新型金属催化臭氧化催化剂的制备与分子设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Al_2O_3为载体,用浸渍法分别制备了CuO和Fe掺杂CuO两种催化剂。通过UV254的测定,测得单独臭氧氧化去除率为21.5%,CuO和Fe掺杂CuO催化剂的去除率分别为44.8%和55.0%。CuO和Fe掺杂CuO催化剂都有催化活性,其中Fe掺杂CuO催化剂具有更好的催化活性。用SEM分析了CuO催化剂和Fe掺杂CuO催化剂的表面结构。用XPS分析了Fe掺杂CuO催化剂,得到催化剂表面元素组成、元素相对含量和元素价态。
     用层模型方法分别建立了催化剂的理想表面模型Y1(铜终止面)和Y2(氧终止面)、掺杂表面模型Z1(铜终止面)和Z2(氧终止面)以及负载型表面模型。采用密度泛函理论的广义梯度近似和PW91基组,对表面模型进行几何优化,得到各个表面的稳定构型。
     首先,用密度泛函理论计算分析了单层O3在表面模型上吸附后的结构变化和电子特性。单层O3在Y1和Y2模型上的吸附能分别是-8.7442eV和0.3712eV,在Z1和Z2模型表面上的吸附能分别是-8.4295eV和-8.4395eV,在负载型表面模型上的吸附能是-8.7271eV。从吸附能数据分析可知,除了Y2模型,其它四种模型均与O3有较强的相互作用。进一步计算了O3在这五种模型上吸附的电荷分布、电子转移、轨道分裂和轨道能量的变化,计算结果表明:除了Y2模型,其它四种模型均能使吸附的O3分解成O和O2。
     其次,计算分析了两层O3在表面模型Y1和Y2上吸附后的结构变化和电子特性。O3在Y1和Y2模型上的吸附能分别是-8.8075eV和-2.8442eV。进一步计算O3在这两种模型上的电荷分布、电子转移、轨道分裂和轨道能量的变化,计算结果表明:O3在Y1模型上吸附分解成O和O2。
     综合各种模型的计算结果,CuO和Fe掺杂CuO催化剂表面都有催化活性,其中Fe掺杂CuO催化剂表面具有更好的催化活性,这和催化剂性能测试结果相一致。
The alumina supported catalysts CuO/Al_2O_3and Fe-doped CuO/Al_2O_3 wereprepared by immersion method. The UV254 removal of independent ozonation,CuO/Al_2O_3 catalytic ozonation and Fe-doped CuO/Al_2O_3 catalytic ozonation is21.5%, 44.8% and 55.0% respectively, which shows that both CuO/Al_2O_3and Fe-doped CuO/Al_2O_3 display high catalytic activity. Especially, The Fe-dopedCuO/Al_2O_3 is more active than CuO/Al_2O_3 during water treatment. The surfacestructures of catalyst were characterized by scanning electron microscopy. X-rayphotoelectron spectroscopy was used to analyze the component, elementpercentage composition and element valence of the Fe-doped CuO/Al_2O_3.Layer-model method was used to build the ideal surface models (the Cu-termination surface model Y1 and the O-termination surface model Y2), thedoped surface models (the Cu-termination surface model Z1 and the O-termination surface model Z2) and the loaded surface model, the stable structuresof which were obtained after geometrical optimization by using densityfunctional theory within the generalized gradient approximation and the PW91implementations.
     For the interaction to single-layer ozone, according to the calculation based ondensity functional theory, this work analyzed the structural change and electronicproperty. The adsorption energies of Y1 and Y2 are -8.7442eV and 0.3712eVrespectively, and those of Z1 and Z2 are -8.4295eV and -8.4395eV respectively,and that of the loaded surface model is -8.7271eV, which showed that all thesurface models interacted with ozone strongly except Y2. Further calculationabout atomic charge population, electron transfer, break of atomic orbit andorbital energy showed ozone decomposed into oxygen atom and oxygenmolecular on all the surface models exceptY2.
     For the interaction to double-layer ozone, the structural change and electronicproperty were also discussed after the calculation based on density functionaltheory. The adsorption energies of Y1 and Y2 are -8.8075eV and -2.8442eVrespectively. Further calculation also was done to analyze atomic chargepopulation, electron transfer, break of atomic orbit and orbital energy, which showed that ozone decomposed onY1.
     According to the arguments presented above, the surface models of theCuO/Al_2O_3and the Fe-doped CuO/Al_2O_3, display catalytic activity to ozonation,and the present of Fe increase the catalytic activity of catalyst surface, whichmatch the results of the catalytic activitytest above verywell.
引文
1国家环境保护总局《水和废水检测分析方法》编委会.水和废水监测分析方法.第四版.中国环境科学出版社.2002:4~5
    2丁桓如.给水处理中除有机物研究的现状.水处理技术.1995,21(5):21~23
    3林涛.饮用水水源有机污染研究综述.环境保护科学.2005,31(127):35~37
    4王东辉,陈晓枫.浅层地下水有机污染研究.化学工程师.2001,82(1):60~61
    5李广森,宫继仁,王忠刚.水体的有机污染与测定.黑龙江水利科技. 2005,33(3):3~6
    6顾涛,杨叶梅,朱凤鸣等.自来水有机污染物监测分析.中国公共卫生.2006,22(4):476~477
    7吴永胜.沉降法处理氟涂料废水.产业用纺织品.2001,19(133):33~35
    8夏俊芳,高麒麟.混凝沉降法处理洗衣废水的实验研究.四川环境. 2005,24(2):18~20
    9唐登勇,郑正,苏东辉等.活性炭纤维在水处理中的应用研究新进展.净水技术.2003,22(5):23~25
    10姜军清,黄卫红,陆晓华.活性炭纤维处理含酚废水的研究.工业水处理.2001,23(4):20~22
    11何小娟,杨再鹏,党海燕等.膜技术在水处理中的应用及膜材料的研究进展.化工环保.2004,24(3):185~188
    12吴定元.粘胶纤维生产废水治理状况.人造纤维.1995,30(1):18~22
    13王显金,姚文涛,王红梅等.钻井污水处理技术探讨.河南石油. 2005,3(19):14~15
    14张继华.化学沉淀法处理磷化废水.工业水处理.2000,5(20):43~45
    15王晨,李书平,李天铎.制革生产中间污水处理技术.西部皮革. 2002,2(24):26~28
    16车荣和.离子交换剂在治理电镀含镍废水中的应用.电镀与环保. 1988,8(6):17~20
    17李春华.重金属污染控制中的离子交换特点.水处理技术. 1992,18(3):193~198
    18白春学,钟俊波,徐锁洪.难降解有机物去除技术的研究与应用进展.辽宁化工.2004,33(1):45~49
    19张荣,陈建,陶奇.水处理技术研究进展.化工纵横.2003,17(1):17~21
    20王静,冯玉杰,崔玉虹.电化学水处理技术的研究应用进展.环境保护.2003,10(4):91~22
    21贾亮,李真,贾绍义.磁化技术在工业水处理中的应用.化学工业与工程.2006,23(1):59~63
    22 D. Bhattacharyya, T. F. Van Dierdonck, S. D. West et al. Two-phase OzonationofChlorinatedOrganics.JournalofHazardousMaterials.1995,41(1):73~93
    23 B. Kasprzyk-Hordern, M. Zió?ek. Catalytic Ozonation and Methods ofEnhancingMolecularOzoneReactions inWater Treatment.AppliedCatalysis B:Environmental.2003,46(4):639~669
    24 Y. Pi, J. Schumacher, M. Jekel. Decomposition of Aqueous Ozone in thePresenceofAromaticOrganicSolutes.WaterResearch.2005,39(1):83~88
    25 C. Lee, J. Yoon, U. V. Gunten. Oxidative Degradation of N-Nitrosodimethylamine by Conventional Ozonation and the Advanced OxidationProcessOzone/hydrogenPeroxide.WaterResearch.2007,41(3):581~590
    26 K.P.Wang,M.Yang,Y.Zhang.OxidativeDecompositionofHaloaceticAcidsinDrinkingWater.TechnologyofWaterTreatment.2006,7(32):16~19
    27 L. Meunier, S. Canonica, U. V. Gunten. Implications of Sequential Use of UVandOzoneforDrinkingWaterQuality.WaterResearch.2006,40(9):1864~1876
    28 M. Cho, J. Yoon. Enhanced Bactericidal Effect of O3/H2O2 Followed by Cl2.Ozone:Science&Engineering.2006,28(5):335~340
    29 M. Sanchez-Polo, U. V. Gunten, J. Rivera-Utrilla. Efficiency of ActivatedCarbon to Transform Ozone into OH Radicals: Influence of OperationalParameters.WaterResearch.2005,39(14):3189~3198.
    30 M. M. Huber, S. Korhonen, T. Ternes et al. Oxidation of Pharmaceuticals duringWater Treatment with Chlorine Dioxide. Water Research. 2005,39(15):3607~3617
    31 M. C. Dodd, A. D. Shah, U. V. Gunten et al. Interactions of FluoroquinoloneAntibacterial Agents with Aqueous Chlorine: Kinetics, Reaction Mechanismsand Transformation Pathways. Environmental Science & Technology. 2005,39(14):7065~7076.
    32 M. O. Buffle, J. Schumacher, E. Salhi et al. Measurement of the Initial Phase ofOzone Decomposition in Water and Wastewater by Means of a ContinuousQuench-flow System: Application to Disinfection and Pharmaceutical Oxidation.WaterResearch.2006,40(6):1884~1894.
    33 M. C. Dodd, V. N. Duy, A. Ammann et al. Kinetics and Mechanistic Aspects ofAs(III) Oxidation by Aqueous Chlorine, Chloramines, and Ozone: Relevance todrinking water treatment. Environmental Science & Technology. 2006,40(15):3285~3292.
    34 B. Ning, N. Graham, Y. P. Zhang et al. Degradation of Endocrine DisruptingChemicals by Ozone/AOPs. Ozone: Science & Engineering. 2007, 29(3):153~176
    35 L. S. Wei, J. H. Zhou, Z. H. Wang et al. Kinetic Modeling of HomogeneousLow-Temperature Multi-Pollutant Oxidation by Ozone. Ozone: Science &Engineering.2007,29(3):207~21436 F. Hammes, E. Salhi, O. K?ster et al. Mechanistic and Kinetic Evaluation ofOrganic Disinfection by-product and Assimilable Organic Carbon (AOC)Formation during the Ozonation of Drinking Water. Water Research. 2006,40(12):2275~2286
    37 M. O. Buffle, J. Schumacher, S. Meylan et al. Ozonation and AdvancedOxidation of Wastewater: Effect of O3 Dose, pH, DOM and HO?-scavengers onOzone Decomposition and HO?Generation. Ozone: Science & Engineering.2006,28(4):247~259
    38 J.A.Byrne,B.R.Eggins,N.M.D.Brownetal. ImmobilisationofTiO2Powderfor the Treatment of Polluted Water. Applied Catalysis B: Environmental. 1998,17(2):25~36
    39 B. Legube, N. K. V. Leitne. Catalytic Ozonation: a Promising AdvancedOxidationTechnologyforWaterTreatment.CatalysisToday.1999,53(1):61~72
    40 D. Ciuparu, A. Ensuque, F. Bozon-Verduraz. Pd Catalysts Supported on MgO,ZrO2 or MgO-ZrO2: Preparation, Characterization and Study in HexaneConversion.AppliedCatalysisA:General.2007,326(2):130~142
    41 C.B.Xu,A.S.Teja.SupercriticalWaterSynthesisandDepositionofIron Oxide(α-Fe2O3)NanoparticlesinActivatedCarbon.TheJournalofSupercriticalFluids.2006,39(1):135~141
    42 M. Kitis, S. S. Kaplan. Advanced Oxidation of Natural Organic Matter UsingHydrogen Peroxide and Iron-coated Pumice Particles. Chemosphere. 2007,68(10):1846~1853
    43 M.Kitis,S.S.Kaplan,C.Alexandreetal.MetallicMixedOxides(Pt,MnorCr)as Catalysts for the Gas-phase Toluene Oxidation. Catalysis Communications.2007,8(8):1227~1231
    44 I. Jenei, P. Kis, E. Kiss. The Development of Ozone Generators with theAnalysis of the Field Distribution of the Electrode Arrangements. 2007,29(3):215~220
    45 L. Zhao, J. S. Gao, C. M. Xu. Methods and Applications of MolecularSimulation in Catalyst Research. Petroleum Science and Technology. 2007,24(12):1395~1415
    46韩大雄,杨频.分子模拟手性金属配合物D, L -[Co(phen)2dppz]3+与B-DNA的作用模型.中国科学B.2000,30(5):392~298
    47潘毓刚,李俊清,祝继康. Xα方法的理论和应用.科学出版社.1983:158~182
    48 A. L. Rohl, D. H. Gay. Calculating the Morphology of Minerals. MineralogicalMagazine,1995,59(5):607~615
    49 J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient ApproximationMadeSimple.PhysicalReviewLetters.1996,77(18):3865~3868
    50 N. Serpone. Brief IntroductoryRemarks on Heterogeneous Photocatalysis. SolarEnergyMaterialsandSolarCells.1995,38(1-4):369~379
    51 P. K. J. Robertson. Semiconductor Photocatalysis: an EnvironmentallyAcceptable Alternative Production Technique and Effluent Treatment Process.JournalofCleanerProduction.1996,4(3-4):203~212
    52 J. Grimm, D. Bessarabov, R. Sanderson. Review of Electro-assisted Method forWaterPurification.Desalination.1998,115(3):285~294
    53方志刚,沈百荣,范康年. Ni-P非晶态合金中电子转移问题的DFT研究.化学学报.1999,57(11):1246~1250
    54肖鹤鸣,陈兆旭.四唑变异构反应的密度泛函理论(DFT)研究.化学学报.1999,57(11):1223~1240
    55 P. E. M. Siegbahn, R. A. M. Blomberg. Transition-metal Systems inBiochemistry Studied by High-accuracy Quantum. Nail Acad SCI. 2005,102(1):6648~6653
    56 G. D. Sherwood, J. McNeill, G. Palos et al. Perspectives on Pain: AQualitativeAnalysisoftheHispanicPainExperience.NTResearch.2003,8(5):364~377
    57林梦海.量子化学计算方法与应用.科学出版社.2005:204~216
    58林星杰,杨慧芬,宋存义. UV254在水质监测中应用的研究.能源与环境.2006,(1):22~24
    59朱宜,张存珪.电子显微镜的原理和使用.北京大学出版社.1983:150~169
    60潘承璜,赵良仲.电子能谱基础.科学出版社出版.1981:1~8
    61王文宁,叶向宇,李振华等.用GGA泛函方法研究苯分子在石墨(001)表面的吸附.化学学报.2004,62(24):2374~2378
    62 J. J. Chen, X. H. Yang. Optimal Parameter Estimation for Muskingum ModelBased on Gray-encoded Accelerating Genetic Algorithm. Communications inNonlinearScienceandNumericalSimulation.2007,12(5):849~858
    63 Z. Chafi, N. Keghouche, C. Minot. DFT study of Ni–CeO2 Interaction:AdsorptionandInsertion.SurfaceScience.2007,601(11):2323~2329
    64 F. Tasndi. Local Self-interaction-free Approximate Exchange-correlationPotentials in the Variational Density Functional Theory for Individual ExcitedStates.ChemicalPhysics Letters.2002,366(5-6):496~503
    65 J. L. Nie, H. Y. Xiao, X. T. Zu et al. First Principles Calculations on Na and K-adsorbedDiamond(100)surface.ChemicalPhysics.2006,326(1-3):308~314
    66 L.Xu,H.Y.Xiao,X.T.Zu.First-principlesStudyontheGeometryandStabilityofCOandHydrogenCoadsorptionontheNi(111)2×2surface.ChemicalPhysics.2006,323(1-3):334~340
    67 P. S. Moussounda, M. F. Haroun, B. M. Passi-Mabiala et al. DFT Investigationof Methane Molecular Adsorptionon Pt(100). Surface Science. 2005, 594(1-3):231~239
    68 Terry J. Frankcombe, Geert-Jan Kroes, Andreas Züttel. Theoretical CalculationoftheEnergyofFormationof LiBH4.Chemical Physics Letters.2005,405(1-3):73~78
    69 T. Takayanagi, T. Hoshino, K. Takahashi. Electronic Structure Calculations ofAcetonitrile Cluster Anions: Stabilization Mechanism of Molecular RadicalAnionsbySalvation.ChemicalPhysics.2006,324(1-3):679~688
    70 T. Maeda, Y. Kobayashi, K. Kishi. Growth of Ultra-thin Titanium Oxide onCu(100), Fe/Cu(100) and Ordered Ultra-thin Iron Oxide Studied by Low-energyElectron Diffraction and X-ray Photoelectron Spectroscopy. Surface Science.1999,436(1):249~258
    71 L. Lozzi, M. Passacantando, P. Picozzi et al. Oxidation of the Fe/Cu(100)Interface.SurfaceScience.1995,333(1-2):703~709
    72 M.E.Santos,T.A.Abbate,Grandietal.EvolutionoftheElectronicStructureofMetastableFe1-xCuxAlloys ProducedbyMechanicalAlloying.JournalofAlloysandCompounds.2002,346(5):24~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700