多种蛋白质组学技术策略用于人血清蛋白质组分析的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血浆/血清蛋白质由于其组成中包含了来源于细胞、组织、器官的蛋白信息,具有非同寻常的生物学复杂性,而且又是临床常见的用于疾病诊断与治疗的重要生物样本,因此对血浆蛋白组成的深入研究具有极其重要的生物学及医学价值,也正如此,国际人类蛋白质组组织首先启动了人血浆蛋白质组国际合作研究项目。
     我们在参与并进行HUPO PPP项目初期研究中,先后对Bio-rad Aurum亲合柱,Agilent MARS亲合柱,制备溶液等电聚焦法Rotofor和有机溶剂沉淀法进行了考查,比较了各种方法的应用特点及局限性;在此基础上,我们选择了重复性好、去除高丰度蛋白选择性较强的Agilent MARS亲合柱用于HUPO PPP项目参考血浆和血清样品的处理方法,为完成HUPO PPP标准血浆/血清样品的分析鉴定及比较多种蛋白质组研究技术策略在血清蛋白质组研究中的应用准备了条件。
     在已选定的利用亲合色谱法去除血浆六中高丰度蛋白基础上,选择高通量二维毛细管液相色谱离子阱串联质谱联用技术作为鉴定分析HUPO PPP标准血浆和血清样品的技术策略。在不断优化蛋白酶切方法及改进质谱数据扫描采集方法的基础上,改善了HUPO PPP提供的标准血浆和血清样品的蛋白鉴定结果,保证了分析结果重复性,完成了HUPO血浆蛋白质组研究项目中血浆及血清样品的分析工作:每个样品平均鉴定110余种蛋白质,蛋白鉴定水平处于所有参与实验室中等水平。
     2003年在蒙特利尔召开的HUPO PPP项目阶段讨论会上,不同实验室之间提交的血浆/血清蛋白鉴定结果的重叠率很低。我们分析不同实验室蛋白鉴定结果间的低重叠率可部分归咎于所采取的不同样品处理方法以及不同的蛋白分离鉴定技术策略。为了系统比较不同样品制备方法和所采用的不同分离鉴定技术策略对血清蛋白鉴定结果的影响,我们采取了五种不同或相似的蛋白鉴定策略,对经过同一亲合色谱方法去除六种高丰度蛋白的HUPP PPP标准血清样品—中国人血清样品进行了系统分析。所比较的技术策略包括:2DE策略;整体蛋白预分离策略;在线“鸟枪法”蛋白鉴定策略;离线“鸟枪法”蛋白鉴定策略和离线“鸟枪法”纳升级电喷雾鉴定策略;通过比较五个不同技术策略蛋白鉴定结果来比较它们各自的应用特点、优点及局限性。每条技术路线鉴定的非冗余蛋白数分别是78,179,131,224和330。在全部560个血清蛋白的鉴定结果中,被五种技术共同鉴定的蛋白仅有37个,反映了不同技术策略蛋白鉴定结果具有明显的互补性。蛋白鉴定结果存在明显差异的原因主要是样品制备过程,肽混合物色谱分离效率及质谱检测灵敏度等存在明显差异。
     在实际应用中,每个技术策略都有其各自的优点及局限性。2DE策略能提供更多的有关血清蛋白异构体的信息及蛋白的相对定量结果。蛋白二维色谱预分离
Of all the proteomes, the proteins of the blood are perhaps of the greatest biological, medicinal importance. Serum or plasma is of unusual biological complexity, reflecting its communication with all cells, tissues and organs. Thus, the task of the HUPO Plasma Proteome Project (PPP) has been distributed among collaborating labs around the world.During the first stage of participating in and carrying out the HUPO PPP research, a varies of serum protein preparation methods for depleting high abundant proteins or fractionating proteins, which were Bio-rad Aurum Serum kit, Agilent multiple affinity removal system(MARS), preparative solution IEF (Rotofor) and organic solvent precipitation, were investigated and their applicable characteristics and limits were compared and summarized. On this basis, the Agilent MARS column with better reproducibility and specificity for depletion of high abundant proteins was applied for the sample preparation of HUPO PPP reference plasma or serum samples, which laid the solid ground for completing the analysis of the reference samples and comparing multiple proteomic techniques for their application in the research of serum protoeme.Based on the selection of MARS column for the depletion of six high a bundant proteins in plasma or serum samples, the high throughput two dimensional capillary liquid chromatography combined with electrospray ion trap MS/MS was established for the analysis of HUPO PPP reference plasma and serum samples. With optimized protein digestion method and improved mass spectra acquiring approach, the protein identification result of the reference samples was obviously improved and reproducible result was obtained. In average, about 110 proteins were identified in each of the reference samples. The protein identification level was medium among all the participating labs.At the workshop of HUPO PPP held in Montreal in 2003, the preliminary data sets submitted from different labs had little overlap in proteins identified. The lack of overlap can be attributed in part to the different technological strategies or methods of sample preparation used. In a systematic approach to this issue, we here compare the results from five different techniques using the same HUPO PPP reference serum specimen with the six proteins of highest abundance depleted by affinity chromatography. The approaches compared were: (1) Intact protein fractionation by anion exchange chromatography (WAX) followed by 2-dimensional electrophoresis (2-DE) and MALDI-TOF-MS-MS for protein identification (2DE strategy); (2) Intact protein fractionation by 2D-HPLC and then coupled with solution digestion of each fraction and micro-capillary RP-HPLC microESI-MS-MS identification (protein prefractionation strategy); (3) Digestion of mixed proteins by trypsin followed by automated online micro-capillary 2D-HPLC with ion trap micro-ESI-MS/MS; (online shotgun strategy); (4) Same as 3) with the SCX step performed offline (offline shotgun strategy) and (5) Same as 4) with the SCX fractions reanalysed by optimised nanoRP-HPLC-nanoESI-MS-MS. (offline shotgun-nanospray strategy). The protein identification results of each strategy were compared and their particular features were summarized. All five approaches yielded complementary sets of protein identifications. The total number of unique proteins identified by each of these five approaches was 1) 78, 2) 179, 3) 131, 4) 224, and 5) 330, respectively. In all 560 unique proteins were identified, only 37 proteins were identified by all five approaches which reflecting the complementary protein identification result from all these five strategies. The result could be attributed to obvious variations in the sample preparation process, differences in peptide separation efficiency, and the sensitivity of the mass spectrometer.
    In practice, the 2-DE approach yielded more information on the pi-altered isoforms of some serum proteins and the relative abundance of identified proteins. The protein 2D-HPLC prefractionation strategy slightly improved the capacity to detect proteins of lower abundance. Optimising the separation at the peptide level and improving the detection sensitivity of ESI-MS/MS were more effective than fractionation of intact proteins in increasing the total number of proteins identified with extended dynamic range . This is very important for the serum proteome research. The results also indicate that by increasing the number of well-separated fractions collected in offline SCX and optimization of RP-HPLC-ESI-MS/MS, more serum proteins of low abundance can be identified, such as Coagulation factor IX precursor (ug/mL), L-selectin precursor, and Hepatocyte growth factor-like protein precursor, identified through high-confidence MS-MS spectra of their peptides.All three strategies had similar distribution characteristics of mass range, isoelectric point and hydrophobicity of the identified proteins. It does appear that 2-D HPLC of intact proteins works best for proteins representing extremes in these properties while 2DE strategy is difficult to profiling the proteins with low molecular weight, or proteins with extremely acidic, basic or high hydrophobic characters.At last, when the whole dataset was compared with the high confident proteins list of HUPO PPP(N=3020), about 257 unique proteins were overlapped, 139 proteins of which were identified with 2 or more peptides; While compared with the reported non redundant list, totally 169 unique proteins were overlapped, 117 of which were identified with 2 or more peptides.
引文
[1] Ventec J. C. et al. The sequence of the human genome. Science 2001, 291: 1304-1351
    [2] Wilkins M R., Sanchez J C., Williams K L., et al. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Bitechnology and genetic Engineering Reviews. 1995, 13: 19-45
    [3] Pandey A., Mann M.. Proteomics to study genes and genomes. Nature 2000, 45: 837-846
    [4] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2(1): 3-10
    [5] Liu H., Lin D., Yates JR 3rd. Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 2002, 32(4): 898, 900, 902
    [6] Manabe T. Capilliary electrophoresis of proteins for proteomic studies. Electrophoresis 1999, 20(15-16): 3116-3121
    [7] Figeys D. Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2002, 2(4): 373-382
    [8] Yates J. R. Ⅲ. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struc. 2004, 33: 297-316
    [9] Walgren J. L., Thompson D. C. Application of proteomic technologies in the drug development process. Toxicol Lett. 2004, 149(1-3): 377-85
    [10] Wasinger V., Corthals G.. L.. Proteomics for biomedicine. J. ChromatogrB. 2002, 771: 33-48
    [11] Katie C. Integrated proteomics systems bring the pieces together. Anal. Chem. A-page 2004, 331A-335A
    [12] Nesvizhskii A. I., Aebersold R. Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug. Dis. Today 2004, 9(4): 173-181.
    [13] Anderson N. L., Anderson N.G.. The human plasma proteome: history, character, and diagonostic prospects. Mol. Cell. Proteomics 2002, 1(11): 845-867
    [14] Omenn G..S. The Human Proteome Organization Plasma Proteome Project pilot phase: reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics. 2004, 4(5): 1235-40.
    [15] 张遁蘅主编生物化学1999第二版416—420北京医科大学出版社
    [16] Cloonan M. J., Bishop G. A., Wilton-smith P. D., et al. An enzyme-immunoassay for myoglobin in human serum and urine. Method development, normal values and application to acute myocardial infarction. Pathology 1979,11: 689-699.
    [17] Radhakrishna S. Tirumalai, King C. Chan, DaRue A. Prieto, et al. Characterization of the Low Molecular Weight Human Serum Proteome. Mol. Cell. Proteomics 2003, 2: 1096 -1103.
    [18] Michael Schrader, Peter Schulz-Knappe. Peptidomics technologies for human body fluids. Trends in biotechnology 2001, 19(10, Suppl.), S55-S59
    [19] Wrotnowski C. The future of plasma proteins. Genet. Eng.News 18, 14-15
    [20] King C. Chan, David A. Lucas, Denise Hise, Carl F. et al. Analysis of the Human Serum Proteome. Clinical Proteomics 2004,1(2): 101-225
    [21] Craig W.Y., Ledue T.B., Ritchie R. F. Plasma proteins-Clinical Utility and interpretation. Book of Foundation for Blood Research ( Supported by an education grant from Dade Behring Inc. ). 2000, 1-90.
    [22] Ruepp S.U., Tonge R.P., Shaw J, Wallis N, Pognan F. Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 2002, 65:135-150.
    [23] Poon T.C.W., Johnson P.J. Proteome analysis and its impact on the discovery of serological tumor markers. Clinica Chimica Acta 2001, 313: 231-239
    [24] Li J.N., Zhang Z., Rosenzweig J. Proteomics and Bioinformatics Approaches for identification of serum biomarkers to detect Breast cancer. Clin Chem. 2002, 48(8): 1296-1304
    [25] William C. S. Cho, Timothy T. C. Yip, Christine Yip, et al. Identification of Serum Amyloid A Protein As a Potentially Useful Biomarker to Monitor Relapse of Nasopharyngeal Cancer by Serum Proteomic Profiling. Clin. Cancer Res. 2004, 10: 43-52
    [26] Petricoin III E.F., Ardekani A.M., Hitt B.A., et al. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 2002, 359: 572-577
    [27] Carmen Quero, Nuria Colome, Maria Rosario Prieto, et al. Determination of protein markers in human serum: Analysis of protein expression in toxic oil syndrome studies. Proteomics 2004, 4: 303-315
    [28] Won-A Joo, Mee-Jeong Kang, Won-kyu Son, et al. Monitoring protein expression by proteomics: Human plasma exposed to benzene. Proteomics 2003, 12: 2402-2411.
    [29] Carmen Quero, Nuria Colome, Maria Rosario Prieto, Montserrat Carrascal, Manuel Posada, Emilio Gelpi, Joaquin Abian. Determination of protein markers in human serum: Analysis of protein expression in toxic oil syndrome studies Proteomics 2004,4,303-315.
    [30] Helmut W. Ott, Herbert Lindner, Bettina Sarg, et al. Calgranulins in Cystic Fluid and Serum from Patients with Ovarian Carcinomas.
     Cancer Res. 2003, 63: 7507 - 7514.
    [31] Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, Allard L, Hochstrasser DF, Sanchez JC. Fatty acid binding protein as a serum marker for the early diagnosis of stroke: A pilot study. Mol Cell Proteomics. 2004, 3(1):66-72.
    [32] Choi J., Malakowsky C.A., Talent J.M., et al.Indentification of oxidized plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun. 2002, 293(5): 1566-1570
    [33] Seliger B., Kellner R. Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Porteomics 2002, 2: 1641-1651
    [34] Rulin Zhang, Lisa Barker, Deborah Pinchev, et al. Mining biomarkers in human sera using proteomic tools. Proteomics 2004, 4: 244-256.
    [35] Kevin P. Rosenblatt, Peter Bryant-Greenwood, J. Keith Killian, Arpita Mehta, David Geho, Virginia Espina, Emanuel F. Petricoin III, and Lance A. Liotta. Serum proteomics in cancer diagnosis and management. Annu. Rev. Med. 2004. 55:97-112
    [36] Lihua Lia, Hong Tanga, Zuobao Wua, Jianli Gonga, Michael Gruidlb, Jun Zoub, Melvyn Tockmanb, Robert A. Clark. Data mining techniques for cancer detection using serum proteomic profiling. Artificial Intelligence in Medicine (2004) 32, 71—83
    [37] Vejda S., Posovszky C, Zelzer S., et al. Plasma from cancer patients feacuring a characteristic protein composition mediates protection against apoptosis. Mol Cell Proteomics. 2002, 1(5): 387-393
    [38] Fukami S., Iwata N., Saido T.C.. Therapeutic strategies of Alzheimer's Disease through manipulation of A P metabolism: A Focus on A β -degrading Peptidase, Neprilysin. Drug Dev. Res. 2002, 56: 171-183.
    [39] Unwin R.D., Harnden P., Pappin D., et al. Serological and proteomic evaluation of antibody responses in the identification of tumor antigens in renal cell carcinoma. Proteomics 2003, 3: 45-55
    [40] Vytvytska O., Nagy E., Bluggel M., et al. Indentification of vaccine candidate antigens of staphylococcus aureus by serological proteome analysis. Proteomics 2002, 2: 580-590
    [41] Schrader M., Schulz-knappe P. Peptidomics technologies for human body fluids. Trends in Biotechnology 2001, 19(10): 555-560
    [42] Kilpatrick D.C.. Mannan-binding lectin: clinical significance and applications. Biochim Biophys Acta 2002, 1572:401-413
    [43] Kilpatrick D.C. Mannan-binding lectin and its role in innate immunity. Transfus Med. 2002, 12: 335-352
    [44] Sahlstedt L., Von Bonsdroff L., Ebeling F., et al. Effective binding of free iron by a single intravenous dose of human apotransferrin in haematological stem cell transplant patients. Br J Haematol. 2002, 119: 547-553
    [45] Lee K.H.. Proteomics: a technology-driven and technology-limted discovery science. Trends in Biotechnology, 2001, 19(6): 217-222.
    [46] Lee WC, Lee KH. Applications of affinity chromatography in proteomics. Anal Biochem. 2004, 324(l):l-10.
    [47] SW Tam, J Pirro and D Hinerfeld. Depletion and fractionation technologies in plasma proteomic analysis. Expert Review of Anticancer Therapy, 2004, 1(4): 411-420.
    [48] Lescuyer P, Hochstrasser DF, Sanchez JC. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis. 2004, 25(7-8): 1125-35
    [49] Elena Chernokalskaya, Sara Gutierrez, Aldo M. Pitt, Jack T. Leonard. Ultrafiltration for proteomic sample preparation. Electrophoresis 2004, 25: 2461 - 2468
    [50] Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS. Prefractionation techniques in proteome analysis. Proteomics. 2003, 3(8):1397-407
    [51] Anderson L., Anderson N.G.. Highresolution two-dimensional electrophoresis of human plasma proteins. Proc. Natl. Acad. Sri. U.S.A. 1997, 74: 5421-5425
    [52] Anderson N.L., and Anderson N.G. A two-dimensional gel databse of human plasma proteins. Electrophoresis 1991, 12: 883-906
    [53] Hughes G.J., Frutiger S., Paquet N., et al. Plasma protein maps: an update by microsequencing Electrophoresis 1992, 13: 707-714
    [54] Gravel P., Golaz O., Walzer C, et al. Analysis of glycoproteins separated by two-dimensional gel electrophoresis using lectin blotting revealed by Chemiluminescence. Anal. Biochem. 1994, 221: 66-71
    [55] Golaz O., Gravel P., Walzer C, et al.Rapid detection of the main human plasma glycoproteins by two-dimensional polyacrylamide gel electrophoresis lectin affinoblotting. Electrophoresis 1995, 16: 1187-1189
    [56] Gravel P., Walzer C, Aubry C, et al. New alterations of serum glycoproteins in alcoholic and cirrhotic patients revealed by high resolution two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 1996, 220: 78-85
    [57] Henry H., Froehlich F, Perret R., et al. Microheterogeneity of serum glycoproteins in patients with chronic alcohol abuse compared with carbohydrate-deficient glycoprotein syndrome type I. Clin. Chem. 1999, 45: 1408-1413
    [58] Doherty N.S., Littman B.H., Reilly K., et al. Analysis of changes in acute-phase proteins in an acute inflammatory response and in rheumatoid arthritis using tow-demensional gel electrophoresis. Electrophoresis 1998, 19: 355-363
    [59] Sarioglu H., Lottspeich F., Walk T., et al. Deamidation as a widespread phenomenon in two-dimensional polyacrylamide gel electrophoresis of human blood plasma proteins. Electrophoresis 2000, 21: 2209-2218.
    [60] Thierry Rabilloud. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2: 3-10.
    [61] Lollo B.A., Harvey S., Liao J., et al. Improved two-dimensional gel electrophoresis representation of serum proteins by using Protoclear? Electrophoresis 1999, 20: 854-859.
    [62] Laura F. Steel, Michael G. Trotter, Pamela B. Nakajima, Taj S. Mattu, Gregory Gonye, and Timothy Block. Efficient and specific removal of albumin from human serum samples. Mol. Cel. Proteomics, 2003, 2(4): 262-270.
    [63] Carrie Greenough, Rosalind E. Jenkins, Neil R. Kitteringham, Munir Pirmohamed, B. Kevin Park and Stephen R. Pennington. A method for the rapid depletion of albumin and immunoglobulin from human plasma. Proteomics, 2004, 4, 3107-3111.
    [64] Nuzhat Ahmed, Gillian Barker, Karen Oliva, David Garfm, Kenneth Talmadge, Harry Georgiou, Michael Quinn, Greg Rice. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 2003, 3, 1980-1987.
    [65] Young Y. Wang, Paul (Chung Pui) Cheng, Daniel W. Chan. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 2003, 3, 243-248.
    [66] N.I. Govorukhina , A. Keizer-Gunnink , A.G.J. van der Zee , S. de Jong , H.W.A. de Bruijn , R. Bischoff. Sample preparation of human serum for the analysis of tumor markers: Comparison of different approaches for albumin and g-globulin depletion. J. Chromatography A., 1009 :171—178.
    [67] Rembert Pieper, Qin Su, Christine L. Gatlin, Shih-Ting Huang, N. Leigh Anderson, Sandra Steiner. Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003, 3: 422-432.
    [68] Rembert Pieper, Christine L. GatlinAnthony J. Makusky, Paul S. Russo, Courtney R. Schatz. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 2003, 3:1345-1364.
    [69] Cory Szafranski, Jerome Bailey, Christoph W. Turck, Gordon Nicol, James Martosella and Nina Zolotarjova. Enhancing Analytical Access to Low-abundant Proteins in the Human Plasma Proteome. PharmaGenomics 2004: 42-46.
    [70] Brett A. Chromy, Arlene D. Gonzales, Julie Perkins, Megan W. Choi, Michele H. Corzett, Brian C. Chang, Christopher H. Corzett, Sandra L. McCutchen-Maloney. Proteomic Analysis of Human Serum by Two-Dimensional Differential Gel Electrophoresis
     after Depletion of High-Abundant Proteins. Journal of Proteome Research, 2004, in press.
    [71] Xiangming Fang, Lei Huang, Jerald S. Feitelson, Wei-wei Zhang. Affinity separation: divide and conquer the proteome. Drug Discovery Today, 2004, in press.
    [72] Douglas Hinerfeld, David Innamorati, John Pirro, and Sun W. Tam Serum/Plasma Depletion with Chicken Immunoglobulin Y Antibodies for Proteomic Analysis from Multiple Mammalian Species Journal of Biomolecular Techniques 2004, 15:184-190.
    [73] http://www.ffeweber.de/pdf/FFEWeber_Poster_Siena.pdf Quantitative Fractionation and Separation of Human Plasma by Free Flow Electrophoresis as a First Step Reduces the Complexity and Leads Reproducible to low Abundant Proteins.
    [74] Deborah L. Rothemund, Vicki L. Locke, Audrey Liew, Theresa M. Thomas, Valerie Wasinger, Dennis B. Rylatt. Depletion of the highly abundant protein albumin from human plasma using the Gradiflow. Proteomics 2003, 3, 279-287.
    [75] Zuo X., Speicher D.W.. Comprehensive analysis of complex proteomes using microscale solution isoelectric focusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2002, 2: 58-68
    [76] Herbert B., Righetti P.G. A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis 2000, 21: 3639-3648
    [77] Ong S-E., Pandey A.. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomolecular Engineer 2001, 18: 195-205
    [78] Washburn M. P., Wolters D., Yates J. R. III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 2001, 19: 242-247.
    [79] Gygi S.P., Rist B., Griffin T.J., et al. Proteome Analysis of low-Abundance Proteins Using Multidimensional Chromatography and Isotope-coded Affinity Tags. Journal of proteome research .2002, 1: 47-54.
    [80] Adkins J.N., Varnum S.M., Auberry K.J.,et al.Toward a Human Blood Serum Proteome-Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cel. Proteomics 2002, 1(12): 947-955
    [81] Wu S.L., Amato H., Biringer R. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. J. Proteome Res 2002, 1: 459-465
    [82] Keith Rose, Lydie Bougueleret, Thierry Baussant, et al. Industrial-scale proteomics: From liters of plasma to chemically synthesized proteins. Proteomics 2004, 4, 2125-2150
    [83] Zhen Xiao, Thomas P. Conrads, David A. Lucas, George M. Janini, Carl F. Schaefer, Kenneth H. Buetow, Haleem J. Issaq, Timothy D. Veenstra.
     Direct ampholyte-free liquid-phase isoelectric peptide focusing: Application to the human serum proteome. Electrophoresis 2004, 25, 128-133.
    [84] John Marshall, Andy Jankowski, Shirley Furesz, Inga Kireeva, Lisa Barker, Mila Dombrovsky, Weimin Zhu, Kellie Jacks, Leslee Ingratta, Jenny Bruin, Erika Kristensen, Rulin Zhang, Eric Stanton, Miyoko Takahashi, and George Jackowski. Human Serum Proteins Preseparated by Electrophoresis or Chromatography Followed by Tandem Mass Spectrometry. Journal of Proteome Research 2004, 3: 364- 382
    [85] Liu H.B., Sadygov, R.G., Yates J. R. III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76: 4193-4201.
    [86] Shen Y. F, Jacobs J.M., Camp D..G, et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for High dynamic range characterization of the human plasma proteome. Anal. Chem. 2004, 76: 1134-1144.
    [87] Liu X, Plasencia M, Ragg S, Valentine SJ, Clemmer DE. Development of high throughput dispersive LC-ion mobility-TOFMS techniques for analysing the human plasma proteome. Brief Funct Genomic Proteomic. 2004,3 (2):177-86.
    [88] Schussler, G. C. Thyroid 2000, 10: 141 - 149.
    [89] Curry, S.. Vox Sang 2002, 83: 315 - 319.
    [90] Dea, M. K., Hamilton-Wessler, M., Ader, M., Moore, D., Schaffer, L., Loftager, M., Volund, A., Bergman, R. N. Diabetes 2002, 51:762-769.
    [91] Ming Zhou, David A. Lucas, King C. Chan, Haleem J. Issaq, Emanuel F. Petricoin III, Lance A. Liotta, Timothy D. Veenstra, Thomas P. Conrads. An investigation into the human serum " interactome". Electrophoresis 2004, 25:1289-1298
    [92] C. Cojocel, K. Maita, K. Baumann and J.B. Hook. Renal processing of low molecular weight proteins. Pflugers Arch 1984, 4: 333-339.
    [93] M.S. Dennis, M. Zhang, Y.G Meng, M. Kadkhodayan, D. Kirchhofer, D. Combs et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol. Chem. 2002,277:35035-35043
    [94] B.L. Osborn, H.S. Olsen, B. Nardelli, J.H. Murray, J.X. Zhou, A. Garcia et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp. Ther. 2002,303: 540-548.
    [95] Arpita I. Mehta, Sally Ross, Mark S. Lowenthal, Vincent Fusaro, David A. Fishmand, Emanuel F. Petricoin III, Lance A. Liotta.
     Biomarker amplification by serum carrier protein binding. Disease Markers 2002, 18: 1-10
    [96] Radhakrishna S. Tirumalai, King C. Chan, DaRue A. Prieto, Haleem J. Issaq, Thomas P. Conrads, and Timothy D. Veenstra. Characterization of the Low Molecular Weight Human Serum Proteome.. Mol. Cel. Proteomics, 2003, 2.: 1096-1102
    [97] Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics. 2004, 3 (4):311-26.
    [98] Robert G. Harper, Sarah R. Workman, Shayne Schuetzner, Aaron T. Timperman, Jennifer N. Sutton. Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis 2004, 25:1299 - 1306
    [99] Oleg Chertov, Arya Biragyn, Larry W. Kwak, John T. Simpson, Tatiana Boronina, Van M. Hoang, DaRue A. Prieto, Thomas P. Conrads, Timothy D. Veenstra, Robert J. Fisher. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 2004, 4: 1195-1203
    [100] Richter R, Schulz-Knappe P, Schrader M, Standker L, Jurgens M, Tammen H, Forssmann WG. Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl. 1999, 726(l-2):25-35
    [101] Schulz-Knappe P, Schrader M, Standker L, Richter R, Hess R, Jurgens M, Forssmann WG. Peptide bank generated by large-scale preparation of circulating human peptides. J Chromatogr A. 1997, 776(1):125-32.
    [102] Machtejevas E, John H, Wagner K, Standker L, Marko-Varga G, Forssmann WG, Bischoff R, Unger KK. Automated multi-dimensional liquid chromatography: sample preparation and identification of peptides from human blood filtrate. J Chromatogr B Analyt Technol Biomed Life Sci. 2004, 803(1):121-30.
    [103] Kenneth L. Johnson, Christopher J. Mason, David C. Muddiman, Jeanette E. Eckel. Analysis o f the Low Molecular Weight Fraction o f S erum by LC-Dual E SI-FT-ICR M ass Spectrometry: Precision of Retention Time, Mass, and Ion Abundance. Anal. Chem.2004, 76: 5097-5103
    [104] Wulfkuhle, J. D.; Liotta, L. A.; Petricoin, E. F. Nat. Rev. Cancer, 2003, 3: 267-275.
    [105] Petricoin, E. F.; Zoon, K. C; Kohn, E. C; Barrett, J. C; Liotta, L. A. Nat. Rev. Drug Discovery, 2002, 1: 683-695.
    [106] Josep Villanueva, John Philip, David Entenberg, Carlos A. Chaparro, Meena K. Tanwar, Eric C. Holland, and Paul Tempst. Scrum Peptide Profiling by Magnetic Particle-Assisted, Automated Sample Processing and
     MALDI-TOF Mass Spectrometry.Anal. Chem.2004, 76:1560-1570
    [107] Sushmita Mimi Roy, Markus Anderle, Hua Lin, Christopher H. Becker. Differential expression profiling of serum proteins and metabolites for biomarker discovery. International Journal of Mass Spectrometry. 2004, 238: 163-171
    [108] M. Butler,'D. Quelhas, A.J. Critchley, H. Carchon, H.F. Hebestreit, R.G. Hibbert, L. Vilarinho, E. Teles, G. Matthijs, E. Schollen, P. Argibay, DJ. Harvey, R.A. Dwek, J. Jaeken,P.M. Rudd. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 2003, 13: 601-622.
    [109] K. Goswami, D.N. Nandakumar, B.C. Koner, Z. Bobby, S.K. Sen. Clin. Chim. Acta 2003, 337: 163.
    [110] Ziping Yang, William S. Hancock. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. Journal of Chromatogr. A, 2004,1053: 79-88
    [111] Ana Maria Rodriguez-Pineiro, Daniel Ayude, Francisco Javier Rodriguez-Berrocal, Maria Paez de la Cadena. Concanavalin A chromatography coupled to two-dimensional gel electrophoresis improves protein expression studies of the serum proteome. Journal of Chromatography B, 2004,803: 337-343
    [112] Bunkenborg J, Pilch B.J, Podtelejnikov A.V, Wisniewski J.R. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Troteomics. 2004, 4 :454-65
    [113]Zhang Hui, Li Xiao-jun, Martin D.B., and Aebersold Ruedi. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnology, 2003, 21:660-666.
    [114] Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW. High-throughput comprehensive analysis of human plasma proteins: a step toward population proteomics. Aaal Chem. 2004, 76:1733-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700