分化抑制因子2在先天性肾盂输尿管连接部梗阻中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:探讨先天性肾盂输尿管连接部梗阻(UPJO)患儿肾盂输尿管连接部组织中分化抑制因子2 (Id2) mRNA的表达情况。
     材料与方法:收集20例接受肾盂成形术的UPJO患儿的肾盂输尿管连接部组织作为病例组,10例对照组标本来自肾母细胞瘤中无肿瘤转移的肾盂输尿管组织。依据组织部位不同,将UPJO组分为扩张肾盂、狭窄段及狭窄段下正常输尿管三组;对照组分为肾盂和输尿管两组。用半定量反转录-PCR (RT-PCR)检测Id2 mRNA在不同组间的表达水平,并采用独立样本t检验和单因素方差分析方法对各组Id2 mRNA表达水平进行分析。
     研究结果:UPJO组:Id2 mRNA在扩张肾盂、狭窄段输尿管的表达差异无统计学意义(P>0.05),而这两组与狭窄段下正常输尿管比较均有降低,差异有统计学意义(P<0.05);对照组:肾盂和输尿管Id2 mRNA表达差异无统计学意义(P>0.05); UPJO组与对照组比较:Id2 mRNA在UPJO组扩张肾盂、狭窄段输尿管中的表达,与对照组中肾盂、输尿管比较,表达降低,差异均有统计学意义(P<0.05),而UPJO组狭窄段下正常输尿管与对照组肾盂和输尿管Id2 mRRNA表达差异均无统计学意义(P>0.05)。
     研究结论:Id2基因可能与UPJO的发病有关。
Purpose:To explore the mRNA expression of inhibitor of differentiation 2 (Id2) in ureteropelvic junction tissue with congenital ureteropelvic junction obstruction (UPJO) in children.
     Material and Methods:Twenty cases with UPJO and 10 cases with Wilms'tumor without invading into ureteropelvic junction tissue as control group were collected. UPJO were categorized into three groups:renal pelvis dilation, narrow ureter and normal ureter below narrow ureter according to their locations. Control was divided into two groups:renal pelvis and ureter. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of mRNA in these tissues. All the data were analysed by t-test and one-way anova.
     Results:UPJO:No significant difference of the Id2 mRNA expression was observed between renal pelvis dilation and narrow ureter in UPJO (P>0.05), and we found that their expressions were lower than the normal ureter below narrow ureter in UPJO(P<0.05). Control group:the renal pelvis and ureter were similar (P>0.05). UPJO and control group:the Id2 mRNA expression of renal pelvis dilation and narrow ureter in UPJO was lower than renal pelvis and ureter in control group (P<0.05).but the Id2 mRNA expression of the normal ureter below narrow ureter in UPJO was similar to that of renal pelvis or ureter in control group (P>0.05).
     Conclusions:The Id2 gene may play an important role in congenital UPJO.
引文
1. Sikandar Ali Mughal, S.S., Pelvi-ureteric junction obstruction in children. JOURNAL Surg Pakistan (Int),2008.13(4):p.163-166.
    2. Nguyen, H.T. and Kogan, B.A., Upper urinary tract obstruction: experimental and clinical aspects. Br J Urol,1998.81 Suppl 2:p.13-21.
    3. 崔新海,张积涛,陈雨历,先天性肾盂输尿管连接部梗阻突触素和神经丝蛋白表达的研究.中华小儿外科杂志,2010.31(1):p.24-26.
    4. 谢向辉,黄澄如,孙宁,小儿先天性肾盂输尿管连接部梗阻的临床和病理特点.首都医科大学学报,2007.28(2):p.121-123.
    5. Kajbafzadeh, A.M., Payabvash, S., Salmasi, A.H., etc., Smooth muscle cell apoptosis and defective neural development in congenital ureteropelvic junction obstruction. J Urol,2006.176(2):p.718-723.
    6. Williams, B., Tareen, B., and Resnick, M.I., Pathophysiology and treatment of ureteropelvic junction obstruction. Curr Urol Rep,2007.8(2): p.111-117.
    7. Libertino, J.A. and Weiss, R.M., Ultrastructure of human ureter. J Urol, 1972.108(1):p.71-76.
    8. Uehara, Y. and Burnstock, G, Demonstration of "gap junctions" between smooth muscle cells. J Cell Biol,1970.44(1):p.215-217.
    9. Aoki, Y., Mori, S., Kitajima, K., etc., Id2 haploinsufficiency in mice leads to congenital hydronephrosis resembling that in humans. Genes Cells, 2004.9(12):p.1287-1296.
    10. Cao, Y, Liu, X., Zhang, W., etc., TGF-beta repression of Id2 induces apoptosis in gut epithelial cells. Oncogene,2009.28(8):p.1089-1098.
    11. Taha, M.A., Shokeir, A.A., Osman, H.G., etc., Pelvi-ureteric junction obstruction in children:the role of urinary transforming growth factor-beta and epidermal growth factor. BJU Int,2007.99(4):p.899-903.
    12. 袁继炎,中华小儿外科学,郑州,张金哲,杨启正,刘贵麟.2006:p.865-869.
    13. 王洪根,颜醒愚,肾盂输尿管连接部梗阻研究进展.实用儿科临床杂志,2008.23(11):p.873-875.
    14. Stratil, A., Horak, P., Filkukova, J., etc., Partial genomic structure, mutation analysis and mapping of the porcine inhibitor of DNA binding genes ID1, ID2, ID3 and ID4. Anim Genet,2010.41(5):p.558-559.
    15. Benezra, R., Davis, R.L., Lockshon, D., etc., The protein Id:a negative regulator of helix-loop-helix DNA binding proteins. Cell,1990.61(1):p. 49-59.
    16. Lasorella, A., Uo, T., and Iavarone, A., Id proteins at the cross-road of development and cancer. Oncogene,2001.20(58):p.8326-8333.
    17. Liu, K.J. and Harland, R.M., Cloning and characterization of Xenopus Id4 reveals differing roles for Id genes. Dev Biol,2003.264(2):p.339-351.
    18. 李晓军,秦浚,细胞分化抑制因子(I d)研究进展.生物化学与生物物 理进展,2004.31(10):p.865-869.
    19. Ji, M., Li, H., Suh, H.C., etc., Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood, 2008.112(4):p.1068-1077.
    20. Li, H., Ji, M., Klarmann, K.D., etc., Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood,2010. 116(7):p.1060-1069.
    21. Trabosh, V.A., Divito, K.A., B, D.A., etc., Sequestration of E12/E47 and suppression of p27KIP1 play a role in Id2-induced proliferation and tumorigenesis. Carcinogenesis,2009.30(7):p.1252-1259.
    22. Itahana, Y., Singh, J., Sumida, T., etc., Role of Id-2 in the maintenance of a differentiated and noninvasive phenotype in breast cancer cells. Cancer Res,2003.63(21):p.7098-7105.
    23. Lasorella, A., Rothschild, G, Yokota, Y, etc., Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol,2005.25(9):p.3563-3574.
    24. Nigten, J., Breems-de Ridder, M.C., Erpelinck-Verschueren, C.A., etc., ID1 and ID2 are retinoic acid responsive genes and induce a G0/G1 accumulation in acute promyelocytic leukemia cells. Leukemia,2005. 19(5):p.799-805.
    25. Hua, H., Zhang, Y.Q., Dabernat, S., etc., BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem,2006.281(19):p. 13574-13580.
    26. Karaya, K., Mori, S., Kimoto, H., etc., Regulation of Id2 expression by CCAAT/enhancer binding protein beta. Nucleic Acids Res,2005.33(6):p. 1924-1934.
    27. 张黎声,邱小忠,余磊,携带增强绿色荧光蛋白基因的Id2真核表达载体构建.中国临床解剖学杂志,2005.3(23):p.276-277.
    28. Matsumura, M.E., Lobe, D.R., and McNamara, C.A., Contribution of the helix-loop-helix factor Id2 to regulation of vascular smooth muscle cell proliferation. J Biol Chem,2002.277(9):p.7293-7297.
    29. Yokota, Y. and Mori, S., Role of Id family proteins in growth control. J Cell Physiol,2002.190(1):p.21-28.
    30. Kee, B.L., Rivera, R.R., and Murre, C., Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat Immunol, 2001.2(3):p.242-247.
    31. Kudo, T.A., Kanetaka, H., Watanabe, A., etc., Investigating bone morphogenetic protein (BMP) signaling in a newly established human cell line expressing BMP receptor type Ⅱ. Tohoku J Exp Med,2010.222(2):p. 121-129.
    32. Mukhopadhyay, P., Greene, R.M., and Pisano, M.M., Expression profiling of transforming growth factor beta superfamily genes in developing orofacial tissue. Birth Defects Res A Clin Mol Teratol,2006.76(7):p. 528-543.
    33. Mukhopadhyay, A., McGuire, T., Peng, C.Y., etc., Differential effects of BMP signaling on parvalbumin and somatostatin interneuron differentiation. Development,2009.136(15):p.2633-2642.
    34. Uchimura, T., Komatsu, Y., Tanaka, M., etc., Bmp2 and Bmp4 genetically interact to support multiple aspects of mouse development including functional heart development. Genesis,2009.47(6):p.374-384.
    35. Lan, Y. and Jiang, R., Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development,2009.136(8):p.1387-1396.
    36. Nishihara, A., Watabe, T., Imamura, T., etc., Functional heterogeneity of bone morphogenetic protein receptor-Ⅱ mutants found in patients with primary pulmonary hypertension. Mol Biol Cell,2002.13(9):p. 3055-3063.
    37. Halder, S.K., Beauchamp, R.D., and Datta, P.K., Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res,2005.307(1):p.231-246.
    38. Aoki, H., Fujii, M., Imamura, T., etc., Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci,2001.114(Pt 8):p.1483-1489.
    39. ten Dijke, P., Korchynskyi, O., Valdimarsdottir, G, etc., Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol,2003. 211(1-2):p.105-113.
    40. Takeda, M., Mizuide, M., Oka, M., etc., Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol Biol Cell, 2004.15(3):p.963-972.
    41. 董泽伍,李晓忠,周云,肾积水大鼠模型肾脏CD40、血管内皮生长因子和转化生长因子-β表达的意义.实用儿科临床杂志,2008.23(23):p.1839-1842.
    42. Ferdous, Z., Wei, V.M., Iozzo, R., etc., Decorin-transforming growth factor-interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices. J Biol Chem,2007. 282(49):p.35887-35898.
    43. Miyazaki, Y., Oshima, K., Fogo, A., etc., Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest,2000.105(7):p.863-873.
    44. Brenner-Anantharam, A., Cebrian, C., Guillaume, R., etc., Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development,2007.134(10):p.1967-1975.
    45. Airik, R., Bussen, M., Singh, M.K., etc., Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest,2006.116(3):p.663-674.
    46. 杨屹,吉士俊,赵国贵,先天性肾积水转化生长因子转录水平的研究.中华小儿外科杂志,2002.23(2):p.130-132.
    47. Hollnagel, A., Oehlmann, V., Heymer, J., etc., Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem,1999.274(28):p.19838-19845.
    48. Ying, Q.L., Nichols, J., Chambers, I., etc., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell,2003.115(3):p.281-292.
    49. Lowery, J.W., Frump, A.L., Anderson, L., etc., ID family protein expression and regulation in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol,2010.299(6):p. R1463-1477.
    50. Wang, G.J., Brenner-Anantharam, A., Vaughan, E.D., etc., Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol,2009.181(1):p.401-407.
    51. Cao, Y, Gao, X., Zhang, W., etc., DIETARY FIBER ENHANCES TGF-{beta} SIGNALING AND GROWTH INHIBITION IN THE GUT. Am J Physiol Gastrointest Liver Physiol,2011.
    52. Palmer, L.S., Maizels, M., Kaplan, W.E., etc., Urine levels of transforming growth factor-beta 1 in children with ureteropelvic junction obstruction. Urology,1997.50(5):p.769-773.
    53. Nilsen-Hamilton, M., Transforming growth factor-beta and its actions on cellular growth and differentiation. Curr Top Dev Biol,1990.24:p. 95-136.
    1. Chang, C.P., McDill, B.W., Neilson, J.R., etc., Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest,2004.113(7):p.1051-8.
    2. Chevalier, R.L., Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr Nephrol,1999.13(7):p.612-9.
    3. Chevalier, R.L. and Peters, C.A., Congenital urinary tract obstruction: Proceedings of the State-Of-The-Art Strategic Planning Workshop-National Institutes of Health, Bethesda, Maryland, USA,11-12 March 2002. Pediatr Nephrol,2003.18(6):p.576-606.
    4. Kenda, R.B., Kenig, T., and Budihna, N., Detecting vesico-ureteral reflux in asymptomatic siblings of children with reflux by direct radionuclide cystography. Eur J Pediatr,1991.150(10):p.735-7.
    5. Feather, S.A., Malcolm, S., Woolf, A.S., etc., Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet,2000.66(4):p.1420-5.
    6. Queisser-Luft, A., Stolz, G., Wiesel, A., etc., Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990-1998). Arch Gynecol Obstet,2002. 266(3):p.163-7.
    7. Schedl, A., Renal abnormalities and their developmental origin. Nat Rev Genet,2007.8(10):p.791-802.
    8. Dressler, G.R., The cellular basis of kidney development. Annu Rev Cell Dev Biol,2006.22:p.509-29.
    9. Kreidberg, J.A., Sariola, H., Loring, J.M., etc., WT-1 is required for early kidney development. Cell,1993.74(4):p.679-91.
    10. Xu, P.X., Adams, J., Peters, H., etc., Eyal-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet, 1999.23(1):p.113-7.
    11. Wellik, D.M., Hawkes, P.J., and Capecchi, M.R., Hoxll paralogous genes are essential for metanephric kidney induction. Genes Dev,2002. 16(11):p.1423-32.
    12. Xu, P.X., Zheng, W., Huang, L., etc., Sixl is required for the early organogenesis of mammalian kidney. Development,2003.130(14):p. 3085-94.
    13. Nishinakamura, R., Matsumoto, Y., Nakao, K., etc., Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development,2001.128(16):p.3105-15.
    14. Sajithlal, G., Zou, D., Silvius, D., etc., Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol,2005.284(2):p. 323-36.
    15. Wilm, B., James, R.G., Schultheiss, T.M., etc., The forkhead genes, Foxcl and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol,2004.271(1):p.176-89.
    16. Grieshammer, U., Le, M., Plump, A.S., etc., SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell,2004.6(5): p.709-17.
    17. Shakya, R., Jho, E.H., Kotka, P., etc., The role of GDNF in patterning the excretory system. Dev Biol,2005.283(1):p.70-84.
    18. Maeshima, A., Sakurai, H., Choi, Y., etc., Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol,2007.18(12):p.3147-55.
    19. Bates, C.M., Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol,2007.22(3):p.343-9.
    20. Hains, D., Sims-Lucas, S., Kish, K., etc., Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res,2008.64(6):p.592-8.
    21. Jain, S., Encinas, M., Johnson, E.M., Jr., etc., Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev, 2006.20(3):p.321-33.
    22. Costantini, F. and Shakya, R., GDNF/Ret signaling and the development of the kidney. Bioessays,2006.28(2):p.117-27.
    23. Basson, M.A., Akbulut, S., Watson-Johnson, J., etc., Sproutyl is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell,2005.8(2): p.229-39.
    24. Basson, M.A., Watson-Johnson, J., Shakya, R., etc., Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sproutyl. Dev Biol, 2006.299(2):p.466-77.
    25. Dunn, N.R., Winnier, G.E., Hargett, L.K., etc., Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol,1997.188(2):p.235-47.
    26. Miyazaki, Y., Oshima, K., Fogo, A., etc., Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest,2000.105(7):p.863-73.
    27. Michos, O., Panman, L., Vintersten, K., etc., Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development, 2004.131(14):p.3401-10.
    28. Batourina, E., Choi, C., Paragas, N., etc., Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet,2002.32(1):p.109-15.
    29. Marose, T.D., Merkel, C.E., McMahon, A.P., etc., Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol,2008.314(1):p.112-26.
    30. Murer, L., Benetti, E., and Artifoni, L., Embryology and genetics of primary vesico-ureteric reflux and associated renal dysplasia. Pediatr Nephrol,2007.22(6):p.788-97.
    31. Batourina, E., Tsai, S., Lambert, S., etc., Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet, 2005.37(10):p.1082-9.
    32. Brenner-Anantharam, A., Cebrian, C., Guillaume, R., etc., Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development,2007.134(10):p.1967-75.
    33. Viana, R., Batourina, E., Huang, H., etc., The development of the bladder trigone, the center of the anti-reflux mechanism. Development,2007. 134(20):p.3763-9.
    34. Airik, R., Bussen, M., Singh, M.K., etc., Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest,2006.116(3):p.663-74.
    35. Mahoney, Z.X., Sammut, B., Xavier, R.J., etc., Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci USA,2006.103(52):p.19872-7.
    36. Iizuka-Kogo, A., Ishidao, T., Akiyama, T., etc., Abnormal development of urogenital organs in Dlghl-deficient mice. Development,2007.134(9): p.1799-807.
    37. Murawski, I.J., Myburgh, D.B., Favor, J., etc., Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol,2007.293(5):p. F1736-45.
    38. Murawski, I.J. and Gupta, I.R., Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet,2006.69(2):p. 105-17.
    39. Lu, W., Quintero-Rivera, F., Fan, Y., etc., NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet,2007.3(5):p. e80.
    40. Alcaraz, A., Vinaixa, F., Tejedo-Mateu, A., etc., Obstruction and recanalization of the ureter during embryonic development. J Urol,1991. 145(2):p.410-6.
    41. Santicioli, P. and Maggi, C.A., Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev, 1998.50(4):p.683-722.
    42. DiBona, G.F. and Kopp, U.C., Neural control of renal function. Physiol Rev,1997.77(1):p.75-197.
    43. Mendelsohn, C., Going in circles:conserved mechanisms control radial patterning in the urinary and digestive tracts. J Clin Invest,2006.116(3): p.635-7.
    44. Yu, J., Carroll, T.J., and McMahon, A.P., Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development,2002.129(22):p.5301-12.
    45. Caubit, X., Lye, C.M., Martin, E., etc., Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development,2008.135(19):p.3301-10.
    46. Fujinaka, H., Miyazaki, Y., Matsusaka, T., etc., Salutary role for angiotensin in partial urinary tract obstruction. Kidney Int,2000.58(5):p. 2018-27.
    47. Yosypiv, I.V. and El-Dahr, S.S., Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol,2005.20(9):p.1219-29.
    48. Miyazaki, Y., Tsuchida, S., Nishimura, H., etc., Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest, 1998.102(8):p.1489-97.
    49. Oshima, K., Miyazaki, Y., Brock, J.W.,3rd, etc., Angiotensin type Ⅱ receptor expression and ureteral budding. J Urol,2001.166(5):p. 1848-52.
    50. Nishimura, H., Yerkes, E., Hohenfellner, K., etc., Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell,1999.3(1):p.1-10.
    51. Oliverio, M.I., Kim, H.S., Ito, M., etc., Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA,1998.95(26):p.15496-501.
    52. Esther, C.R., Jr., Howard, T.E., Marino, E.M., etc., Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest,1996.74(5):p.953-65.
    53. Niimura, F., Labosky, P.A., Kakuchi, J., etc., Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest,1995. 96(6):p.2947-54.
    54. Nagata, M., Tanimoto, K., Fukamizu, A., etc., Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest, 1996.75(5):p.745-53.
    55. Chen, F., Genetic and developmental basis for urinary tract obstruction. Pediatr Nephrol,2009.24(9):p.1621-32.
    56. Kong, X.T., Deng, F.M., Hu, P., etc., Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol,2004.167(6):p.1195-204.
    57. Hu, P., Deng, F.M., Liang, F.X., etc., Ablation of uroplakin Ⅲ gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol,2000.151(5):p.961-72.
    58. Abbott, B.D., Birnbaum, L.S., and Pratt, R.M., TCDD-induced hyperplasia of the ureteral epithelium produces hydronephrosis in murine fetuses. Teratology,1987.35(3):p.329-34.
    59. Okazaki, T., Otaka, Y., Wang, J., etc., Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b-/-Pdcd1-/-mice. J Exp Med,2005.202(12):p.1643-8.
    60. Lauder, A.J., Jolin, H.E., Smith, P., etc., Lymphomagenesis, hydronephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. J Immunol,2004.173(1):p. 113-22.
    61. Izquierdo, L., Porteous, M., Paramo, P.G., etc., Evidence for genetic heterogeneity in hereditary hydronephrosis caused by pelvi-ureteric junction obstruction, with one locus assigned to chromosome 6p. Hum Genet,1992.89(5):p.557-60.
    62. Mackintosh, P., Almarhoos, G., and Heath, D.A., HLA linkage with familial vesicoureteral reflux and familial pelvi-ureteric junction obstruction. Tissue Antigens,1989.34(3):p.185-9.
    63. McDill, B.W., Li, S.Z., Kovach, P.A., etc., Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA,2006.103(18):p.6952-7.
    64. Feliubadalo, L., Arbones, M.L., Manas, S., etc., Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet,2003. 12(17):p.2097-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700