mitochondria [J]. Circulation,2008,118(19):1915-1919.
    [132]Tang XQ, Yu HM, Zhi JL, Cui Y, Tang EH, Feng JQ, Chen PX. Inducible nitric oxide synthase and cyclooxgenase-2 mediate protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC 12 cells [J]. Life Sci,2006,79(9):870-876.
    [133]Bulhak AA, Sjoquist PO, Xu CB, Edvinsson L, Pernow J. Protection against myocardial ischaemia/reperfusion injury by PPAR- α activation is related to production of nitric oxide and endothelin-1 [J]. Basic Res Cardiol,2006, 101(3):244-252.
    [134]Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J. Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts [J]. Am J Physiol Heart Circ Physiol,2006,290(5):H1808-H1817.
    [135]Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury [J]. Circ Res,2006,98(1):133-140.
    [136]Xi L, Taher M, Yin C, Salloum F, Kukreja RC. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling [J]. Am J Physiol Heart Circ Physiol,2004,287(6):H2369-H2375.
    [137]Wang C, Weihrauch D, Schwabe DA, Bienengraeber M, Warltier DC, Kersten JR, Pratt PF Jr, Pagel PS. Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-la and vascular endothelial growth factor expression in rats [J]. Anesth Analg,2006, 103(2):281-288.
    [138]Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y. Sevoflurane postconditioning involves an up-regulation of HIF-1α and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res,2012, PMID:22580326.
    [139]Kant R, Diwan V, Jaggi AS, Singh N, Singh D. Remote renal preconditioning-induced cardioprotection:a key role of hypoxia inducible factor-prolyl 4-hydroxylases [J]. Mol Cell Biochem,2008,312(1-2):25-31.
    [140]Zhao HX, Wang XL, Wang YH, Wu Y, Li XY, Lv XP, Zhao ZQ, Zhao RR, Liu HR. Attenuation of myocardial injury by postconditioning:role of hypoxia inducible factor-la [J]. Basic Res Cardiol,2010,105(1):109-118.
    [141]Lv X, Yang L, Tao K, Liu Y, Yang T, Chen G, Yu W, Lv H, Wu F. Isoflurane preconditioning at clinically relevant doses induce protective effects of heme oxygenase-1 on hepatic ischemia reperfusion in rats [J]. BMC Gastroenterol, 2011,11:31.
    [142]Xia ZY, Gao J, Ancharaz AK. Protective effect of ischemic postconditioning on lung ischemia-reperfusion injury in rats and the role of heme oxygenase-1 [J]. Chin J Traumatol,2009,12(3):162-166.
    [143]Zeng Z, Huang HF, Chen MQ, Song F, Zhang YJ. Postconditioning prevents ischemia/reperfusion injury in rat liver transplantation [J]. Hepatogastroenterology,2010,57(101):875-881.
    [144]Chen CH, Chuang JH, Liu K, Chan JY. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-KB and upregulation of inducible nitric oxide synthase [J]. Shock,2008, 30(3):241-249.
    [145]Katada K, Bihari A, Badhwar A, Yoshida N, Yoshikawa T, Potter RF, Cepinskas G Hindlimb ischemia/reperfusion-induced remote injury to the small intestine:role of inducible nitric-oxide synthase-derived nitric oxide [J]. J Pharmacol Exp Ther, 2009,329(3):919-927.
    [146]Kim JI, Jang HS, Park KM. Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion [J]. BMB Rep,2010,43(9):629-634.
    [147]Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α [J]. Cardiovasc Res, 2008,77(3):463-470.
    [148]Xi L, Tekin D, Gursoy E, Salloum F, Levasseur JE, Kukreja RC. Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia [J]. Am J Physiol Heart Circ Physiol,2002,283(1):H5-H12.
    [149]Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser RH. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction:a newly identified non-neuronal but PKC-dependent pathway [J]. Cardiovasc Res,2002,55(3):590-601.
    [150]Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1 [J]. Biochem Biophys Res Commun,1996, 225(2):485-488.
    [151[ Chun YS, Hyun JY, Kwak YG, Kim IS, Kim CH, Choi E, Kim MS, Park JW. Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1 [J]. Biochem J,2003,370(Pt 1):149-157.
    [152]Downey JM, Davis AM, Cohen MV. Signaling pathways in ischemic preconditioning [J]. Heart Fail Rev,2007,12(3-4):181-188.
    [153]Burley DS, Hamid SA, Baxter GF. Cardioprotective actions of peptide hormones in myocardial ischemia [J]. Heart Fail Rev,2007,12(3-4):279-291.
    [154]Costa AD, Garlid KD. Intramitochondrial signaling:interactions among mitoKATP, PKCepsilon, ROS, and MPT [J]. Am J Physiol Heart Circ Physiol,2008, 295(2):H874-H882.
    [155]Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease [J]. Circ Res,2003,93(4):292-301.
    [156]Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection [J]. Heart Fail Rev,2007,12(3-4):217-234.
    [157]Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH. Pharmacological preconditioning with tumor necrosis factor-α activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase) [J]. Circulation,2005,112(25):3911-3918.
    [158]Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway:from protection to failure [J]. Pharmacol Ther,2008, 120(2):172-185.
    [159]Siegmund B, Schlack W, Ladilov YV, Balser C, Piper HM. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture [J]. Circulation, 1997,96(12):4372-4379.
    [160]Varadarajan SG, An J, Novalija E, Stowe DF. Sevoflurane before or after ischemia improves contractile and metabolic function while reducing myoplasmic Ca+ loading in intact hearts [J]. Anesthesiology,2002,96(1):125-133.
    [161]Heindl B, Reichle FM, Zahler S, Conzen PF, Becker BF. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils [J]. Anesthesiology,1999, 91(2):521-530.
    [162]Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans:short communication [J]. Circ Res,2012,110(1):111-115.
    [163]Krolikowski JG, Bienengraeber M, Weihrauch D, Warltier DC, Kersten JR, Pagel PS. Inhibition of mitochondrial permeability transition enhances isoflurane-induced cardioprotection during early reperfusion:the role of mitochondrial KATP channels [J]. Anesth Analg,101(6):1590-1596.
    [164]Lucchinetti E, da Silva R, Pasch T, Schaub MC, Zaugg M. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodelling programme:evidence of opposing genomic responses in cardioprotection by pre- and postconditioning [J]. Br J Anaesth, 2005,95(2):140-152.
    [165]Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction [J]. Mol Cell Biol,1996,16(4):1722-1733.
    [166]Hawkins PT, Stephens LR. PI3Kgamma is a key regulator of inflammatory responses and cardiovascular homeostasis [J]. Science,2007,318(5847):64-66.
    [167]Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis [J]. Exp Cell Res,2000, 256(1):34-41.
    [168]Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats [J]. Lab Invest,1996,74(1):86-107.
    [169]Cantley LC. The phosphoinositide 3-kinase pathway [J]. Science,2002, 296(5573):1655-1657.
    [170]Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL [J]. Cell,1996,87(4):619-628.
    [171]Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria [J]. J Biol Chem,2002, 277(16):14040-14047.
    [172]Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change [J]. Oncogene,2001, 20(53):7779-7786.
    [173]Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation [J]. Science,1998,282(5392):1318-1321.
    [174]Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade [J]. Cardiovasc Res,2006,70(2):308-314.
    [175]Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling [J]. Cardiovasc Res, 2006,70(2):315-324.
    [176]Feng J, Fischer G, Lucchinetti E, Zhu M, Bestmann L, Jegger D, Arras M, Pasch T, Perriard JC, Schaub MC, Zaugg M. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning:role of protein kinase B/Akt signaling [J]. Anesthesiology,2006,104(5):1004-1014.
    [177]Raphael J, Abedat S, Rivo J, Meir K, Beeri R, Pugatsch T, Zuo Z, Gozal Y. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins[J]. J Pharmacol Exp Ther,2006,318(1):186-194.
    [178]Raphael J, Rivo J, Gozal Y. Isoflurane-induced myocardial preconditioning is dependent on phosphatidylinositol-3-kinase/Akt signaling [J]. Br J Anaesth,2005, 95(6):756-763.
    [179]Jamnicki-Abegg M, Weihrauch D, Pagel PS, Kersten JR, Bosnjak ZJ, Warltier DC, Bienengraeber MW. Isoflurane inhibits cardiac myocyte apoptosis during oxidative and inflammatory stress by activating Akt and enhancing Bcl-2 expression [J]. Anesthesiology,2005,103(5):1006-1014.
    [180]Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion [J]. Am J Physiol Heart Circ Physiol,2005,288(2):H971-H976.
    [181]Weihrauch D, Krolikowski JG, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Morphine enhances isoflurane-induced postconditioning against myocardial infarction:the role of phosphatidylinositol-3-kinase and opioid receptors in rabbits [J]. Anesth Analg,2005,101(4):942-949.
    [182]Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinaseβ inhibition during reperfusion in intact rat hearts [J]. Circ Res,2004,94(7):960-966.
    [183]Gross ER, Hsu AK, Gross GJ. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion [J]. Basic Res Cardiol,2007,102(4):341-349.
    [184]Fryer RM, Wang Y, Hsu AK, Gross GJ. Essential activation of PKC-8 in opioid-initiated cardioprotection [J]. Am J Physiol Heart Circ Physiol,2001, 280(3):H1346-H1353.
    [185]Patel HH, Ludwig LM, Fryer RM, Hsu AK, Warltier DC, Gross GJ. Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of KATP channel opening [J]. FASEB J,2002,16(11):1468-1470.
    [186]Ludwig LM, Patel HH, Gross GJ, Kersten JR, Pagel PS, Warltier DC. Morphine enhances pharmacological preconditioning by isoflurane:role of mitochondrial KATP channels and opioid receptors [J]. Anesthesiology,2003,98(3):705-711.
    [187]Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human [J]. Physiol Rev,1999,79(1):143-180.
    [188]Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway [J]. Cardiovasc Res,2004,61(3):448-460.
    [189]Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts:role of ERK1/2[J]. Am J Physiol Heart Circ Physiol,2005, 289(4):H1618-H1626.
    [190]Xu Z, Yang XM, Cohen MV, Neumann T, Heusch G, Downey JM. Limitation of infarct size in rabbit hearts by the novel adenosine receptor agonist AMP 579 administered at reperfusion [J]. J Mol Cell Cardiol,2000,32(12):2339-2347.
    [191]Kis A, Baxter GF, Yellon DM. Limitation of myocardial reperfusion injury by AMP579, an adenosine A1/A2A receptor agonist:role of A2A receptor and Erk1/2[J]. Cardiovasc Drugs Ther,2003,17(5-6):415-425.
    [192]Krolikowski JG, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Role of Erkl/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo [J]. Can J Anesth,2006,53(2):174-182.
    [193]Fryer RM, Pratt PF, Hsu AK, Gross GJ. Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection [J]. J Pharmacol Exp Ther,2001,296(2):642-649.
    [194]Toma O, Weber NC, Wolter JI, Obal D, Preckel B, Schlack W. Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo [J]. Anesthesiology,2004,101(6):1372-1380.
    [195]Liu LX, Lu H, Luo Y, Date T, Belanger AJ, Vincent KA, Akita GY, Goldberg M, Cheng SH, Gregory RJ, Jiang C. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1 [J]. Biochem Biophys Res Commun, 2002,291(4):908-914.
    [196]Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM. Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis [J]. Am J Physiol Heart Circ Physiol,2003, 285(1):H352-H358.
    [197]Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide [J]. Circulation,2000,102(25):3098-3103.
    [198]Iijima Y, Laser M, Shiraishi H, Willey CD, Sundaravadivel B, Xu L, McDermott PJ, Kuppuswamy D. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells [J]. J Biol Chem, 2002,277(25):23065-23075.
    [199]Schmelzle T, Hall MN. TOR, a central controller of cell growth [J]. Cell,2000, 103(2):253-262.
    [200]Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway [J]. Circ Res,2004,95(3):230-232.
    [201]Forster K, Paul I, Solenkova N, Staudt A, Cohen MV, Downey JM, Felix SB, Krieg T. NECA at reperfusion limits infarction and inhibits formation of the mitochondrial permeability transition pore by activating p70S6 kinase [J]. Basic Res Cardiol,2006,101(4):319-326.
    [202]Jonassen AK, Brar BK, Mj(?)s OD, Sack MN, Latchman DS, Yellon DM. Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism [J]. J Mol Cell Cardiol,2000,32(5):757-764.
    [203]Jonassen AK, Mj(?)s OD, Sack MN. p70s6 kinase is a functional target of insulin activated Akt cell-survival signaling [J]. Biochem Biophys Res Commun,2004, 315(1):160-165.
    [204]Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt [J]. Nature,1999,399(6736):597-601.
    [205]Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J]. Nature,1999,399(6736):601-605.
    [206]Cavasin MA, Tao Z, Menon S, Yang XP. Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice [J]. Life Sci, 2004,75(18):2181-2192.
    [207]Rossig L, Haendeler J, Hermann C, Malchow P, Urbich C, Zeiher AM, Dimmeler S. Nitric oxide down-regulates MKP-3 mRNA levels:involvement in endothelial cell protection from apoptosis [J]. J Biol Chem,2000,275(33):25502-25507.
    [208]Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis [J]. Circ Res,1999,84(3):253-256.
    [209]Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR. Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release [J]. J Biol Chem,1998,273(47):31437-31441.
    [210]Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCε-isoform [J]. Cardiovasc Res,2002,55(3):583-589.
    [211]Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans:role of the autonomic nervous system [J]. J Am Coll Cardiol,2005,46(3):450-456.
    [212]Ding YF, Zhang MM, He RR. Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits [J]. Sheng Li Xue Bao, 2001,53(1):7-12.
    [213]Brzozowski T, Konturek PC, Pajdo R, Kwiecien S, Sliwowski Z, Drozdowicz D, Ptak-Belowska A, Pawlik M, Konturek SJ, Pawlik WW, Hahn GG. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning [J]. J Physiol Pharmacol,2004,55(1 Pt 2):165-177.
    [214]Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning [J]. Basic Res Cardiol,2010,105(5):651-655.
    [215]Xiao L, Lu R, Hu CP, Deng HW, Li YJ. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide [J]. Eur J Pharmacol,2001,427(2):131-135.
    [216]Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance [J]. Am J Physiol Heart Circ Physiol,2000, 278(5):H1571-H1576.
    [217]Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Kwiecien S, Pawlik M, Drozdowicz D, Sliwowski Z, Pawlik WW. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves [J]. Eur J Pharmacol,2004,499(1-2):201-213.
    [218]Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Przyklenk K. Rabbit heart can be "preconditioned" via transfer of coronary effluent [J]. Am J Physiol,1999,277(6 Pt 2):H2451-H2457.
    [219]Dickson EW, Reinhardt CP, Renzi FP, Becker RC, Porcaro WA, Heard SO. Ischemic preconditioning may be transferable via whole blood transfusion:preliminary evidence [J]. J Thromb Thrombolysis,1999, 8(2):123-129.
    [220]Tsubota H, Marui A, Esaki J, Bir SC, Ikeda T, Sakata R. Remote postconditioning may attenuate ischaemia-reperfusion injury in the murine hindlimb through adenosine receptor activation [J]. Eur J Vasc Endovasc Surg,2010, 40(6):804-809.
    [221]Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD, Tang J, Zhang JH. Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway [J]. Stroke,2011,42(2):439-444.
    [222]Diwan V, Jaggi AS, Singh M, Singh N, Singh D. Possible involvement of erythropoietin in remote renal preconditioning-induced cardioprotection in rats [J]. J Cardiovasc Pharmacol,2008,51(2):126-130.
    [223]Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P, Sadeghipour H, Ebrahimi F, Dehpour AR. Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart [J]. Eur J Pharmacol,2008,579(1-3):246-252.
    [224]Singh D, Chopra K. Evidence of the role of angiotensin AT1 receptors in remote renal preconditioning of myocardium [J]. Methods Find Exp Clin Pharmacol, 2004,26(2):117-122.
    [225]Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium:evidence suggesting cross-species protection [J]. Clin Sci (Lond), 2009,117(5):191-200.
    [226]Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning [J]. J Cardiovasc Pharmacol,2007, 49(4):214-220.
    [227]Breivik L, Helgeland E, Aarnes EK, Mrdalj J, Jonassen AK. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion [J]. Basic Res Cardiol,2011,106(1):135-145.
    [228]Lang SC, Elsasser A, Scheler C, Vetter S, Tiefenbacher CP, Kubler W, Katus HA, Vogt AM. Myocardial preconditioning and remote renal preconditioning-identifying a protective factor using proteomic methods [J]? Basic Res Cardiol,2006,101(2):149-158.
    [229]Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE. Remote ischemic conditioning:evolution of the concept, mechanisms, and clinical application [J]. J Card Surg,2010,25(1):127-134.
    [230]Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans [J]. Physiol Genomics,2004,19(1):143-150.
    [231]Shimizu M, Saxena P, Konstantinov IE, Cherepanov V, Cheung MM, Wearden P, Zhangdong H, Schmidt M, Downey GP, Redington AN. Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils [J]. J Surg Res,2010,158(1):155-161.
    [232]Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, Vallance P, Deanfield J, MacAllister R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo [J]. Circulation,2001,103(12):1624-1630.
    [233]Peralta C, Fernandez L, Panes J, Prats N, Sans M, Pique JM, Gelpi E, Rosello-Catafau J. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat [J]. Hepatology,2001, 33(1):100-113.
    [234]Huda R, Chung DH, Mathru M. Ischemic preconditioning at a distance:altered gene expression in mouse heart and other organs following brief occlusion of the mesenteric artery [J]. Heart Lung Circ,2005,14(1):36-43.
    [235]Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G. Myocardial protection by remote preconditioning:the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase [J]. Eur J Cardiothorac Surg,2004,26(5):968-973.
    [236]Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO [J]. J Mol Cell Cardiol,2004,36(3):411-421.
    [237]Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning [J]. Cardiovasc Res,2006,69(1):178-185.
    [238]Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3p mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore [J]. J Clin Invest,2004,113(11):1535-1549.
    [239]Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection [J]. Cardiovasc Res,2004,61(3):372-385.
    [240]Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning [J]. Cardiovasc Res,2006,70(2):264-273.
    [241]Purcell H, Pepper J. An arm and a leg to protect the heart [J]? Lancet,2007, 370(9587):542-543.
    [242]Xu Z, Yang XM, Cohen MV, Neumann T, Heusch G, Downey JM. Limitation of infarct size in rabbit hearts by the novel adenosine receptor agonist AMP 579 administered at reperfusion [J]. J Mol Cell Cardiol,2000,32(12):2339-2347.
    [243]Maddock HL, Mocanu MM, Yellon DM. Adenosine A3 receptor activation protects the myocardium from reperfusion/reoxygenation injury[J]. Am J Physiol Heart Circ Physiol,2002,283(4):H1307-H1313.
    [244]Inamura Y, Miyamae M, Sugioka S, Domae N, Kotani J. Sevoflurane postconditioning prevents activation of caspase 3 and 9 through antiapoptotic signaling after myocardial ischemia-reperfusion [J]. J Anesth,2010, 24(2):215-224.
    [245]Tai W, Shi E, Yan L, Jiang X, Ma H, Ai C. Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo:Roles of glycogen synthase kinase-3β and its upstream pathways [J]. J Surg Res,2012, PMID:22482760.
    [246 J Hausenloy DJ, Iliodromitis EK, Andreadou I, Papalois A, Gritsopoulos G, Anastasiou-Nana M, Kremastinos DT, Yellon DM. Investigating the signal transduction pathways underlying remote ischemic conditioning in the porcine heart [J]. Cardiovasc Drugs Ther,2012,26(2):87-93.
    [247]Schulte G, Sommerschild H, Yang J, Tokuno S, Goiny M, Lovdahl C, Johansson B, Fredholm BB, Valen G. Adenosine A receptors are necessary for protection of the murine heart by remote, delayed adaptation to ischaemia [J]. Acta Physiol Scand,2004,182(2):133-143.
    [248]Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A. Remote vs. ischaemic preconditioning:the differential role of mitogen-activated protein kinase pathways [J]. Cardiovasc Res,2008,78(1):108-115.
    [249]Xin P, Zhu W, Li J, Ma S, Wang L, Liu M, Li J, Wei M, Redington AN. Combined local ischemic postconditioning and remote perconditioning recapitulate cardioprotective effects of local ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol,2010,298(6):H1819-H1831.
    [250[ Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction:evidence for anesthetic-induced postconditioning in rabbits [J]. Anesthesiology,2005, 102(1):102-109.
    [251]De Hert SG, Van der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration [J]. Anesthesiology,2004,101(2):299-310.
    [252]Kovacs P, Bak I, Szendrei L, Vecsernyes M, Varga E, Blasig IE, Tosaki A. Non-specific caspase inhibition reduces infarct size and improves post-ischaemic recovery in isolated ischaemic/reperfused rat hearts [J]. Naunyn Schmiedebergs Arch Pharmacol,2001,364(6):501-507.
    [253]Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning [J]. Cardiovasc Res,2002,55(3):438-455.
    [254]Yu LN, Yu J, Zhang FJ, Yang MJ, Ding TT, Wang JK, He W, Fang T, Chen G, Yan M. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. J Zhejiang Univ Sci B,2010, 11(9):661-72.
    [255]Huhn R, Heinen A, Hollmann MW, Schlack W, Preckel B, Weber NC. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo [J]. Nutr Metab Cardiovasc Dis,2010, 20(10):706-712.
    [256]Lim SY, Hausenloy DJ. Remote ischemic conditioning:from bench to bedside [J]. Front Physiol,2012,3:27.
    [257]Lim SY, Hausenloy DJ. Remote ischemic conditioning:from bench to bedside [J]. Front Physiol,2012,3:27.
    [258]Frassdorf J, De Hert S, Schlack W. Anaesthesia and myocardial ischaemia/reperfusion injury [J]. Br J Anaesth,2009,103(1):89-98.
    [259]Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC. Isoflurane mimics ischemic preconditioning via activation of KATP channels:reduction of myocardial infarct size with an acute memory phase [J]. Anesthesiology,1997, 87(2):361-370.
    [260]Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D'Avolio S, Marchetti C, Calabro MG, Fochi O, Guarracino F, Tritapepe L, De Hert S, Torri G. Desflurane and sevoflurane in cardiac surgery:a meta-analysis of randomized clinical trials [J]. J Cardiothorac Vasc Anesth,2007,21(4):502-511.
    [261]Weber NC, Schlack W. Inhalational anaesthetics and cardioprotection [J]. Handb Exp Pharmacol,2008, (182):187-207.
    [262]Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning:mechanisms and therapeutic potentials [J]. J Am Coll Surg,2006,202(5):797-812.
    [263]Ebert TJ, Harkin CP, Muzi M. Cardiovascular responses to sevoflurane:a review [J]. Anesth Analg,1995,81(6 Suppl):Sll-S22.
    [264]Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia [J]. Circ Res,2000,87(2):146-152.
    [265]Zhang FJ, Ma LL, Wang WN, Qian LB, Yang MJ, Yu J, Chen G, Yu LN, Yan M. Hypercholesterolemia Abrogates Sevoflurane-Induced Delayed Preconditioning Against Myocardial Infarct in Rats by Alteration of Nitric Oxide Synthase Signaling [J]. Shock,2012, Jan 18.
    [266]Pagel PS. Postconditioning by volatile anesthetics:salvaging ischemic myocardium at reperfusion by activation of prosurvival signaling [J]. J Cardiothorac Vasc Anesth,2008,22(5):753-765.
    [267]Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion [J]. J Invest Surg,2007,20(3):195-203.
    [268]Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH. Protein kinases in organ ischemia and reperfusion [J]. J Invest Surg,2008,21(4):215-226.
    [1]Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene [J]. Proc Natl Acad Sci U S A,1991,88(13):5680-5684.
    [2]Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension [J]. Proc Natl Acad Sci U S A,1995,92(12):5510-5514.
    [3]Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1 [J]. J Biol Chem,1995,270(3):1230-1237.
    [4]Semenza GL. HIF-1 and human disease:one highly involved factor [J]. Genes Dev,2000,14(16):1983-1991.
    [5]Matthews PM, Taylor DJ, Radda GK. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart [J]. Cardiovasc Res,1986, 20(1):13-19.
    [6]Downing SE, Chen V. Myocardial hibernation in the ischemic neonatal heart [J]. CircRes,1990,66(3):763-772.
    [7]Webster KA, Discher DJ, Bishopric NH. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes [J]. J Biol Chem, 1993,268(22):16852-16858.
    [8]Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia [J]. Physiol Rev,1996,76(3):839-885.
    [9]Ho VT, Bunn HF. Effects of transition metals on the expression of the erythropoietin gene:further evidence that the oxygen sensor is a heme protein [J]. Biochem Biophys Res Commun,1996,223(1):175-180.
    [10]Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its a subunit [J]. J Biol Chem,1996,271(50):32253-32259.
    [11]Kallio PJ, Pongratz I, Gradin K, McGuire J, Poellinger L. Activation of hypoxia-inducible factor 1α:posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor [J]. Proc Natl Acad Sci U SA,1997,94(11):5667-5672.
    [12]Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein [J]. Nat Cell Biol, 2000,2(7):423-427.
    [13]Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW. Activation of HIF 1 a ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex [J]. Proc Natl Acad Sci U S A,2000, 97(19):10430-10435.
    [14]Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH. Hypoxia inducible factor-a binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein [J]. J Biol Chem,2000,275(33):25733-25741.
    [15]Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-la by the von Hippel-Lindau tumor suppressor protein [J]. EMBO J,2000,19(16):4298-4309.
    [16]Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 [J]. J Biol Chem,1996,271(51):32529-32537.
    [17]Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim Av, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation [J]. Science,2001,292(5516):468-472.
    [18]Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFα targeted for VHL-mediated destruction by proline hydroxylation:implications for O2 sensing [J]. Science,2001,292(5516):464-8.
    [19]Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J]. Cell,2001, 107(1):43-54.
    [20]Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia:their stabilization and redox signal-induced interaction with CBP/p300 [J]. EMBO J,1999,18(7):1905-1914.
    [21]Gu J, Milligan J, Huang LE. Molecular mechanism of hypoxia-inducible factor 1α-p300 interaction. A leucine-rich interface regulated by a single cysteine [J]. J Biol Chem,2001,276(5):3550-3554.
    [22j Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α [J]. Proc Natl Acad Sci U S A,2002,99(8):5367-5372.
    [23]Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ml, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor [J]. Genes Dev,2002,16(12):1466-1471.
    [24]Lando D, Gorman JJ, Whitelaw ml, Peet DJ. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation [J]. Eur J Biochem,2003,270(5):781-790.
    [25]Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway [J]. J Biol Chem, 2002,277(31):27975-27981.
    [26]Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1 [J]. Cell Growth Differ,2001,12(7):363-369.
    [27]Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1α nor sufficient for HIF-1-dependent target gene transcription [J]. J Biol Chem, 2002,277(17):15162-15170.
    [28]Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo [J]. Circulation,2001, 104(3):330-335.
    [29]Semenza GL. HIF-1 and mechanisms of hypoxia sensing [J]. Curr Opin Cell Biol,2001,13(2):167-171.
    [30]Chi NC, Karliner JS. Molecular determinants of responses to myocardial ischemia/reperfusion injury:focus on hypoxia-inducible and heat shock factors [J]. Cardiovasc Res,2004,61(3):437-447.
    [31]Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor la [J]. Mol Cell Biol,2000, 20(1):402-415.
    [32]Chun YS, Hyun JY, Kwak YG, Kim IS, Kim CH, Choi E, Kim MS, Park JW. Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1 [J]. Biochem J,2003,370(Pt 1):149-157.
    [33]Huang LE, Bunn HF. Hypoxia-inducible factor and its biomedical relevance [J]. J Biol Chem,2003,278(22):19575-19578.
    [34[ Malhotra R, Tyson DG, Sone H, Aoki K, Kumagai AK, Brosius FC 3rd. Glucose uptake and adenoviral mediated GLUT1 infection decrease hypoxia-induced HIF-la levels in cardiac myocytes [J]. J Mol Cell Cardiol,2002, 34(8):1063-1073.
    [35]Marfella R, D'Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, Berrino L, Rossi F, Giugliano D. Myocardial infarction in diabetic rats:role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1 [J]. Diabetologia,2002,45(8):1172-1181.
    [36]Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection [J]. Acta Pharmacol Sin,2010,31(9):1085-1094.
    [37]Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1 [J]. Blood,2005,105(2):659-669.
    [38]Maxwell PH,Ratcliffe PJ. Oxygen sensors and angiogenesis [J]. Semin Cell Dev Biol,2002,13(1):29-37.
    [39]Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1 [J]. Novartis Found Symp,2006,272:2-8; discussion 8-14,33-36.
    [40]Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents [J]. Am J Physiol,1995,268(6 Pt 1):C1362-C1368.
    [41]Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-a and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-a [J]. J Biol Chem,2003, 278(18):15911-15916.
    [42]Tsukiyama F, Nakai Y, Yoshida M, Tokuhara T, Hirota K, Sakai A, Hayashi H, Katsumata T. Gallate, the component of HIF-inducing catechins, inhibits HIF prolyl hydroxylase [J]. Biochem Biophys Res Commun,2006,351(1):234-239.
    [43]Page EL, Robitaille GA, Pouyssegur J, Richard DE. Induction of hypoxia-inducible factor-1αby transcriptional and translational mechanisms [J]. J Biol Chem,2002,277(50):48403-48409.
    [44]Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells:Role of the p22(phox)-containing NADPH oxidase [J]. Circ Res,2001,89(1):47-54.
    [45]Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion [J]. Cell Death Differ,2008,15(4):686-690.
    [46]Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1 [J]. Annu Rev Cell Dev Biol,1999,15:551-578.
    [47j Shohet RV, Garcia JA. Keeping the engine primed:HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia [J]. J Mol Med (Berl), 2007,85(12):1309-1315.
    [48]Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epasl-/- mice [J]. Nat Genet,2003,35(4):331-340.
    [49]Semenza GL. Surviving ischemia:adaptive responses mediated by hypoxia-inducible factor 1 [J]. J Clin Invest,2000,106(7):809-812.
    [50]Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene [J]. Proc Natl Acad Sci U S A,1999,96(20):11507-11512.
    [51]Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B. Discovery of a new function of cyclooxygenase (COX)-2:COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning [J]. Cardiovasc Res,2002,55(3):506-519.
    [52]Lu MJ, Chang H, Chang CC, Wang BW, Shyu KG. Temporal and spatial expression of hypoxia-inducible factor-la and vascular endothelial growth factor in a rat model of myocardial ischemia with or without reperfusion [J]. J Formos Med Assoc,2005,104(10):707-714.
    [53]Xi L, Serebrovskaya TV. Intermittent hypoxia:from molecular mechanisms to clinical applications [M]. New York:Nova Science Publishers,2009:1-615.
    [54]Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury [J]. Circulation. 2003,108(1):79-85.
    [55]Belaidi E, Beguin PC, Levy P, Ribuot C, Godin-Ribuot D. Prevention of HIF-1 activation and iNOS gene targeting by low-dose cadmium results in loss of myocardial hypoxic preconditioning in the rat [J]. Am J Physiol Heart Circ Physiol,2008,294(2):H901-H908.
    [56]Ding HL, Zhu HF, Dong JW, Zhu WZ, Yang WW, Yang HT, Zhou ZN. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury [J]. Acta Pharmacol Sin,2005,26(3):315-322.
    [57]Xi L, Tekin D, Gursoy E, Salloum F, Levasseur JE, Kukreja RC. Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia [J]. Am J Physiol Heart Circ Physiol,2002,283(1):H5-H512.
    [58]Jung F, Palmer LA, Zhou N, Johns RA. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes [J]. Circ Res,2000,86(3):319-325.
    [59]Wasserfuhr D, Cetin SM, Yang J, Freitag P, Frede S, Jakob H, Massoudy P. Protection of the right ventricle from ischemia and reperfusion by preceding hypoxia [J]. Naunyn Schmiedebergs Arch Pharmacol,2008,378(1):27-32.
    [60]Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 a[J]. Cardiovasc Res, 2008,77(3):463-470.
    [61]Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection:A new paradigm for ischemic preconditioning [J]. Circulation,2008,118(2):166-175.
    [62]Kant R, Diwan V, Jaqqi AS, Singh N, Singh D. Remote renal preconditioning-induced cardioprotection:a key role of hypoxia inducible factor-prolyl 4-hydroxylases [J]. Mol Cell Biochem,2008,312(1-2):25-31.
    [63]Kawata H, Yoshida K, Kawamoto A, Kurioka H, Takase E, Sasaki Y, Hatanaka K, Kobayashi M, Ueyama T, Hashimoto T, Dohi K. Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C sin the rat ischemic myocardium [J]. Circ Res,2001,88(7):696-704.
    [64]Czibik G, Wu Z, Berne GP, Tarkka M, Vaage J, Laurikka J, Jarvinen O, Valen G. Human adaptation to ischemia by preconditioning or unstable angina: involvement of nuclear factor kappa B, but not hypoxia-inducible factor 1 a in the heart [J]. Eur J Cardiothorac Surg,2008,34(5):976-984.
    [65]Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol,2003,285(2):H579-H588.
    [66]Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC. Loss of myocardial ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene knockout mice [J]. Circulation,2008,118(14 Suppl):S32-S37.
    [67]Zhao HX, Wang XL, Wang YH, Wu Y, Li XY, Lv XP, Zhao ZQ, Zhao RR, Liu HR. Attenuation of myocardial injury by postconditioning:role of hypoxia inducible factor-1α [J]. Basic Res Cardiol,2010,105(1):109-118.
    [68]Zhao H, Wang Y, Wu Y, Li X, Yang G, Ma X, Zhao R, Liu H. Hyperlipidemia does not prevent the cardioprotection by postconditioning against myocardial ischemia/reperfusion injury and the involvement of hypoxia inducible factor-1α upregulation [J]. Acta Biochim Biophys Sin (Shanghai),2009,41(9):745-753.
    [69]Xi L, Taher M, Yin C, Salloum F, Kukreja RC. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling [J]. Am J Physiol Heart Circ Physiol,2004, 287(6):H2369-H2375.
    [70]Kerendi F, Kirshbom PM, Halkos ME, Wang NP, Kin H, Jiang R, Zhao ZQ, Kanter KR, Guyton RA, Vinten-Johansen J. Thoracic Surgery Directors Association Award. Cobalt chloride pretreatment attenuates myocardial apoptosis after hypothermic circulatory arrest [J]. Ann Thorac Surg,2006, 81(6):2055-2062.
    [71]Wang C, Weihrauch D, Schwabe DA, Bienengraeber M, Warltier DC, Kersten JR, Pratt PF Jr, Pagel PS. Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-la and vascular endothelial growth factor expression in rats [J]. Anesth Analg,2006,103(2):281-288.
    [72]Raphael J, Zuo Z, Abedat S, Beeri R, Gozal Y. Isoflurane preconditioning decreases myocardial infarction in rabbits via up-regulation of hypoxia inducible factor 1 that is mediated by mammalian target of rapamycin [J]. Anesthesiology,2008,108(3):415-425.
    [73]Feng J, Lucchinetti E, Fischer G, Zhu M, Zaugg K, Schaub MC, Zaugg M. Cardiac remodelling hinders activation of cyclooxygenase-2, diminishing protection by delayed pharmacological preconditioning:role of HIF1α and CREB [J]. Cardiovasc Res,2008,78(1):98-107.
    [74]Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor [J]. Proc Natl Acad Sci U S A,2002, 99(21):13459-13464.
    [75]Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC. HIF-1 activation attenuates postischemic myocardial injury:role for heme oxygenase-1 in modulating micro vascular chemokine generation [J]. Am J Physiol Heart Circ Physiol,2005,289(2):H542-H548.
    [76]Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways:regulation and functional significance [J]. Mol Cell Biochem,2002,234-235(1-2):249-263.
    [77]Luciano JA, Tan T, Zhang Q, Huang E, Scholz P, Weiss HR. Hypoxia inducible factor-1 improves the actions of nitric oxide and natriuretic peptides after simulated ischemia-reperfusion [J]. Cell Physiol Biochem,2008, 21(5-6):421-428.
    [78]Tan T, Luciano JA, Scholz PM, Weiss HR. Hypoxia inducible factor-1 improves the actions of positive inotropic agents in stunned cardiac myocytes [J]. Clin Exp Pharmacol Physiol,2009,36:904-911.
    [79]Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, Zhao S, Olzinski. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat [J]. J Cardiovasc Pharmacol,2010,56(2):147-155.
    [80]Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury [J]. Circ Res,2006,98(1):133-140.
    [81]Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd. Activation of hypoxia-inducible factor-1 via-prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium [J]. Am J Physiol Heart Circ Physiol,2007,293(3):H1571-H1580.
    [82]Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 upregulates adiponectin in diabetic mouse hearts and attenuates post-ischemic injury [J]. J Cardiovasc Pharmacol,2008, 51(2):178-187.
    [83]Natarajan R, Salloum FN, Fisher BJ, Smithson L, Almenara J, Fowler AA 3rd. Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes [J]. Vascul Pharmacol,2009, 51(2-3):110-118.
    [84]Shyu KG, Wang MT, Wang BW, Chang CC, Leu JG, Kuan P, Chang H. Intramyocardial injection of naked DNA encoding HIF-la/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat [J]. Cardiovasc Res,2002,54(3):576-583.
    [85]Date T, Mochizuki S, Belanger AJ, Yamakawa M, Luo Z, Vincent KA, Cheng SH, Gregory RJ, Jiang C. Expression of constitutively stable hybrid hypoxia-inducible factor-la protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury [J]. Am J Physiol Cell Physiol,2005, 288(2):C314-C320.
    [86]Czibik G, Martinov V, Ruusalepp A, Sagave J, Skare (?), Valen G. In vivo remote delivery of DNA encoding for hypoxia-inducible factor 1α reduces myocardial infarct size [J]. Clin Transl Sci,2009,2(1):33-40.
    [87]Muinck ED, Nagy N, Tirziu D, Murakami M, Gurusamy N, Goswami SK, Ghatpande S, Engelman RM, Simons M, Das DK. Protection against myocardial ischemia-reperfusion injury by the angiogenic Masterswitch protein PR 39 gene therapy:the roles of HIF1α stabilization and FGFR1 signaling [J]. Antioxid Redox Signal,2007,9(4):437-445.
    [88]Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-la and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes [J]. Circ Res,2009,104(7):879-886.
    [89]Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA. Hypoxia-inducible factor 1α reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse [J]. J Am Coll Cardiol,2005,46(11):2116-2124.
    [90]Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure [J]. Blood,2008, 111(6):3236-3244.
    [91]Hyvarinen J, Hassinen IE, Sormunen R, Maki JM, Kivirikko KI, Koivunen P, Myllyharju J. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury [J]. J Biol Chem,2010,285(18):13646-13657.
    [92]Kavazis AN. Exercise preconditioning of the myocardium [J]. Sports Med,2009, 39(11):923-935.
    [93]Giusti B, Marini M, Rossi L, Lapini I, Magi A, Capalbo A, Lapalombella R, di Tullio S, Samaja M, Esposito F, Margonato V, Boddi M, Abbate R, Veicsteinas A. Gene expression profile of rat left ventricles reveals persisting changes following chronic mild exercise protocol:implications for cardioprotection [J]. BMC Genomics,2009,10:342.
    [94]Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction [J]. N Engl J Med,2000,342(9):626-633.
    [95]Martin C, Yu AY, Jiang BH, Davis L, Kimberly D, Hohimer AR, Semenza GL Cardiac hypertrophy in chronically anemic fetal sheep:Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1 [J]. Am J Obstet Gynecol,1998, 178(3):527-534.
    [96]Semenza GL. Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1 [J]. Exp Physiol,2007,92(6):988-991.
    [97]Tang WH, Wu S, Wong TM, Chung SK, Chung SS. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart [J]. Free Radic Biol Med,2008,45(5):602-610.
    [98]Shyu KG, Lu MJ, Chang H, Sun HY, Wang BW, Kuan P. Carvedilol modulates the expression of hypoxia-inducible factor-la and vascular endothelial growth factor in a rat model of volume-overload heart failure [J]. J Card Fail,2005, 11(2):152-159.
    [99]Shyu KG, Liou JY, Wang BW, Fang WJ, Chang H. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-la and vascular endothelial growth factor in pressure-overloaded rat heart [J]. J Biomed Sci, 2005,12(2):409-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700