枯否细胞在对乙酰氨基酚诱导的肝毒性损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是人体最大的器官。既往,肝脏的免疫功能曾被学者们忽视,近年来,越来越多的研究揭示了肝脏在免疫系统中的重要作用。肝脏免疫由固有免疫、适应性免疫及循环中的其它成份共同组成,其中固有免疫最为关键。枯否细胞(KC)是肝脏固有免疫的重要组成部分。KC生物学功能非常广泛,在肝脏的免疫防御中扮演着重要角色。KC有很强的吞噬能力,可以清除内毒素和其它来自循环中的外源性物质,也可以去除机体内的细胞碎片、病毒、细菌、凋亡细胞和一些肿瘤细胞等,在受损及感染后引起炎症反应。KC是专职抗原提呈细胞,可激活辅助T细胞参与触发适应性免疫反应。另外,KC也是机体最具分泌活性的细胞,可以分泌多种活性介质参与调节稳态、宿主抵抗、炎症等多种免疫反应。值得注意的是,KC还与很多肝脏疾病的发生、发展紧密相关。
     对乙酰氨基酚(APAP),即扑热息痛,是目前广为应用的解热镇痛药之一。在美国及欧洲国家,每年约有45%的急性肝衰竭患者由过量使用APAP引起。在我国,APAP的应用也十分广泛,除直接应用外,还是很多中、西药物的重要成份,市面上约有80%已批准抗感冒药(如:感康、泰诺、白加黑、百服宁和快克等)含有APAP。由于人们医疗知识缺乏,对药物认知不足,错误、过量服用或交叉服用含APAP成份药物的情况仍经常发生,导致患者严重肝、肾损伤甚至死亡的情况也不为少见。既往,APAP诱导的肝损伤机制的研究主要关注在毒性发挥早期阶段肝细胞内发生的生物化学代谢事件。然而,愈来愈多的证据显示固有免疫在促进和加剧APAP诱导的肝损伤中的重要作用。
     KC的重要作用已经在包括APAP在内的多种药物性肝损伤模型中得以证实。在炎性反应中,破损的肝细胞释放的细胞信号和死亡肝细胞释放的损伤相关分子模式均可激活KC。活化后的KC通过释放多种促炎性细胞因子、趋化因子、ROS和RNS进一步促进肝损伤及炎症反应的进展。另一方面,KC亦可以释放具有肝脏保护效果的细胞因子IL-4及抗炎性细胞因子IL-10。因此,KC在APAP诱导的肝毒性损伤中的作用是非常复杂的。近年来的研究中,学者们应用氯化钆和/或脂质体包裹的氯磷酸盐(CLO)使小鼠/大鼠肝脏内KC耗竭后观察APAP过量时肝损伤情况以评价KC在APAP诱导的肝毒性损伤中的作用。但是,实验结论未能统一,KC在APAP诱导的肝损伤中及损伤修复中的作用仍具争议。本研究的目的在于深入探讨KC在APAP诱导的肝毒性损伤的作用及可能原因。
     在本实验中,我们需建立KC缺失的APAP诱导的肝损伤动物模型。首先,经由小鼠尾静脉注射150ul脂质体包裹的氯膦酸盐溶液(CLO,5mg/ml),CLO可被KC内吞并产生KC耗竭效应,对照组小鼠尾静脉注射等量脂质体溶液(LIP)。在LIP/CLO作用后的24h,即KC耗竭后再经腹腔注射毒性剂量的APAP(500mg/kg)以建立KC缺失的APAP诱导的肝损伤动物模型。血清ALT及肝脏病理切片将用于肝损伤程度的分析。肝非实质细胞及淋巴细胞被分离出来并通过流式细胞术(FACS)进行KC耗竭效果评价及细胞亚型分析。使用免疫组化F4/80抗体对肝脏组织切片中KC进行识别并进行KC耗竭效果评价。应用荧光定量聚合酶链反应(qPCR)法检测小鼠肝脏中细胞因子(TNF-α, IFN-γ, IL-6,IL-1-α, IL-1-β)及趋化因子(CCL2,CXCL1)含量。使用PCNA免疫组化染色及western blot法检测Cyclin D1蛋白表达以评价肝细胞增殖及损伤修复情况。为除外CLO及KC缺失对APAP药物代谢的影响,肝脏谷胱甘肽(GSH)浓度将通过Tietze法测得,CYP2E1蛋白质表达将通过western blot法进行测定。
     结果显示,KC在注射CLO24h后被基本耗竭。CLO对NK、NKT、T细胞及B细胞并没有产生影响。与预注射LIP的对照组相比,预注射CLO致KC耗竭的实验组动物在APAP所导致的肝毒性损伤的早期(6h)损伤程度较轻。其证据为,在给予APAP6h后相对较低的血清ALT(对照组为1598±257U/L,预注射CLO组为808±164U/L,p<0.05)及明显减少的小叶中央区坏死面积(35.5±7.0%和14.5±7.7%, p<0.05)。在APAP用药6h后与预注射LIP的对照组相比,预注射CLO致KC缺失组动物肝内浸润的炎性单核细胞(CD11b+,Ly6Chi)、招募巨噬细胞(CD11b+, F4/80+)和中性粒细胞(CD11b+,Ly6Ghi)较少,肝脏内趋化因子(CCL2,CXCL1)及细胞因子(TNF-α, IFN-γ, IL-6)mRNA的表达较低。但是,在给予APAP24h后,两组在血清ALT水平,肝脏病理水平上没有显著差异,且预注射CLO组小鼠肝脏内炎性单核细胞、招募巨噬细胞及中性粒细胞总数在APAP注射后24h后,达到了与对照组相近水平。由APAP诱导的肝损伤在APAP给药后72h基本恢复,APAP给药后48h及72h两组血清ALT及肝脏病理水平没有显著差异。另外,PCNA免疫组化染色结果及CyclinD1蛋白表达水平在给药后24h,48h及72h均无差异。两组间肝脏CYP2E1蛋白以及GSH消耗水平在APAP给药后组间均无差异。
     以上结果显示KC在APAP诱导肝毒性损伤早期具有促进损伤的作用,其作用机制可能与KC分泌具有促炎性作用的细胞因子及分泌趋化因子致招募炎性单核细胞、巨噬细胞及中性粒细胞增加有关。但是,KC的缺失未对肝损伤后期阶段及再生阶段的组织修复产生影响,可能是新招募的炎性单核细胞/巨噬细胞代替KC发挥了抗炎性及创伤修复功能。综上,我们的研究结果表明KC在APAP诱导的肝损伤早期具有损伤促进作用,为APAP诱导肝毒性损伤早期炎症控制提供新的思路。另外,提示了肝脏固有免疫与药物性肝损伤之间的密切联系,肝脏作为免疫器官值得我们继续探索。
liver is the largest organ in the body. Previously, the immune function of theliver has been neglected by scholars, in recent years, more and more research revealsthe important role of the liver in the immune system. Liver immune system consists ofinnate immunity, adaptive immunity and other components in circulation, and theinnate immunity is the most important one. Kupffer cell (KC) is an importantcomponent of innate immunity of liver. KC' biological functions are very extensive,and they play an important role in hepatic immune defense. KC has a strongphagocytic, which can remove endotoxin and exogenous substances from thecirculation, also be used to remove the body cells, cell debris, old virus, bacteria,apoptosis cells and some tumor cells. Initiating inflammation after damage andinfection. KC are professional antigen presenting cells, which can activate helper Tcells involved in triggering the adaptive immune response. In addition, KC is also themost secretory activity cells, can secrete several active mediators to modulatehomeostasis, host resistance, inflammatory reaction. Notably, KC also tightly relatedwith a lot of liver disease occurrence and development.
     Acetaminophen (APAP), also konw as paracetamol, is one of the widely usedanalgesic and antipyretic drug. In American and European countries, about45%acuteliver failure patients caused by APAP overdose each year. In China, APAP is widelyused, except direct application, it also as an important component in other drugs,about80%of the approved clodrex containing APAP. Due to the lack of knowledge of medical and pharmaceutical cognitive, overdose or cross use ingredients containingAPAP drugs are still frequent. Leading to liver and kidney serious damage and evendeath. Previously, the mechanism of liver injury induced by APAP mainly focus onthe biochemical and metabolic events occurring in early stage. However, more andmore evidence that the innate immune response plays an important role in promotingand aggravation of liver injury induced by APAP.
     Significant effect of KC has been demonstrated in a variety of drug-induced liverdamage model including APAP. In inflammation, cell signals and damage associatedmolecular patterns released by damaged liver cells and dead cell can activating KC.Activated KC can release proinflammatory cytokines, chemokines, ROS and RNS tofurther promote the hepatic injury and inflammation. On the other hand, KC can alsorelease cytokines IL-6and anti-inflammatory cytokine IL-10, which havehepatoprotective effect. Therefore, the role of KC in hepatotoxicity induced by APAPin is very complex. In recent year, for evaluating the role of KC in APAP inducedinjury, scholars use gadolinium chloride and/or lipo-clodronate (CLO) to depletedKC in mice/rats' livers and observe liver injury after APAP challenge. However, theexperimental conclusion is not unified, KC in APAP induced liver injury and in therepair of the injured are still controversial. The purpose of this study is to explore KCfunction in APAP-induced liver injury.
     In this experiment, we have to set up KC-defected-APAP-induced-liver-injuryanimal model and then we i.p. injected500mg/kg of APAP dissolved in PBS toinduce liver injury. KC were depleted by i.v. injection of150ul of liposomalclodronate (clodrosome, CLO,5mg/ml)24h prior to APAP challenge; liposome wasused as vehicle control. SerumALT and histology were used for liver damage analysis.Hepatic non-parenchymal cells and leukocytes were isolated and assessed for cellsubtypes by flowcytometry (FACS). Immunohistochemistry(IHC) of liver sections for F4/80were performed to identify KC and confirm CLO effects.Fluorescent-Quantitation Polymerase Chain Reaction Assay for Cytokines(TNF-α,IFN-γ, IL-6, IL-1-α, IL-1-β) and chemokines(CCL2,CXCL1). IHC for PCNA andwestern blot for Cyclin D1were used for detecting proliferating hepatocytes. To roleout the effect of CLO on metabolism of APAP, hepatic GSH concentrations wasmeasured using the method of Tietze, CYP2E1detected by western blot.
     The results display KC were effectively depleted at24h after CLO treatment,which was confirmed by hepatic F4/80IHC staining and FACS data. CLO treatmenthad no effect on the numbers of hepatic NK, NKT, T and B cells. Compared withAPAP-treated control mice, KC depletion by CLO pretreatment conferred protectionagainst APAP-induced early liver injury at6h evidenced by significantly reducedlevels of serum ALT (1598±257U/L in Controls vs.808±164U/L in CLO, p<0.05)and centrilobular necrosis area (35.5±7.0%vs.14.5±7.7%, p<0.05). The findingshowed decreased hepatic infiltration of inflammatory monocytes (CD11b+,Ly6Chi),recrument marophages (CD11b+, F4/80+) and neutrophils (CD11b+,Ly6Ghi),and reduced hepatic mRNA expressions for chemokines (CCL2, CXCL1) andcytokines (IL-6, TNF-a, IFN-γ) in CLO-treated mice at6h after APAP injected.However, at24h after APAP, there were no significant differences of liver injury interms of serum ALT and liver histology between these two groups. Interestingly, thenumbers of hepatic inflammatory monocytes, macrophages and neutrophils inCLO-treated mice reached to the similar levels of APAP-treated control mice at24hafter APAP. APAP-induced liver injury was resolved by72h in both groups and nodifferences of serum ALT and liver histology were observed at48h and72h despitethe continued absence of KC in the liver of CLO-treated mice. Furthermore, thePCNA positive hepatocytes in the liver displayed no differences at24h,48h and72hafter APAP overdose. Hepatic CYP2E1proteins and GSH depletions after APAP exhibited no differences between control and CLO-treated mice.
     These findings suggest that KC contribute to the early development ofAPAP-induced liver injury by producing inflammatory chemokines/cytokines torecruit inflammatory monocytes, macrophages and neutrophils, but their role in thelate phase of liver injury and regeneration could be replaced by newly recruitedinflammatory monocytes/macrophages. In a word, our results indicate that KCpromoting injury in the early phase of APAP overdose, which provides a newresearch thought of early inflammatory damage control in APAP-induced livertoxicity. In addition, point out the close links between innate immunity and liverdrug-induced liver injury, and liver as an immune organ worthy of our continuedexploration.
引文
[1] ZAKIM D, BOYER TD. Hepatology: a textbook of liver disease[M]. Philadelphia:WB Saunders,2003.
    [2] MCCUSKEY RS. Morphologic mechanisms for regulating blood flow throughhepatic sinusoids[J]. Liver.2000;20:3–7.
    [3] TRUTMANN M, SASSE D. The lymphatics of the liver[J]. Anat Embryol.1994;190:201–209.
    [4] BOYER JL. The liver: biology and pathobiology[M]. Philadelphia: LippincottWilliams&Wilkins,2001.
    [5] ARIAS IM. The liver: biology and pathobiology[M]. New York: Raven Press,1994.
    [6] WISSE E, ET AL. Structure and function of sinusoidal lining cells in the liver[J].Toxicol Pathol.1996;24:100–111.
    [7] MCCUSKEY RS. Anatomy of efferent hepatic nerves[J]. Anat Rec.2004;280A:821–826.
    [8] ZHIPING LI, ANNA EA DIEHL. Innate immunity in theliver [J].Gastroenterology.2003;19:565–571.
    [9] SMEDSROD B, ET AL. Cell biology of liver endothelial and Kupffer cells[J].Gut1994;35:1509–1516.
    [10] WINNOCK M. Liver-associated lymphocytes: role in tumor defense[J]. SeminLiver Dis.1993;13:81–92.
    [11]何维.医学免疫学(第2版)[M].北京:人民卫生出版社.2010.
    [12] BOUWENS L, ET AL. Quantitation, tissue distribution and proliferation kineticsof Kupffer cells in normal rat liver[J]. Hepatology1986;6:718–722.
    [13] KNOLLE PA, GERKEN G. Local control of the immune response in the liver[J].Immunol Rev.2000;174:21–34.
    [14] C. SUMMERS, S. M. RANKIN, A.M. CONDIFFE, N. SINGH, A. M. PETERS,E. R. Chilvers. Neutrophil kinetics in health and disease[J]. Trends inImmunology.201031,(8):318-324.
    [15] SMITH GS, NADIG DE, KOKOSKA ER, SOLOMON H, TINIAKOS DG,MILLER TA. Role of neutrophils in hepatotoxicity induced by oralacetaminophen administration in rats[J]. J Surg Res1998;80:252-258.
    [16] LAWSON JA, FARHOOD A, HOPPERA RD, BAJT ML, JAESCHKE H. Thehepatic inflammatory response after acetaminophen overdose: role ofneutrophils[J]. Toxicol Sci.2000;54:509-516.
    [17] FREDERIC G, MARKUS GM, STEFFEN J, MICHEAL H. SIEWDKE,MIRIAM M, KLAUS L. Development of monocytes, macrophages and dendriticcells[J]. Science.2010;327(5966):656–661.
    [18] VANDERKERKEN K. Origin and differentiation of hepatic natural killer cells(pit cells)[J]. Hepatology1993;18:919–925.
    [19] BIRON CA, BROSSAY L. NK cells and NKT cells in innate deferse against viralinfections[J]. Curr Opon Immnol.2001;13:458-464.
    [20] WU J, LANIER LL. Natural killer cells and cancer. Adv Cancer Res[J].2003;90:127-156.
    [21] EXLEY M, KAUFMANN SH. Liver NKT cells: an account of heterogeneity[J].Trends Immunol.2003;24:364-369.
    [22] GODFREY DI, KRONENBERY M. Going both ways: immune regulation viaCD1d-dependent NKT cells[J]. J Clin Invest.2004;114:1379-88.
    [23] GIULIANP RAMADORI, TOMAS ARMNBRUST. Cytokines in the liver[J].European Journal of Gastroenterology&Hepatology.2001;13(7):777-784.
    [24] MOSHAGE H. Cytokines and the hepatic acute phase response[J]. J Pathol.1997;181:257-66.
    [25] K. KOVALOVICH, R.A. DEAGELIS, W. Li, E.E. FURTH, ET AL. Increasedtoxin-induced liver injury and fibrosis in interleukin-6-deficient mice[J].Hepatology.2000;31:149-159.
    [26] YEDIDYA SAIMAN, SCOTT L. FRIEDMAN. The role of chemokines in acuteliver injury[J]. Front Physiol.2012;3: Article213.
    [27] OKUMA T, TERASAKI Y, SAKASHITA N, KAIKITA K, ET AL. MCP-1/CCR2signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxideproduction[J]. Int. J. Exp. Pathol.2006;87:475-83.
    [28] SMEDSROD B, ET AL. Cell biology of liver endothelial and Kupffer cells[J].Gut1994;35:1509–16.
    [29] ZHANG X, MOSSER DM. Macrophage activation by endogenous dangersignals[J]. J Pathol.2008;214:161-78.
    [30] SEKI S, HABU Y, KAWAMURA T, ET AL. The liver as a crucial organ in thefirst line of host defense: the role of Kupffer cells, natural killer (NK) cells andNK1.1Ag+T cells and T helper1immune responses[J]. Immunol Rev2000;174:35–46.
    [31] ANDREW J. REES. Monocyte and Macrophage Biology: An Overview[J].Seminars in Nephrology.2010;30(3):216-133.
    [32] SIAMON GORDON, PHILIP R. TAYLOR. Monocyte and macrophageheterogeneity[J]. Nat Rev Immunol.2005;5:953-964.
    [33] PR. TATYLOR, L. MARTINEZ POMARES, M. STACEY, HH. LIN, G.D.BROWN, S. GORDON. Macrophage receptors and immune recognition[J]. AnnuRev Immunol.2005;23:901–44.
    [34] TOSHIYKI TAKEISHI, KENICHIRO HIRANO, TAKASHI KOBAYSHI, ETAL. The Role of Kupffer Cells in Liver Regeneration[J]. Arch Histol Cytol.1999;62(5):413-422.
    [35] LASKIN DL. Macrophages and inflammatory mediators in chemical toxicity: abattle of forces[J]. Chem. Res. Toxicol.2009;22:1376-85.
    [36] PORCHERAY F, VIAUD S, RIMANIOL AC, LEONE C, SAMAH B, ET AL.Macrophage activation switching: an asset for the resolution of inflammation[J].Clin Exp Immunol.2005;142:481-89.
    [37] ISHIYAMAH, OGINO K, HOBARA T. Role of Kupffer cells in rat liver injuryinduced by diethyldithiocarbamate[J]. Eur. J. Pharmacol.1995;292:135-141.
    [38] MADDOX JF, AMUZIE CJ, Li M, NEWPORT SW, ET AL. Bacterial-andviral-induced inflammation increases sensitivity to acetaminophenhepatotoxicity[J]. J Toxicol Environ Health A.2010;73:58-73.
    [39] JAMES H. LEWIS, MOUSTAFA AHMED, AHMED SHOBASSY, CARENPALESE. Drug-induced liver disease[J]. Gastroenterology.2006;22:223–233.
    [40] ANGELIKA D. MANTHRIPRAGADA, ESTHER H. ZHOU, DANIEL S.BUDNITZ, ET AL. Characterization of acetaminophen overdose-relatedemergency department visits and hospitalizations in the United States[J].Pharmacoepidemiology and Drug Safety.2011;20:819–826.
    [41] WILLIAM M. LEE. Drug-induced acute liver failure[J]. Clin Liver Dis.2013;(17):575–586.
    [42]张袁媛.药物性肝病128例病因及临床分析2009年第五届国际暨全国肝衰竭与人工肝学术会议论文集[C].2010
    [43] ADRIAN REUBEN,DAVID G, KOCH, WILLIAM M. LEE, ET AL.Drug-induced acute liver failure: Results of a U.S. Multicenter, ProspectiveStudy[J]. HEPATOLOGY.2010;52(6):2065-2076.
    [44]游绍丽,驻冰,荣义辉,臧红,刘鸿凌,张爱民,辛绍杰.120例药物性肝衰竭临床分析[J].实用预防医学.2012;19(11):99-100.
    [45] KAPLOWITZ N, DELEVE LD. Drug-Induced Liver Disease [M].3rd edition.Massachusetts: Elsevier.2013.
    [46] NAVARRO VJ, SENIOR JR. Drug-related hepatotoxicity[J]. N Engl J Med.2006;354:731-739.
    [47] LEISE MD, POTERUCHA JJ, TALWALKAR JA. Drug-induced liver injury[J].Mayo Clin Proc.2014;89:95-106.
    [48] YUAN L, KAPLOWITZ N. Mechanisms of drug-induced liver injury[J]. ClinLiver.2013;17:507-518.
    [49] BASUKI K., GUNAWAN, NEIL KAPLOWITZ. Mechanisms of drug-inducedliver disease[J].2007;11:459-475.
    [50] ZX LIU, KAPLOWITZ N. Immune-mediated drug-induced liver disease[J]. ClinLiver Dis.2002;6:467-486.
    [51] KITTERINGHAM NR. Drug-protein conjugation and its immunologicalconsequences[J]. Drug Metabol Rev.1990;22:87-144.
    [52] ZX LIU, KAPLOWITZ N. Role of innate immunity in acetaminophenhepatotoxicity[J]. Exp Opin Drug Meatb Toxicol.2006;2:389-397.
    [53] KNOWLES S, UETRECHT J, SHEAR NH. Idiosyncratic drug reactions: thereactive metabolite syndrome[J]. Lancet.2000;356:1578-1591.
    [54] PARK B, PIRMOHAMED M, KITTERINGHAM M. Role of drug disposition indrug hypersensitivity: a chemical, moecular, and clinical prospective[J]. ChemRes Toxicol.1998;11:969-988.
    [55] BEAUNE PH, LECOEUR S. Immunotoxicity in the liverL adverse reaction todrugs[J]. J Hepatol.1997;26;(2):37-42.
    [56] SHIFF E, SORRELL M, MADDREY WC. Schiff's disease of the liver[M].Philadelphia: Lippincott-Raven.1999.
    [57] MATZINGER P. The danger model: a renewed sense of self[J]. Science.2002;296:301-305.
    [58] UETRECHT J. New concepts in immunology relevant to idiosyncratic drugreactions: the "danger hypothesis" and innate immune system[J]. Chem ResToxicol.1999;12:387-395.
    [59] PICHLER WJ. Pharmacological interaction of drugs with antigen-specificimmune receptors: the p-i concept[J]. Curr Opin Allergy Clin Immunol.2002;2:301-305.
    [60] GERBER BO, PICHLER WJ. Cellular mechanisms of T cell mediated drughypersensitivity[J]. Curr Opin Immunol.2004;16:732-737.
    [61] NAISBITT DJ, BRITSCHGI M, WONG G, ET AL. Hypersensitivity reactions tocarbamazepine:characterization of the specificity, phenotype, and cytokine profileof drug-specific T cell clones[J]. Mol Pharmacol.2003;63:732-741.
    [62] GERBER BO, PICHLER WJ. Cellular mechanisms of T cell mediated drughypersensitivity[J]. Curr Opin Immunol.2004;16:732-737.
    [63] ROBIN MA, LE ROY M, DESCATOIRE V, ET AL. Plasma membranecytochromes P450as neoantigens and autoimmune targets in drug-inducedhepatitis[J]. J Hepatol.1997;26(Suppl1):23-30.
    [64] VOURDI M, LARREY D, MATAF F, ET AL. Anti-liver endoplasmic reticulumautoantibodies are directed against human liver cytochrome P-450IA2. A specificmarker of dihydralazine-induced hepatitis[J]. J Clin Invest.1990;85:1967-73.
    [65] KAPLOWITZ N. Causality assessment versus guilt by association in drughepatotoxicity[J]. Hepatology.2001;33:308-310.
    [66] ABDELAZIZ Y. Elzouki. Textbook of Clinical Pediatrics[M]. New York:Springer-Verlaq Berlin Heidelberg.2012.
    [67] HINZ B, CHEREMINA O, BRUNE K. Acetaminophen (paracetamol) is aselective cyclooxygenase-2inhibitor in man[J]. FASEB J.2008;22:383-390.
    [68] WILLIAM M. LEE. Acetaminophen-related acute liver failure in the UnitedStates[J]. Hepatology Research2008;38(Suppl.1): S3–S8.
    [69] ANNE M. LARSON. Acetaminophen Hepatotoxicity[J]. Clin Liver Dis.2007;11:525-548.
    [70] JEASCHKE, HASEGAWA T. Role of neutrophils in acute inflammatory liverinjury[J]. Liver Int.2006;26:912–919.
    [71] PRZYBOCKI JM, REUCHL KR,THURMAN RG, KAUFFMAN FA.Involvement of nonparenchymal cells in endotoxemia[J]. F Leukoc Biol.1994;55:723-28.
    [72] ISHIDA Y, KONDO T, KIMURA A, ET AL. Opposite role of neutrophils andmacrophages in the pathogenesis of acetaminophen-induced acute liver injury[J]..Eur J Immunol.2006;36:1028-38.
    [73] PARK BK, PIRMOHAMED M, KITTERINGHAM NR. The role of cytochromeP450enzymes in hepatic and extrahepatic human drug toxicity[J]. PharmacolTher1995;68(3):385-424.
    [74] GILLETTE JR, NELSON SD, MULDER GJ, JOLLOW DJ, MITCHELL JR,POL LR, ET AL. Formation of chemically reactive metabolites of phenacetin andacetaminophen[J]. Adv Exp Med Siol.1981;136:931-950.
    [75] GONZALEZ FJ. The2006Bernaed B. Brodie Award lecture. Cyp2e1[J]. DrugMetab Dispos.2007;35:1-8.
    [76] WALGREN JL, MITCHELL MD, THOMPSON DC. Role of metabolism indrug-induced idiosyncratic hepatotoxicity[J]. Crit Rev Toxicol.2005;35(4):325-61.
    [77] COLES B, WILSON I, WRDMAN P, HINSON JA, NELSON SD, KETTERERB. The spontaneous and enzymatic reaction of N-acetylcysteine[J]. Lancet.1988;264:253-260.
    [78] ABDEL-ZAHER AO, ABDEL-RAHMAN MM, HAFEZ MM, OMRAN FM.Role of nitric oxide and reduced glutathione in the protective effects ofaminoguanidine, gadolinium chloride and oleanolic acid againstacetaminophen-induced hepatic and renal damage[J]. Toxicology.2007;234:124-34.
    [79] GEMNORYS MW, MUDGE GH, GRIBBLE GW. Mechanism of decompositionof N-hydroxyacetaminophen, a postulated toxic metabolite of acetaminophen[J]. JMed Chem.1980;23(3):304-8.
    [80] PUMFORD NR, HINSON JA, BENSON RW, ROBERTS DW. Immunoblotanalysis of protein containing3-(cystein-S-yl)acetaminophen adducts in serumand subcellular liver proteins of acetaminophen-treated mice[J]. J Pharmacol ExpTher.1989;248:190-196.
    [81] JOLLOW DJ, MITCHELL JR, POTTER WZ, DAVIS DC, CILLETTE JR,BRODIE BB. Acetaminophen-induced hepatic necrosis. II. Role of covalentbinding in vivo[J]. J Pharmacol Exp Ther.1973;187:195-202.
    [82] MCCLAIN CJ, KROMHOUT JP, PTERSON FJ, ET AL. Potentiation ofacetaminophen hepatotoxicity by alcohol[J]. JAMA.1980;244(3):251-253.
    [83] KAIRALLAH EA, BULERA SJ, COHEN SD. Identification of the44kDaacetaminophen binding protein as a subunit of glutamine synthetase[J].Toxicologist.1993;13:114.
    [84] HAMES NC, HINSON JA, MARTIN BM, PUMFORD NR. Glutamatedehydrogenase covalently binds to a reactive metabolite of acetaminophen[J].Chem Res Toxicol.1996;9:641-546.
    [85] LANDIN JS, COHEN SD, KHAIRALLAH EA. Redox and the covalent bindingof acetaminophen(APAP) to mitochondrial aldehyde dehydrogenase[J]. FundamAppl Toxicol.1996;30:279.
    [86] PUMFORD NR, MATRIN BM, HINSON JA. A metabolite of acetaminophencovalently binds to the56kDa selenium binding protein[J]. Biochem Biophys ResComm.1992;182:1348-55.
    [87] PUMFORD NR, HALMES NC, MARTIN BM, COOK RJ, WAGNER C,HINSON JA. Covalent binding of acetaminophen to N-10-formyltetrahydrofolatedehydrogenase in mice[J]. J Pharmacol Exp Ther.1997;280:501-505.
    [88] QIU Y, BENET LZ, BURLINGAME AL. Identification of the hepaticproteintargets of reactive metabolites of acetaminophen in vivo in mice usingtwo-dimensional gel electrophoresis and mass spectrometry[J]. J Biol Chem.1998;273:17940-53.
    [89] HENDERSON CJ, WOLF CR, KITTERINGHAM N, POWELL H, OTTO D,PARK BK. Increased resistance to acetaminophen hepatotoxicity in mice lackingglutathione S-transferase Pi[J]. Proc Natl Acad Sci USA.2000;5:433-441.
    [90] NAGAI H, MATSUMARU K, FENG G, KAPLOWITZ N. Reduced glautathionedepletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes[J]. Hepatology.2002;36:55-64.
    [91] NAGAI H, MATSUMARU K, FENG G, KAPLOWITZ N. Reduced glutathionedepletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocyte[J]. Hepatology.2002;36:55-64.
    [92] TIRMENSTEIN MA, BELSON SD. Subcellular binding and effects on calciumhomeostasis produced by acetaminphen, and CCL4[J]. Biochem Pharmacl.1989;38:3061-5.
    [93] TSOKOS-KUHN JO, HUGHES H SMITH CV, MITCHELL JR. Alkylation ofthe liver plasma membrane and inhibition of the Ca2+ATPase byacetaminophen[J]. Biochem Pharmacol.1988;37:2125-31.
    [94] YAO Y, YIN D, JAS GS KUCZER K, WILLIAM TD, CHONEICH C, ET AL.Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulinby hydrogen peroxide inhibits calmodulin-dependent activation of the plasmamembrane Ca-ATPase[J]. Biochemisiry.1996;35:2767-87.
    [95] BOOBIS AR, SEDDON CE, NASSERI-SINA P, DAVIES DS. Evidence for adirect role of intracellular calcium in paracetamol toxicity[J]. Biochem Pharmacol.1990;39:1277-81.
    [96] CASTEILLA L, RIGOULET M, PEICAUD L. Mitochondral ROS metabolism:modulation by uncoupling proteins[J]. IUBMB Life.2001;52:181-188.
    [97] BRAND MD, AFFOURTIT C, ESTEVES TC, GREEN K, LAMNERT AJ,MIWA S, ET AL. Mitochondrial superoxide: production, biological effects, andactivation of unpling proteins[J]. Free Radic Biol Med.2004;37:755-67.
    [98] SIES H, DE FROOT H. Role of reactive oxygen species in cell toxicity[J].Toxicol Lett.1992;64-65:547-551.
    [99] KOOP DR. Oxidative and reductive metabolism by cytochrome P4502E1[J].FASEB J.1992;6:724-730.
    [100] CASTEILLA l, RIGOULET M, PENICAUD L. Mtiochondrial ROS metabolism:modulation by uncoupling proteins[J].
    [101] IUBMB Life.2001;52:181-188.BRAND MD, AFFOURTIT C, ESTEVES TC,GREEN K, LAMBERT AJ, MIWA S, ET AL. Mitochondrial superoxide:production, biological effects, and activation of uncoupling proteins[J]. FreeRadic Biol Med.2004;37:755-767.
    [102] KON K, KIM JS, JEASCHKE H, LEMASTERS JJ. Mitochondrialpermeability transition in acetaminophen-induced necrosis and apoptosis ofcultured mouse hepatocytes[J]. Hepatology.2004;40:1170-9.
    [103] NASH DT, FEET TD. Hepatic injury possibly induced by verapamil[J]. JAMA.1983;249:395-396.
    [104] ELKINGTON SG, SCHREIBER WM, COMM HO. Hepatic injury caused bu1-alpha-methyldopa. Circulation[J].1969;40:589-95.
    [105] WITTBROD ET, ABUBAKAR A. Sitaxsentan for treatment for pulmonaryarterial hypertension[J]. N Engl J Med.2002;346:896-903.
    [106] COPPLE IM, CLODRING CE, KITTERINGHAM NR, PARK BK. Thekeao1-nrf2cellular defense pathway: mechanisms of regulation and role inprotection against drug-induced toxicity[J]. Handb Exp Pharmacol.2010;196:133-166.
    [107] CHAN K, HAN XD, KAN YW. An important function of Nrf2in combatingoxidative stress: detoxification of acetaminophen[J]. Proc Natl Acad Sci USA.2001;98:4611-1.
    [108] ENSELEIT F, LUSCHER TF, RUSCHITZKA F. Darusentan: a new perspectivefor treatment of resistant hypertension[J]? Expert Opin Investig Drugs.2008;17(8):1255-63.
    [109] LIBBY P, RIDKER PM, MASERI A. Inflammation and atherosclerosis[J].Circulation.2002;105:1135-43.
    [110] JAMES LP, DONAHOWER B, BURKE AS, MCCHLLOUGH S, HINSON JA.Induction of the nuclear factor HIF-lalpha in acetaminophen toxicity: evidencefor oxidative stress. Biochem Biophys Res Commun.2006;343:171-176.
    [111] YEE KOH M, SPIVAK-KROIZMAN TR, POWIS G. HIF-a regulation not soeasy come, easy go[J]. Trends Biochem Sci.2008;33:526-534.
    [112] SHEN HM, LIU ZG. JNK signaling pathway is a key modulator in cell deathmediated by reactive oxygen and nitrogen spcies[J]. Free Radic Biol Med.2006;40:928-939.
    [113] SANAPATHY K, HOCHEDLINGER K, NAM SY, ET AL. Distinct roles forJNK1and JNK2inregulating JNK activity and c-Jun-dependent cellproliferation[J]. Mol Cell2004;15:713-25.
    [114] SCHROETER H, BOYD CS, AHMED R, ET AL. c-Jun N-terminal kinase(JNK)-mediated modulation of brain mitochondria function: new target proteinsfor JNK signaling in mitochondrion-dependent apoptosis[J]. Biochem J.2003;372:359-69.
    [115] SAITOH M, NISHITOH H, FUJI M, ET AL. Mammalian thioredoxin is adirect inhibitor of apoptosis signal-regulating kinase (ASK)1[J]. EMBO J1998;17:2596-606.
    [116] SHINOHARA M, YBANEZ MD, WIN S THAN TA, JAIN S, GAARDE WA,ET AL. Silencing glycogen synthase kinase-3beta inhibits acetaminophenhepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligaseand myeloid cell leukemia sequence1[J]. J Biol Chem.2010;285:8244-55.
    [117] WIN S, THAN TA, HAN D, PETROVIC LM, KAPLOWITZ N. c-JunN-terminal kinase (JNK)-dependent acute liver injury from acetaminophen ortumor necrosis factor (TNF) requires mitochondrial Sab protein expression inmice[J]. J Biol Chem.2011;286:35071-8.
    [118] EL-HASSAN H, ANWAR K, MACANAS-PIRARD P, ET AL. Involvement ofmitochondria in acetaminophen-induced apoptosis and hepatic injury: roles ofcytochrome c, Bax, Bid, and caspases[J]. Toxicol Appl Pharmacol.2003;191:118-29.
    [119] ADAMS ML, PIERCE RH, VAIL ME, WHITE CC, TONGE RP, KAVANAGHTJ, ET AL. Enhanced acetaminophen hepatotoxicity in transgenic miceoverexpressing BCL-2[J]. Mol Pharmacol;2001:60:9087-15.
    [120] JEASCHKE H, COVER C, BAJT ML. Role of caspases inacetaminophen-induced liver injury[J]. Life Sci.2006;78:1670-6.
    [121] VAN HEYNINGEN C. Drug-induced acute aotpimmune hepatitis duringcombination therapy with atorvastatin andezetimine[J]. Ann Clin Biochem.2005;42:402-404.
    [122] JEASCHKE H. Role of inflammation in the mechanism of acetaminophenhepatotoxicity[J]. Expert Opin Drug Metab Toxicol.2005;1:389-397.
    [123] DIXON MF, NIMMO J, PRESCOTT LF. Experimnetal paracetamol-inducedhepatic necrosis: a hetopathological study[J]. J Pathol.1971;103:225-229.
    [124] ROBERS DW, RACZ WJ, MCELLIGOTT TF. Scanning electron microscopicexamination of acetaminophen-induced hepatotoxicity and congestion in mice[J].Am J Path.1991;138:358-371.
    [125] JEASCHKE H, LEMASTERS JJ. Apopotosis versus oncotic necrosisi inhepatic ischemia/reperfusion injury[J]. Gastroenterology.2003;125:1246-57.
    [126] RUMACK BH. Acetaminophen overdose in children and adolescents[J].Pediatr Clin North Am.1986;33:691-701.
    [127] SINGER AJ, CARRACIO TR, MOFENSON HC. the temporal profile ofincreased transaminase levels in patients with acetaminophen-induced liverdysfunction[J]. Ann Emerg Med.1995;26:49-53.
    [128] BLAKELY P, MCDONALD BR. Acute renal failure due to acetaminophenigenstion: a case report and review of the literature[J]. J Am Soc Nephrol.1995;6:48-53.
    [129] LARSON AM, POLSON J, FONTANA RJ, DAVERN TJ, LALANI E,HYNAN LS, ET AL. Acetaminophen-induced acute liver failure: results of aUnited States multicenter, prospective study[J]. Hepatology.2005:42:1364-72.
    [130] GAZZARD BG, HENDERSON JM, WILLIAMS R. Early changes incoagulation following a paracetamol overdose and a controlled trial of freshfrozen plasma therapy[J]. Gut,1975;16:617-620.
    [131] HEARD KJ. Acetylcysteine for acetaminophen poisoning[J]. N Eng J Med.2008;359:285-92.
    [132] JM, ET AL. False positive acetaminophen concentrations in patients with liverinjury[J]. Clinica Chimica Chimica Acta.2008;391(1-2):24-30.
    [133] KOZER E, KOREN G. Management of paracetamol overdose: currentcontroversies[J]. Drug Safety.2001;24:503-512.
    [134] LUKE C DAVIES, STEPHEN J JENKINS, JUDITH E ALLEN, PHILIP RTAYLOR. Tissue-resident macrophages[J]. Nat Immunol.2013;14(10):986-995.
    [135] ITO Y, BETHEA NW, ABRIL ER, MCCUSKEY RS. Early hepaticmicrovascular injury in response to acetaminophen toxicity[J]. Microcirculation.2003;10:391–400.
    [136] SCAFFIDI P, MISTELI T, BIANCHI ME. Release of chromatin proteinHMGB1by necrotic cells triggers inflammation[J]. Nature.2002;418:191–195.
    [137] JEASCHKE H, KNIGHT TR, BAJT ML. The role of oxidant stress andreactive nitrogen species in acetaminophen hepatotoxicity[J]. Toxicol Lett.2003;144:279–288.
    [138] BAJT ML, FARHOOD A, LEMASTERS JJ, JEACHKE H. Mitochondrial baxtranslocation accelerates DNA fragmentation and cell necrosis in a murine modelof acetaminophen hepatotoxicity[J]. J Pharmacol.Exp Ther.2008;324:8–14.
    [139] COVER C, MANSOURI A, KNKGHT TR, ET AL. Peroxynitrite-inducedmitochondrial and endonucleasemediatednuclear DNA damage in acetaminophenhepatotoxicity[J]. J Pharmacol Exp Ther.2005;315:879–887.
    [140] KNIGHT TR, HO YS, FARHOOD A, JEASCHKE H. Peroxynitrite is a criticalmediator of acetaminophen hepatotoxicity in murine livers: protection byglutathione[J]. J Pharmacol Exp Ther.2002;303:468–475.
    [141] GUJRAL JS, KNIGHT TR, FARHOOD A, BAJT ML, JASECHKE H. Mode ofcell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis[J]?Toxicol Sci.2002;67:322–328.
    [142] MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophageactivation[J]. Nat Rev Immunol.2008;8:958-69.
    [143] DEBRA L. LASKIN, VASANTHI R. SUNIL, CAROL R. GARDNER,JEFFREY D. Macrophages and Tissue Injury: Agents of Defense orDestruction[J]? Annu. Rev. Pharmacol. Toxicol.2011.51:267-288.
    [144] JU C, REILLY TP, BOURDI M, RADONVICH MF, BRADY JN, GEORGEJW, POHL LR. Protective role of Kupffer cells in acetaminopheninduced hepaticinjury in mice[J]. Chem Res Toxicol.2002;15:1504–1513.
    [145] BADGER, D. A., KUESTER, R. K., SAUER, J. M., SIPES, I. G. Gadoliniumchloride reduces cytochrome P450: Relevance to chemical-inducedhepatotoxicity[J]. Toxicology.1997;121:143–153.
    [146] NICO VAN ROOIJEN. Liposomes for targeting of antigens and drugs:Immunoadjuvant activity and liposome-mediated depletion of macrophages[J].Journal of Drug Targeting.2008;16(7–8):529–534.
    [147] NICO VAN ROOIJEN, ANNEMARIE SANDERS. Liposome mediateddepletion of macrophages: mechanism of action, preparation of liposomes andapplications[J]. Journal of Immunological Methods.1994;174:83-93.
    [148] YOU Q, HOLT M, YIN H, LI G, HU CJ, JU C..Role of hepatic resident andinfiltrating macrophages in liver repair after acute injury[J]. Biochem Pharmacol.2013;86:836-843.
    [149] FISHER JE, MCKENZIE TJ, LILLEGARD JB, YU Y, JUSKEWITCH JE,NEDREDAL GI, BRUNN GJ, YI ES, ET AL. Role of Kupffer cells and toll-likereceptor4in acetaminophen-induced acute liver failure[J]. J Surg Res.2013;180(1):147-55.
    [150] LANSKIN DL, GARDNER CR, PRICE VF, JOLLOW DJ. Modulation ofmacrophage functioning abrogates the acute hepatotoxicity of acetaminophen[J].Hepatology.1995;21:1045–1050.
    [151] MICHEAL SL, PUMFORDA NR, MAYEUX PR, NIESMAN MR, HINSONJA. Pretreatment of mice with macrophage inactivators decreases acetaminophenhepatotoxicity and the formation of reactive oxygen and nitrogen species[J].Hepatology.1999;30:186–195.
    [152] GOLDIN RD, RATNAYAKA ID, BREACH CS, BROWN IN,WICKRAMASINGHE SN. Role of macrophages in acetaminophen(paracetamol)-induced hepatotoxicity[J]. J. Pathol.1996;179:432–435.
    [153] ABDEL-ZAHER AO, ABDEL-RAHMAN MM, HAFEZ MM, OMRAN FM.Role of nitric oxide and reduced glutathione in the protective effects ofaminoguanidine, gadolinium chloride and oleanolic acid against acetaminophen-induced hepatic and renal damage[J]. Toxicology.2007;234:124–134.
    [154] YOSHIYA ITO, NANCY W. BETHEA, EDWARD R. ABRIL, ROBERT S.MCCUSKEY. Early hepatic microvascular injury in response to acetaminophentoxicity[J]. Microcirculation.2003;10:391–400.
    [155] ADACHI Y, BRADFORD BU, GAO W, BOJES HK, THURMAN, RG.Inactivation of Kupffer cells prevents early alcohol-induced liver injury[J].Hepatology.1994;2:453–460.
    [156] DEVEY L, FERENBACH D, MOHR E, SABGSTER K, BELLAMYCO, HUGHES J, WIGMORE SJ. Tissue-resident Macrophages Protect the LiverFrom Ischemia Reperfusion Injury via a Heme Oxygenase-1-DependentMechanism[J]. Mol Ther.2009;17:65-72
    [157] IIMURO Y, YMAMANOTO M, KOHNO H, ITAKURA J, FUJII H,MATSUMOTO Y. Blockade of liver macrophages by gadolinium chloridereduces lethality in endotoxemic rats—analysis of mechanisms of lethality inendotoxemia[J]. J. Leukoc. Biol.1994;55:723–28.
    [158] HARSTAD EB, KLAASSEN CD. Gadolinium chloride pretreatment preventscadmium chloride-induced liver damage in both wild-type and MT-null mice[J].Toxicol Appl Pharmacol.2002;180:178-185.
    [159] KISO K, UENO S, FUKUDA M, ICHI I, KOBAYASHI K, SAKAI T, FUKUOIK, KOJO S. The role of Kupffer cells in carbon tetrachloride intoxication inmice[J]. Biol Pharm Bull.2012;35:980-983.
    [160] HATANO M, SASAKI S, OHATA S, SHIRATSUCHI Y, YAMAZAKI T, NAGATAK, KOBAYASHI Y. Effects of Kupffer cell-depletion on Concanavalin A-inducedhepatitis[J]. Cell Immunol.2008;251:25-30.
    [161] MARTINEZ FO, SICA A, MANTOVANI A, LOCATI M. Macrophageactivation and polarization[J]. Front Biosci.2008;13:453–461.
    [162] LASKIN DL, GARDNER CR, PRICE VF, JOLLOW DJ. Modulation ofmacrophage functioning abrogates the acute hepatotoxicity of acetaminophen[J].Hepatology.1995;21:1045-50.
    [163] STOUT RD, SUTTLES J. Functional plasticity of macrophages: reversibleadaptation to changing microenvironments[J]. J Leukoc Biol.2004;76:509-13.
    [164] MICHEALl P. HOLT, LINING CHEN, JU C. Identification andcharacterization of infiltrating macrophages in acetaminophen-induced liverinjury[J]. J Leukoc Biol.2008;84:1410–1421.
    [165] SIMPSON KJ, LUKACS NW, KUNKEL SLAM. Exaggerated hepatic injurydue to acetaminophen challenge in mice lacking C-C chemokine receptor2[J]. JPathol.2000;156:1245-52.
    [166] DAMNACH DM, WATSON LM, GRAY KR, DURHAM SK, LASKIN DL.Role of CCR2in macrophage migration into the liver duringacetaminopheninduced hepatotoxicity in the mouse. Hepatology[J].2002;35:1093–1103.
    [167] HOGANOAM CM, SIMPSON KJ, CHENSUE SW, STEINHAUSER ML,LUKACS NW, GAULDIE J, STTIETER RM, KUNKEL SL. Macrophageinflammatory protein-2gene therapy attenuates adenovirus-and acetaminophen-mediated liver injury[J]. Gene Ther1999;6:573–584.
    [168] HU B, COLLETTI LM. CXC receptor-2knockout genotype increases X-linkedinhibitor of apoptosis protein and protects mice from acetaminophenhepatotoxicity[J]. Hepatology.2010;52:691-702.
    [169] ISHIDA Y, KONDO T, KIMURA A, TSUNEYAMA K, TAKAYASU T,MUKAIDA N. Opposite roles of neutrophils and macrophages in thepathogenesis of acetaminophen-induced acute liver injury[J]. Eur J Immunol.2006;36:1028-1038.
    [170] ISHIYAMAH, OGINO K, HOBARA T. Role of Kupffer cells in rat liver injuryinduced by diethyldithiocarbamate[J]. Eur. J. Pharmacol.1995;292:135-41.
    [171] MAHER JJ. DAMPs ramp up drug toxicity[J]. J Clin Invest.2009;119:246-249.
    [172] GARDNER CR, LASKINJD,DAMBACH DM, SACCO M, DURHAM SK, ETALl. Reduced hepatotoxicity of Cacetaminophen in mice lacking inducible nitricoxide synthase: potential role of tumor necrosis factor-α and interleukin-10[J].Toxicol. Appl. Pharmacol.2002;184:27-36.
    [173] MORIO LA, CHIU H, SPROWLES KA, ZHOU P, HECK DE, ET AL. Distinctroles of tumor necrosis factor-α and nitric oxide in acute liver injury induced bycarbon tetrachloride in mice[J]. Toxicol Appl Pharmacol.2001;172:44–51.
    [174] YEE SB, BOURDI M, MASSON MJ, POHL LR. Hepatoprotective role ofendogenous interleukin-13in a murine model of acetaminophen-induced liverdisease[J]. Chem Res Toxicol.2007;20:734–44.
    [175] SCAFFIDI P, MISTELI T,BIANCHI ME. Release of chromation proteinHMGB1by necrotic cells triggers inflammation[J]. Nature.2002;418:191-195.
    [176] WALPORT MJ. Complement[J]. First of two parts N Engl J Med.2001;344:1058-66.
    [177] MONSINJON T, GASQUE P, CHAN P, ISCHENKO A, BRADY JJ,FONTAINE MC. Regulation by complement C3a and C5a anaphylatoxins ofcytokine production in human umbilical vein endothelial cells[J]. FASEB J.2003;17:1003-14.
    [178] SCHIEFERDECKER HL, SCHLAF G, JUNGERMANN K, GOTZE O.Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and parenchymal cells[J]. Int Immunopharmacol.2001;1:469-481.
    [179] SINGHAL R, GANEY PE, BOTH RA. Complement activation inacetaminophen-induced liver injury in mice[J].. J Pharmacol Exp Ther.2012;341(2):377-385.
    [180] ZX LIU, DERICK HAN, BASUKE FUNAWAN, KAPLOWITZ N. NeutrophilDepletion Protects Against Murine Acetaminophen Hepatotoxicity[J].HEPATOLOGY.2006;43(6):1220-30.
    [181] LIU ZX, GOVINDARAJAN S, KAPLOWITZ N. Innate immune system playsa critical role in determining the progression and severity of acetaminophenhepatotoxicity[J]. Gastroenterology.2004;127:1760-74.
    [182] JEASCHKE H, FARHOOD A, SMITH CW. Neutrophils contribute toischemia/reperfusion injury in rat liver in vivo[J]. FASEB J.1990;4:3355-59.
    [183] KAMOCHI M, KAMOCHI F, KIM YB, SAWH S, SANDERS JM,SAREMBOCK I, ET AL. P-selectin and ICAM-1mediate endotoxin-inducedneutrophil recruitment and injury to the lung and liver. Am J Physiol.1999;277:310-319.
    [184] ZX LIU, SUGANTHA GOVINDARAJAN, NEIL KAPLOWITZ. InnateImmune System Plays a Critical Role in Determining the Progression andSeverity of Acetaminophen Hepatotoxicity[J]. GASTROENTEROLOGY2004;127:1760–74.
    [185] MATUSMARU K, JI C, KAPLOWITZ N. Mechanisms for sensitization toTNF-induced apoptosis by acute glutathione depletion in murine hepatocytes[J].Hepatology.2003;37:1425–34.
    [186] PARK JW, GRUYS ME, MCCORMICK K, LEE JK, SUBLESKI J,WIGGINTON JM, FENTON RG, WANG JM, WILTROUT RH. Primaryhepatocytes from mice treated with IL-2/IL-12produce T cell chemoattractantactivity that is dependent on monokine induced by IFN-(Mig) and chemokineresponsive to-2(Crg-2)[J]. J Immunol.2001;166:3763–70.
    [187] KNGHT TR, JEASCHKE H. Acetaminophen-induced inhibition of Fasreceptor-mediated liver cell apoptosis: mitochondrial dysfunction versusglutathione depletion[J]. Toxicol Appl Pharmacol.2002;181:133–141.
    [188] FIORUCCI S, ANTONELLI E, MENCARELLI A, PALAZZETTI B,ALVAREZ-MILLER L, MUSCARA M, DEL SOLDATO, SANPAOLO L,WALLACE JL, MORELLI A. A NO-releasing derivative of acetaminophenspares the liver by acting at several checkpoints in the Fas pathway[J]. Br JPharmacol.2002;135:589–599.
    [189] LASKIN DL. Macrophages and inflammatory mediators in chemical toxicity: abattle of forces[J]. Chem. Res. Toxicol.2009;22:1376-85.
    [190] PENDINO KJ, MEIDHOF TM, HECK DE, LASKIN JD, LASKIN DL.Inhibition of macrophages with gadolinium chloride abrogates ozone-inducedpulmonary injury and inflammatory mediator production[J]. Am J Respir. CellMol. Biol.1995;13:125-32.
    [191] HOSHINO T, OKAMOTO M, SAKAZAKI Y, KATO S, YOUNG HA,AIZAWA H. Role of proinflammatory cytokines IL-18and IL-1β inbleomycin-induced lung injury in humans and mice[J]. Am. J. Respir. Cell MolBiol2009;41:661-70.
    [192] OKUMA T, TERASAKI Y, SAKASHITA N, KAIKITA K, KOBAYASHI H, ETAL. MCP-1/CCR2signalling pathway regulates hyperoxia-induced acute lunginjury via nitric oxide production[J]. Int J Exp Pathol.2006;87:475-83.
    [193] BUTTNER C, SKUPIN A, REIMANN T, RIEBER EP, UNTEREGGERG, ETAL. Local production of interleukin-4during radiation-induced pneumonitis andpulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4[J].Am J Respir Cell Mol Biol.1997;17:315-25.
    [194] HANCOCK A, ARMSTRONG L, GAMA R, MILLAR A. Production ofinterleukin13by alveolar macrophages from normal and fibrotic lung[J]. Am. J.Respir. Cell Mol Biol.1998;18:60-65.
    [195] STOUT RD, SUTTLES J. Functional plasticity of macrophages: reversibleadaptation to changing microenvironments[J]. J Leukoc Biol.2004;76:509-13.
    [196] FAUSTO N. Liver regeneration[J].Journal of Hepatology.2000;(Suppl1):19-31.
    [197] CASTRO RE, AMARAL JD, SOLD S. Differential regulation of Cyclin Dl andcell death by bile acids in primary rat hepatocytes[J].American Journal ofPhysiology-Gastrointestinal and Liver Physiology.2007;327-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700