鹰嘴豆孢克鲁维酵母菊粉酶的分泌表达与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过转入菊粉酶基因表达质粒pUKD-S-aF-PinuT,成功地构建了分泌表达菊粉酶的重组乳酸克鲁维酵母(Kluyveromyces lactis),菊粉酶基因来源于鹰嘴豆孢克鲁维酵母(Kluyveromyces cicerisporus CBS4857, Y179)。研究发现Klhap1基因的突变能促进外源菊粉酶的分泌表达。发酵120h时,Klhap1△重组酵母发酵液酶活达到391 U/ml,是野生型重组酵母的2.2倍。荧光定量PCR数据显示Klhap1Δ重组酵母中的Kcinu mRNA水平明显比野生型重组酵母中的高。在非选择性培养基中生长50世代时,具有菊粉酶表达质粒的细胞在Klhap1Δ重组酵母和野生型重组酵母中比例分别达到99%、89%。以上结果说明,Klhapl基因的突变有利于菊粉酶在乳酸克鲁维酵母中更稳定、更高水平的表达。
     利用同源重组技术成功构建了hap1基因缺失突变的酿酒酵母(Saccharomyces cerevisiae)Y 16hap1Δ菌株,以lacZ为报告基因测定了不同启动子在Y16及Y16hap1△菌株中启动转录的效率,短型菊粉酶基因启动子PinuS与酿酒酵母翻译延伸因子基因启动子Ptef引导的β-半乳糖苷酶活性最高,长型菊粉酶基因启动子PinuL在Y16hap1△菌株中的转录效率比在Y16中的要低,这与乳酸克鲁维酵母中的结果相反,提示Klhap1基因与Schap1基因的功能有差异。
     上述研究使我们对鹰嘴豆孢克鲁维酵母菊粉酶基因在乳酸克鲁维酵母和酿酒酵母中外源表达的性质有更深入的了解,有助于酵母表达系统的开发与利用。提示了可以利用Klhap1Δ乳酸克鲁维酵母更高效地表达其他目的外源蛋白。
     构建了四种利用附加型载体表达菊粉酶的重组酿酒酵母,其中Y16/pHC-PinuLT分泌的菊粉酶酶活最高,发酵96h时达到最高(57U/m1),是Y16hap1Δ/pHC-PinuLT菌株产生的菊粉酶酶活的2倍。说明Schap1基因的突变降低了外源菊粉酶基因的表达。在菊芋培养液中发酵Y16/pHC-PinuLT时,添加一定量的尿素可以提高菊粉酶的产量。对工业酿酒酵母XN5菌株进行改造,在其基因组rDNA区整合菊粉酶基因表达单元,构建了重组酿酒酵母)CN5-αF-inu41,该菌株置于以菊粉为碳源的丰富培养基YEPI中发酵,72h时酶活达到最高值(29U/m1),)CN5-αF-inu 41工程菌产生的菊粉酶足够在48h内将95%的初始菊粉水解成还原糖,这为其发展成为高效利用菊芋原料发酵生产生物乙醇的酿酒酵母工程菌奠定了基础。
     利用第一部分研究中构建的分泌菊粉酶的重组酿酒酵母Y16/pHC-PInuLT菌株,敲除其基因组中的hxkl和hxk2,得到一株不能消耗果糖的酿酒酵母突变株Y16hxk1⊿/pHC-PInuLT在丰富培养基YEPD中发酵96h时,Schxk△重组酵母培养液中的菊粉酶酶活达到31U/ml,是野生型重组酵母的2.4倍。在以10%(w/v)菊粉为唯一碳源的培养基中发酵48h时,上清液果糖浓度达到9.0%(w/v),葡萄糖含量低于0.005%(w/v)。在以菊芋为唯一组分的菊芋培养基中发酵24h时,发酵液中果糖浓度达到9.2%(w/v),葡萄糖含量为0.10%(w/v)。结果说明以菊芋为培养基通过突变株Y16hxk1⊿/pHC-PInuLT的一步发酵,可产生高纯度的果糖。
     以菊芋为原料用天然高水平分泌菊粉酶的鹰嘴豆孢克鲁维Y179酵母发酵生产乙醇,从发酵工艺方面检测产乙醇过程并优化Y179的生产乙醇的发酵条件的各项参数。得到优化的发酵条件是:Y179在YEPD培养液中过夜培养36h后,以6%的接种量接入25%(w/v)菊芋液,30℃摇床培养8h后,静置培养。发酵40h左右,乙醇含量可以达到9-12%(v/v),糖醇转化率最高为75%左右。Y179在5L发酵罐中的发酵菊芋液生产乙醇过程如下,以约22%(w/v)糖含量的菊芋液为发酵液,30℃厌氧环境发酵,300rpm搅拌速度。发酵144h时,乙醇浓度达到12.34%(v/v),醪沼上清残糖0.35%(w/v),糖醇转化效率86.9%,糖利用率大于93.6%。
     用菊粉酶分泌表达酿酒酵母菌株Y16/pHC-PInuLT进行产乙醇研究。以约22%(w/v)糖含量的菊芋溶液为发酵液,30℃厌氧环境发酵,磁力搅拌器搅拌。发酵48h时,乙醇浓度达到10.5%(v/v),糖醇转化效率约85%。
     产乙醇的研究证明,利用鹰嘴豆孢克鲁维Y179酵母或菊粉酶分泌表达重组酿酒酵母Y16/pHC-PInuLT可一步糖化及发酵菊芋生产乙醇。
     表达菊粉酶的酿酒酵母与鹰嘴豆孢克鲁维酵母生产乙醇、果糖方法工艺简单,生产成本低,具有巨大的工业应用价值。
Strains of Kluyveromyces lactis which secrete high level of inulinase were constructed by transforming of expression vector pUKD-S-αF-PinuT. The disruption of Klhapl increased heterologous expression of inulinase gene Kcinu derived from Kluyveromyces cicerisporus CBS4857. Inulinase activity in the supernatant of Klhap1Δstrain was 391 U/ml after cultured for 120 h, which was 2.2-fold that of the wildtype host. Comparing with the wildtype host, the relative KcINUl mRNA level of Klhap1Δstrain was increased significantly in the indicated culture time. After 50 generations of continuous cultured in non-selective medium, the percentage of expression plasmid-carrying cells were 99% and 89% for Klhap1Δand wildtype strains respectively. Based on these results, the disruption of Klhapl gene facilitated the high and stable expression of inulinase in K. lactis by certain mechanism.
     Saccharomyces cerevisiae strain Y16hap1Δwas obtained by homologous recombination of disruption cassette into strain Y16. Transcription level of different promoter in the Y16 and Y16 was determined by lacZ report gene.β-Galactosidase activities directed by PinuS and Ptef promoter were higher than other promoter tested. Transcription level of PinuL promoter in Y16hap1Δwas lower than that in the Y16 which is opposite to the result in K. lactis. This suggested that the function of Klhapl is different to that of Schapl in S. cerevisiae.
     The research gives us a better understanding about the property of heterologous inulinase expression in K. lactis and S. cerevisia and facilliates the development of yeast expression system. It indicated heterolgous target proteins could be more efficiently produced by using Klhap1ΔKluyveromyces lactic as host.
     Four recombinant S. cerevisiae of inulinase expression were constructed by introduction of episomal plasmid. Inulinase activities secreted by Y16/pHC-PinuLT were highest among these recombinant yeasts which reach 57U/ml after cultured for 96h. The inulinase activities were 2-fold that of Y16hap1Δ/pHC-PinuLT. The result show the disruption of ScHAPl gene impaired heterologous expression of inulinase. Inulinase activities secreted by Y16/pHC-PinuLT could be elevated by addition of urea to the raw Jerusalem artichoke medium. Recombinant diploid S. cerevisiae XN5-aF-inu 41 of inulinase secretion were constructed by integration of Kcinu into the rDNA locus in chromosome. Inulinase activity was 29 U/ml for XN5-aF-inu 41 after cultured in YEPI medium[1%(w/v) Yeast Extract,2%(w/v) Polypeptone, 10%(w/v) Inulin] for 72h. The inulinase produced by XN5-αF-inu 41 was sufficient to hydrolyze 95% of the initial inulin to reducing sugar in 48h. The results contribute to the development of ethanol production by inulinase secretion S. cerevisiae strains using Jerusalem artichoke as raw material.
     The genetic engineering stain of S. cerevisiae that is unable to consume fructose was then constructed by double disruption of the hexokinase gene hxkl and hxk2 in Y16/pHC-PInuLT strain constructed in the first part of the study. Inulinase activity in the culture supernatant of recombinant Schxk1Δhxk2Δstrain was 30.9 U ml-1 after cultured 96 h which was 2.4-fold that of Y16/pHC-PInuLT. After 48 h of fermentation in the medium initially containing 10%(w/v) inulin as sole carbon source by the recombinant Schxk1Δhxk2Δstrain, the fructose was accumulated to 9.0%(w/v) in the fermentation supernatant and the glucose content in the culture medium was less than 0.005%(w/v). When using wild Jerusalem artichoke as sole fermentation medium component without any supplementary, the fructose concentration of the fermentation supernatant reached 9.2%(w/v) and the glucose content was 0.10%(w/v) after 24 h incubation. The result suggested that fructose production of high purity can be achieved by one step fermentation of recombinant Schxk1Δhxk2Δyeast strain in the culture medium of Jerusalem artichoke as the sole component.
     Ethanol production from raw Jerusalem artichoke tubers by simultaneous saccharification and fermentation using yeast Y179 was studied. Kluyveromyces cicerisporus Strain Y179 could express high level of inulinase. The optimization of the fermentation process was achieved by research the impact of different fermentation parameter on ethanol production. Optimized fermentation conditions were as follow:Y179 was cultivated in YEPD medium for 36h.25%(w/v) wild artichoke medium was inoculated with 6%(v/v) inoculum of the 36h-precultured Y179 culture. After 8h of fermentation in rotary shaker, Y179 was then transferred to stationary cultivation at 30℃. Ethanol reached 9-11%(v/v) after 40h of fermentation. The highest conversion ration of carbohydrate to alcohol is about 75%. Jerusalem artichoke medium of 22%(w/v) total sugar content in a 5-L fermenter was inoculated with 10%(v/v) inoculum of 36 h-precultured Y179 cells. The batch fermentation was conducted at 30℃and with a stirring speed of 300 rpm under anaerobic condition. After 144 h of batch fermentation, ethanol concentration obtained from the fermentation broth was 12.34%(v/v) and the conversion efficiency of carbohydrate to ethanol was 86.9% of the theoretical ethanol yield. The cells utilized 93.6% of the total sugar during the fermentation.
     Ethanol production by inulinase-secretion S. cerevisiae Y16/pHC-PInuLT using crude Jerusalem artichoke medium of 22%(w/v) total sugar content was conducted with magnetic stirrer in anaerobic condition at 30℃. inoculated with 10%(v/v) inoculum of 24 h-precultured Y179 cells. After 48h of batch fermentation, ethanol concentration was 10.5%(v/v) and the conversion efficiency of carbohydrate to ethanol was 85% of the theoretical ethanol yield.
     The results of ethanol fermentation showed that K. cicerisporus Y179 and recombinant inulinase-secretion S. cerevisiae Y16/pHC-PInuLT are promising candidates for industrial application of fuel ethanol production in simultaneous saccharification and fermentation using crude Jerusalem artichoke.
     Ethanol and fructose production by S. cerevisiae and K. cicerisporus with inuliase activities is promising method which is simple and low cost for industrial application.
引文
华承伟,王建华,滕达,史贤明(2004)菊粉化学和微生物菊粉内切酶研究进展.中国食品学报4(4):103-108.
    蒋世琼(2000)应用生物技术开发菊芋资源.南宁职业技术学院学报5(3):53-56.
    王婧,张苓花,王运吉(2003)克鲁维酵母菊粉酶基因在毕赤酵母中的表达.大连轻工业学院学报22(2):135-138.
    周帼萍,沙涛,程立忠,丁骅孙(2001)菊粉酶的研究及应用.食品与发酵工业27(7):54-58.
    Adams A, Gottschling DE, Kaiser CA, Steams T (1997) Methods in Yeast Genetics:A cold spring harbor laboratory course manual. Cold Spring Harbor Laboratory Press, New York, USA.
    Akada R, Murakane T, Nishizawa Y (2000) DNA extraction method for screening yeast clones by PCR. Biotechniques 28(4):668-674.
    Arand M, Golubev AM, Neto JR, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV, Neustroev KN (2002) Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochemical Journal 362(1):131-135.
    Baion AM, Guirand JP, Galzy P (1984) Isolation of an inulinase derepressed mutant of Pichia polymorpha for the production of fructose. Biotechnology and Bioengineering 26(2):128-133.
    Bao WG, Guiard B, Fang ZA, Donnini C, Gervais M, Passos FML, Ferrero I, Fukuhara H, Bolotin-Fukuhara M (2008) Oxygen-dependent transcriptional regulator Haplp limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Eukaryotic Cell 7(11):1895-1905.
    Bergkamp RJM, Bootsman TC, Toschka HY, Mooren ATA, Kox L, Verbakel JMA, Geerse RH, Planta RJ (1993) Expression of an alpha-galactosidase gene under control of the homologous inulinase promoter in kluyveromyces-marxianus. Applied Microbiology and Biotechnology 40(2-3):309-317.
    Brevnova EE, Kozlov DG, Efremov BD, Benevolensky SV (1998) Inulase-secreting strain of Saccharomyces cerevisiae produces fructose. Biotechnology and Bioengineering 60(4):492-497.
    Buckholz RD, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology 9(11):1067-1072.
    Cai XP, Zhang J, Yuan HY, Fang ZA Li YY (2005) Secretory expression of heterologous protein in Kluyveromyces cicerisporus. Applied Microbiology and Biotechnology 67(3):364-369.
    Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Current Genetics 16(2):95-98.
    Chen XL, Yuan HY, He W, Hu XH, Lu H, Li YY (2005) Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae. Science in China Series C-Life Sciences 48(4):330-336.
    Chung BH, Kim BM, Nam SW (1996a) The use of inulinase pre-pro leader peptide for secretion of heterologous proteins in Saccharomyces cerevisiae. Biotechnology Letters 18(6):627-632.
    Chung BH, Nam SW, Kim BM, Park YH (1996b) Communication to the Editor: Highly efficient secretion of heterologous proteins from Saccharomyces cerevisiae using inulinase signal peptides. Biotechnology Bioengineering 49(4):473-479.
    Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of the saca gene-characterization of a sucrase from Zymomonas-mobilis. Journal of Bacteriology 172(12):6727-6735.
    Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochemical Journal 280(2):309-316.
    Jayaram M, Li YY, Broach JR (1983) The yeast plasmid 2mu circle encodes components required for its high copy propagation. Cell 34(1):95-104
    Kang HA, Nam SW, Kwon KS, Chun BH, Yu MH (1996) High-level secretion of human al-antitrypsin from Saccharomyces cerevisiae using inulinase signal sequence. Journal of Biotechnology 48(1-2):15-24.
    Kim HS, Lee DW, Ryu EJ, Uhm TB, Yang MS, Kim JB, Chae KS (1999) Expression of the INU2 gene for an endoinulinase of Aspergillus ficuum in Saccharomyces cerevisiae. Biotechnology Letters 21(7):621-623.
    Kosaric N, Cosentino A, Wieczorek A, Duvnjak Z (1984) The Jerusalem artichoke as an agricultural crop. Biomass 5(1):1-36.
    Kwon HJ, Jeon SJ, You DJ, Kim KH, Jeong YK, Kim YH, Kim YM, Kim BW (2003) Cloning and characterization of an exoinulinase from Bacillus polymyxa. Biotechnology Letters 25(2):155-159.
    Laloux O, Cassart JP, Delcour J, vanBeeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus van marxianus ATCC 12424. FEBS Letters 289(1):64-68.
    Lamas-Maceiras M, Nunez L, Rodriguez-Belmonte E, Gonzalez-Siso MI, Cerdan ME (2007) Functional characterization of KIHAP1:A model to foresee different mechanisms of transcriptional regulation by Haplp in yeasts. Gene 405(1-2):96-107.
    Martin I, Debarbouille M, Ferrari E, Klier A, Rapoport G (1987) Characterization of the levanase gene of Bacillus-subtilis which shows homology to yeast invertase. Molecular and General Genetics 208(1-2):177-184.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426-428.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp.352-355.
    Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K (2002) Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Bioscience Biotechnology and Biochemistry 66(9):1887-1896.
    Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T (1998) Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Bioscience Biotechnology and Biochemistry 62(9):1731-1738.
    Onodera S, Murakami T, Ito H, Mori H, Matsui H, Honma M, Chiba S, Shiomi (1996) Molecular cloning and nucleotide sequences of cDNA and gene encoding endo-inulinase from Penicillium purpurogenum. Bioscience Biotechnology and Biochemistry 60(11):1780-1785.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning:a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
    Tsujimoto Y, Watanabe A, Nakano K, Watanabe K, Matsui H, Tsuji K, Tsukihara T, Suzuki Y (2003) Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289. Applied Microbiology and Biotechnology 62(2-3):180-185.
    Viswanathan P, Kulkarul PR (1995) Enhancement of inulinase production by Aspergillus niger van Teighem. Journal of Applied Bacteriology 78(4):384-386.
    Ward AC (1992) Rapid analysis of yeast transformants using colony-PCR. Biotechniques 13(3):350-350.
    Wen TQ, Liu F, Huo KK, Li YY (2003) Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World Journal of Microbiology and Biotechnology 19(4):423-426.
    Yuan XL, Roubos JA, van den Hondel C, Ram AFJ (2008) Identification of InuR, a new Zn(Ⅱ)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Molecular Genetics and Genomics 279(1):11-26.
    Zhang LH, Wang J, Ohta Y, Wang YJ (2003) Expression of the inulinase gene from Aspergillus niger in Pichia pastor is. Process Biochemistry 38(8):1209-1212.
    Zhang LH, Wang YJ, Ye SH, Zhang FQ (2002) Screening strains producing inulinase and cloning of inulinase gene. Weishengwu Xuebao 42(3):321-325.
    柳畅先,陈勇(2003)乙醇含量的酶法测定.分析测试学报22(4):96-98.
    吕跃钢,马家津,顾天成(2003)利用固定化菊粉酶和酵母细胞以菊芋为原料发酵生产乙醇的研究.食品与发酵工业29(5):66-68.
    马家津,吕跃钢(2004)以菊芋为原料利用固定化酶和细胞两步法发酵生产乙醇.北京工商大学学报22(6):8-10,17.
    张乐兴(2003)高果糖浆的性质与应用.广州食品工业科技19(1):44-45.
    Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in yeast genetics:A cold spring harbor laboratory course manual. Cold Spring Harbor Laboratory Press, New York, USA.
    Bajpai P, Margaritis A (1985) Immobilization of kluyveromyces-marxianus cells containing inulinase activity in open pore gelatin matrix:2. Application for high fructose syrup production. Enzyme and Microbial Technology 7(9):459-461.
    Blakely SR, Mislo BL, Basi NS, Pointer RH (1995) Dietary fructose alters the insulin-like effects of dietary vanadate in adipocytes from rats. Nutrition Research 15(1):25-35.
    Brevnova EE, Kozlov DG, Efremov BD, Benevolensky SV (1998) Inulase-secreting strain of Saccharomyces cerevisiae produces fructose. Biotechnology and Bioengineering 60(4):492-497.
    Dahlmans JJ, Meijer EM, Bakker G, Beekhuis G (1983) An enzymatic process for the production of fructose from inulin. Antonie van Leeuwenhoek Journal of Microbiology 49(1):88-88.
    Duvnjak Z, Kosaric N, Hayes RD (1981) Kinetics of ethanol production from Jerusalem artichoke juice with some kluyveromyces species. Biotechnology Letters 3(10):589-594.
    Ge XY, Zhang WG (2005) A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technology and Biotechnology 43(3):241-246.
    Goldstein AL, Pan XW, McCusker JH (1999) Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15(6):507-511.
    Gonchar MV, Maidan MM, Pavlishko HM, Sibirny AA (2001) A new oxidase-peroxidase kit for ethanol assays in alcoholic beverages. Food Technology and Biotechnology 39(1):37-42.
    Hanover LM, White JS (1993) Manufacturing, composition, and applications of fructose. American Journal of Clinical Nutrition 58(5):724-732.
    Herrero P, Galindez J, Ruiz N, Martinez-Campa C, Moreno F (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK.2 and GLK1 genes. Yeast 11(2):137-144.
    Lobo Z, Maitra PK (1977) Genetics of yeast hexokinase. Genetics 86(4):727-44.
    Long JE (1986) High fructose corn syrup. Cereal Foods World 31(12):862-865.
    Margaritis A, Bajpai P, Cannell E (1981) Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass. Biotechnology Letters 3(10):595-599.
    Nakamura T, Ogata Y, Shitara A, Nakamura A, Ohta K (1995) Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. Journal of Fermentation Bioengineering 80(2):164-169.
    Ohta K, Hamada S, Nakamura T (1993) Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Applied and Environmental Microbiology 59(3):729-733.
    Tian YS, Zhao LX, Meng HB, Sun LY, Yan JY (2009) Estimation of un-used land potential for biofuels development in (the) People's Republic of China. Applied Energy 86(Suppl 1):77-85.
    Wen TQ, Liu F, Huo KK, Li YY (2003) Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World Journal of Microbiology and Biotechnology 19(4):423-426.
    Zittan L (1981) Enzymatic-hydrolysis of inulin—an alternative way to fructose production. Starke 33(11):373-377.
    郭雪娜,何秀萍,傅秀辉,张博润(2003)工业酵母菌的遗传修饰研究进展及其应用前景.中国生物工程杂志23(10):47-51.
    侯爱华,鲍晓明,杨国梁(2002)整合载体与选择载体共转化酵母菌的研究.生物技术12(3):5-6.
    单晓映,李蓓,张举仁(2006)利用FLP/frt重组系统产生无选择标记的转基因烟草植株.生物工程学报22(5):744-750.
    Abuin A, Bradley A (1996) Recycling selectable markers in mouse embryonic stem cells. Molecular and Cellular Biology 16(4):1851-1856.
    Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y (2002) Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19(5):393-402.
    Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23(5):399-405.
    Antoni AD, Gallwitz D (2000) A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 246(1-2):179-185.
    Arakawa H, Lodygin D, Buerstedde JM (2001) Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnology 1:7.
    Cregg JM, Madden KR (1989) Use of site-specific recombination to generate selectable markers. Molecular and General Genetics 219(1-2):320-323.
    Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences of USA 88(23):10558~10562.
    Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG (2000) Exploring redundancy in the yeast genome:an improved strategy for use of the cre-loxP system protein products show similarity to the dihydroflavonol-4-reductase of V. vinifera and therefore might be involved in yeast secondary metabolism. Gene 252(1-2):127-135.
    Erler A, Maresca M, Fu J, Stewart AF (2006) Recombineering reagents for improved inducible expression and selection marker re-use in Schizosaccharomyces pombe. Teast 23(11):813-823.
    Fairhead C, Llorente B, Denis F, Soler M, Dujon B (1996) New vectors for combinatorial deletions in yeast chromosomes and gap-repair cloning using 'split-marker'recombination. Yeast 12(14):1439-1458.
    Germino M, Sohail H, Germino E, Germino J (2006) A vector for double epitope tagging with a recyclable marker. Yeast 23(10):763-769.
    Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541-1553.
    Gorman JA, Chan W, Gorman JW (1991) Repeated use of GAL 1 for gene disruption in Candida albicans. Genetics 129(1):19-24.
    Hartzog PE, Nicholson BP, McCusker JH (2005) Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 22(10):789-798.
    Hauf J, Zimmermann FK, Miiller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme and Microbial Technology 26(9-10):688-698.
    Ito-Harashima S, McCusker JH (2004) Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast 21(1):53-61.
    Iwaki T, Takegawa K (2004) A Set of loxP Marker cassettes for cre-mediated multiple gene disruption in Schizosaccharomyces pombe. Bioscience Biotechnology and Biochemistry 68(3):545-550.
    Johansson B, Hahn-Hagerdal B (2002) Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 19(3):225-231.
    Johansson B, Hahn-Hagerdal B (2004) Multiple gene expression by chromosomal integration and CRE-loxP-mediated marker recycling in Saccharomyces cerevisiae. Methods in Molecular Biology 267:287-296.
    Kawahata M, Amari S, Nishizawa Y, Akada R (1999) A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose-inducible growth inhibitory sequences. Yeast 15(1):1-10.
    Longtine MS, McKenzie A, Demarini AJ, Shah NG, Wach A, Brachat A, Phillippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10):953-961.
    McNabb DS, Pak SM, Guarente L (1997) Cassette for the generation of sequential gene disruptions in the yeast Schizosaccharomyces pombe. Biotechniques 22(6):1134-1139.
    Morschhauser J, Staib P, Kohler G (2005) Targeted gene deletion in Candida albicans wild-type strains by MPAR flipping. Methods in Molecular Medicine 118:35-44.
    Nett JH, Gerngross TU (2003) Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 20(15):1279-1290.
    ReuβO, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119-127.
    Schneider BL, Steiner B, Seufert W, Futcher AB (1996) pMPY-ZAP:A Reusable polymerase chain reaction-directed gene disruption cassette for Saccharomyces cerevisiae. Yeast 12(2):129-134.
    Schweizer HP (2003) Applications of the Saccharomyces cerevisiae FLP-FRT system in bacterial genetics. Journal of Molecular Microbiology and Biotechnology 5(2):67-77.
    Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling:from cloned gene to mutant yeast. Methods in Enzymology 194:302-318.
    Steensma HY, Ter Linde JJM (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18(5):469-472.
    Storici F, Coglievina M, Bruschi CV (1999) A 2-μm DNA-Based Marker Recycling System for Multiple Gene Disruption in the Yeast Saccharomyces cerevisiae. Yeast 15(4):271-283.
    Struhl K (1983) Direct selection for gene replacement events in yeast. Gene 26(2-3):231-242.
    Toyn JH, Gunyuzlu PL, White WH, Thompson LA, Hollis GF (2000) A counterselection for the tryptophan pathway in yeast:5-fluoroanthranilic acid resistance. Yeast 16(6):553-560.
    Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HI S3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13(11):1065-1075.
    Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10(13):1793-1808.
    Waghmare SK, Caputo V, Radovic S, Bruschi CV (2003) Specific targeted integration of kanamycin resistance-associated nonselectable DNA in the genome of the yeast Saccharomyces cerevisiae. Biotechniques 34(5):1024-1028,1033.
    Walker ME, Gardner JM, Vystavelova A, McBryde C, Lopes MB, Jiranek V (2003) Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Research 4(3):339-347.
    Walker M, Vystavelova A, Pedler S, Eglinton J, Jiranek V (2005) PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences. Journal of Microbiological Methods 63(2):193-204.
    Yesland K, Fonzi WA (2000) Allele-specific gene targeting in Candida albicans results from heterology between alleles. Microbiology-SGM 146(9):2097-2104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700