分泌信号肽介导异源蛋白在酵母中分泌表达的研究及K1HAP1基因在乳酸克鲁维酵母中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在酵母分泌表达系统中,启动子、分泌信号肽、终止子都是介导外源基因高效分泌表达的重要元件。为了研究信号肽在介导酵母中异源蛋白分泌表达的影响,本研究在天然菊粉酶基因信号肽CSS DNA序列的基础上,通过PCR突变技术,改造获得了一新的SI信号肽DNA序列,并将这两种信号肽与α-Factor信号肽分别构建了克鲁维酵母分泌表达载体、酿酒酵母分泌表达载体和毕赤酵母分泌表达载体。以菊粉酶基因为报告基因,将以上各相应分泌表达载体,分别导入鹰嘴豆孢克鲁维酵母宿主菌Y179U、乳酸克鲁维酵母宿主菌Y166、酿酒酵母宿主菌DC04和毕赤酵母宿主菌GS115、SMD1168中,获得了菊粉酶分泌表达的酵母工程菌:Y179U/pUKD-S-P-CSS-Inu-T, Y179U/pUKD-S-P-SI-Inu-T, Y179U/pUKD- S-P-αF- Inu-T; Y166/pUKD-S-P-CSS- Inu-T, Y166/pUKD-S-P-SI-Inu-T, Y166/pUKD- S-P-αF -Inu-T; GS115/pPIC9K-CSS-Inu, GS115/pIC9K-SI-Inu, GS115/pPIC9K-aF-Inu;和SMD1168/pPIC9K-CSS-Inu, SMD1168/pIC9K-SI-Inu, SMD1168/pPIC9K-aF-Inu。检测以上各组工程菌的菊粉酶分泌表达水平表明:三种信号肽在上述几种酵母分泌表达系统中均能有效地指导菊粉酶基因的分泌表达。菊粉酶的酶活性检测结果也表明,以菊粉酶基因信号肽构建的表达工程菌:Y179U/pUKD-S-P-CSS-Inu-T, Y166/pUKD-S-P-CSS-Inu-T, GS115/pPIC9K-CSS-Inu, SMD1168/pPIC9K-CSS-Inu与Y179U/pUKD-S-P-SI-Inu-T, Y166/pUKD-S-P-SI-Inu-T, GS115/pIC9K-SI-Inu, SMD1168/pIC9K-SI-Inu比相应的α-Factor信号肽构建的表达系统的菊粉酶分泌表达水平明显更高。经过改造的菊粉酶基因信号肽比原信号肽也略显优势,它在鹰嘴豆孢克鲁维酵母、乳酸克鲁维酵母、酿酒酵母和毕氏酵母系统中都成功地指导了菊粉酶基因的分泌表达,说明经过改造的菊粉酶基因信号肽在各酵母系统中具有通用性,对非常规新型鹰嘴豆孢克鲁维酵母系统的开发和研制具有一定的应用意义,同时,获得的高水平分泌表达菊粉酶的鹰嘴豆孢克鲁维酵母、乳酸克鲁维酵母、毕氏酵母分泌表达菊粉酶工程菌也具有明显的开发和应用价值。
     在上述研究的同时,我们获得了一株菊粉酶分泌表达工程菌突变株:GS115/pPIC9K-αF-Inu-M。该工程菌分泌表达产物的SDS-PAGE分析显示,表达产物蛋白的电泳迁移速率比通常的菊粉酶蛋白略快,分子量更小。该突变工程菌中编码菊粉酶基因的DNA序列分析以及该表达产物的菊粉酶酶活力分析均表明,该蛋白和正常菊粉酶蛋白没有区别。通过对表达产物的N.糖基化实验和蛋白结晶的结构分析,初步认为该表达蛋白分子量的变小可能是由于未受到N-糖基化的修饰引起的。因为通常糖基化修饰对蛋白的结晶进行结构分析会造成困难,而我们用该突变的表达蛋白能够顺利地得到蛋白结晶,N-糖基化实验也说明N-糖基化酶处理后的菊粉酶蛋白能够得到和突变表达产物蛋白相一致的酶切产物,关于信号肽在介导外源基因分泌表达的过程中存在不同的加工机制,有待进一步深入研究。
     在酿酒酵母中,HAP1基因产物主要在转录水平上调控下游许多与应氧相关基因的表达。在应氧过程中不同种属的酵母展现出不同的代谢特征。在有氧条件下,酿酒酵母以发酵代谢为主,而乳酸克鲁维酵母则以呼吸代谢为主。HAP1p调控下游基因的差异,是导致不同酵母在应氧过程中产生不同代谢的主要原因。为此,本研究以HAP1的乳酸克鲁维酵母中的同源基因KlHAP1为切入点,研究其在乳酸克鲁维酵母应氧过程中的功能。KlHAP1与HAP1的序列比较分析表明两者之间有相似的基因序列特征,在酿酒酵母中互补hap1缺失突变说明了这两个基因属于同功基因,KlHAP1的突变使乳酸克鲁维酵母获得了温度敏感表型。KlHAP1对下游KlCYC1等基因的调控也与酿酒酵母中HAP1p相类似。同时还发现KlHAP1p能够抑制糖转运蛋白基因RAG1的表达,减少乳酸酵母对葡萄糖的吸收,表明KlHAP1p通过糖转运蛋白系统来控制糖流,Klhap1突变在有氧条件下能够增加乙醇的产量,使原先在葡萄糖上具有Crabtree负效应的乳酸克鲁维酵母展现出一定的Crabtree正效应。KlHap1p激活呼吸相关基因和抑制发酵相关基因的双重角色为解释乳酸克鲁维酵母为何展现Crabtree负效应的特征提供了理论依据。在酿酒酵母中,HAP1通过ROX1p在有氧条件下抑制下游厌氧基因的表达。为研究KlHAP1p调控下游糖转运蛋白RAG1的机制,我们在乳酸克鲁维酵母中寻找到ROX1的同功基因KlROX1,发现其表达对下游厌氧基因并没有抑制效应,同时对于RAG1也没有抑制效应。KlHap1p在乳酸克鲁维酵母中的其它调控途径有待更深入的研究。
In the yeast secretory expression system, cis-elements containing promoter, signal peptide, terminer are efficient for gene expression. In order to study the effect of signal peptide on secretory expression of recombinational protein in yeast, a mutated signal peptide (named as SI) was obtained by PCR mutagenesis from natural Inulinase signal peptide (CSS). CSS, SI and a-factor were separately cloned to a Kluyveromyces secretion expression vector, Saccharomyces cerevisiae secretion expression vector and Pichia pastoris secretion expression vector and then transformed to their corresponding hosts, in which Inulinase was used as reporter gene. We obtained the following recombinants:Y179U/pUKD-S-P-CSS-Inu-T, Y179U/pUKD-S-P-SI-Inu-T, Y179U/pUKD-S-P-aF-Inu-T; Y166/pUKD-S-P-CSS-Inu-T, Y166/pUKD-S-P-SI-Inu-T, Y166/pUKD-S-P-αF-Inu-T; GS115/pPIC9K-CSS-Inu, GS115/pIC9K-SI-Inu, GS115/pPIC9K-aF-Inu; and SMD1168/pPIC9K-CSS-Inu, SMD1168/pIC9K-SI-Inu, SMD1168/pPIC9K-aF-Inuo Detection of secretory expression level of Inulinase in the above recombinants showed that three kinds of signal peptide can effectively mediated the secretory expression of the reporter gene Inulinase in all detected yeast expression system. However, CSS and SI are more efficient than a-factor, and SI is the most efficient in guiding the secretory expression of foreign protein in all tested yeast systems. Meanwhile, a recombinant mutant GS115/pPIC9K-aF-Inu-M was obtained accidentally, in which the secreted Inulinase has smaller molecular weight than that in normal recombinant strain. DNA sequencing and enzymatic analysis of Inulinase showed that the Inulinase expressed in the mutant is the same as that in the normal strain. N-glycosylase digestion and crystallization suggest that the smaller molecular weight of Inulinase is probably due to the defect of glycosylation in the mutant.
     In Saccharomyces cerevisiae Haplp is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. For example S. cerevisiae is one kind of fermetative metabolism dominate yeast, while Kluyveromyces lactis is an respiratory metabolism dominate yeast specie which shows different oxygen responses.It is suspected that differences in the interaction of Haplp with its target genes may explain some of the species-related variation in oxygen responses. We examined the role of the HAP1-equivalent gene (KIHAP1) in K. lactis. KlHaplp showed a number of sequence features and some gene targets (such as KICYC1) in common with its S. cerevisiae counterpart, and KIHAP1 was capable of complementing the hap1 mutation. However, the KIHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature,28℃, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHaplp repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The Klhapl mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHaplp in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. In Saccharomyces cerevisiae, HAP1 mainly inhibited the downstream anaerobic genes through ROXlp in aerobic conditions. To detect the mechanism that KIHAP1 regulated glucose transporter Rag1g, the equivalent gene of ROX1 in K. lactis has been found. And further research found the the pututive KIROX1 didn't respress downstream anaerobic genes and there is also no inhibitory effect on RAG1. In K.lactis KlHaplp might negatively control Raglp in other ways which haven't been found now.
引文
1. Hitzeman RA, Hagie FE, Levine etal 1981. Expression of human for interferon in yeast. Nature.293:717-722
    2. 陈新杰,高卜渝,史文格等,1992.人α2A干扰素在克氏乳酸酵母中的表达和分泌,遗传学报,19(3):284—288.
    3. 袁汉英,潘辉,刘佚婷等,1997,乙肝病毒融合表面抗原SA-28基因在酵母中的表达,高技术通讯,7(10):35—39
    4. You-Feng Yang.Han-Ying Yuan Nan-Song Liu etal 2005,Construction, expression and characterization of human interferon α2b-(G4S)n-thymosin al fusion proteins in Pichia pastoris, World Journal of Gastroenterology.11(17):2597-2602
    5. 袁汉英,艾华水,范长胜等,2003,单链莫奈林基因表达载体构建及其表达,复旦大学学报(自然科学学报),Vo1.42.No.4,536—540
    6. 何炜,袁汉英,高卜渝等,2004,人类超氧化物歧化酶在酿酒酵母系统中的高效表达,复旦大学学报(自然科学学报),Vo1.43.No.2.毕氏.156-161
    7. R.G.Buck hok, M.A.Gleeson,1991, Yeast systems for the commercial production of heterologous proteins, Biotechnology (N.Y.)9(11).1067-1072
    8. M.A.Romanos, C.A.Scorec, J.J.Chare,1992, foreign gene-expression inyeast-areview, yeast,8(6),423-488
    9. A.Silva, J,Benitez, Arech.1994, Yeast as an expression system for the production of bacterial and viral antigens. Med.Res.25(4),447-9
    10. J.Reiser, V.Glumoff, M.Kalin et al,1990, Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Biochem.Eng Biotechnol,43,75-102
    11. J.M Cregg, T.S.Vedvick, W.C.Raschke,1993, recent advances in the expression of foreign genes in Pichla-pastoris. Biotechnology(N.Y.)11(8),905-910
    12. R.Fleer, X.J.Chen, N.Amellal etal,1991, high-level secretion of correctly processed recombinant human interleukin-1-beta in kluyveromyces-lactis. Gene,107(2),285-295
    13. J.M.Cereghino, J.Shi, etal,2000, Recombinant protein expression in Pichia pastoris. Mol.Biotechnol,16(1),23-52
    14. D.Olsen, C.Yang, M.Bodo etal,2003, Recombinant collagen and gelatin for drug delivery. Adv.Drug Deliv.Rev:55(12),1547-1567
    15. M.Hasslacher, M.Schall, M.Hata etal,1997, High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr,Punif,11(1),61-71
    16. T.Q.Wen, F.lin, K.K.Huo Y.Y.Li,2003, Cloning and analysis of the Inulinase gene from Kluyveromyces cicerisporus CBS4857.World J Microbiol Biotechnol,19,423-426
    17. J.Zhang, H.Y.Yuan, Y.Y.Li etal,2003, Cloning of the KcURA3 gene and development of a transformation system for Kluyveromyces cicerisporus. Appl.Microbiol Biotecnol,62(4),387-391
    18. Kond K,Miura Y,Sone H et al.1997.High-level expression of a sweet pretein,monellin,in the food yeast Candida utilities, Nature Biotechnology, 15:453-457,
    19.李嵩,高卜渝,李育阳,1997,乙型肝炎病毒表面抗原在在乳酸克鲁维酵母中的表达,生物工程学报,13(2):174—179
    20. X.P.Cai, J.Zhang, H.Y.Yuan, F.A.Fang,Y.Y.Li,2005, Secretory expression of heterologous protein in Kluyveromyces cicerisporus, Appl Microbiol Biotechnol,67(2005),364 369.
    21. Chen Xiangling, Yuan Hanying,He Wei etal,2005,Construction of a novel kind ofexpressin plasmid by homologous recombination in Saccharomyces cerevisiae,Sciences in China Ser.C life Sciencea Vol,48 No.4.330-336
    22. Broad JR,Li Y-Y, Chen L-C et al 1983. Vectors for highlevel inducible expression of cloned gene in yeast in experimental manipulation of gene expression. Academic Press Edited by Masayori Inouge.p83-117
    23.23.霍克克,虞兰兰,陈新杰等,1992,酵母高稳定载体的构建及人a2A干扰素基因在酵母中的表达和分泌,中国科学B, (9)922-929
    24. Lopos TS, Dewigs IJ, Steenhauer SI etal,1996,Cathepsis B of Schistosoma manspni,J.Biol.Chem.271:1717-1725
    25. Le Dall M-T, Nicaud J-M, Gaillardin,1994 Multiple-copy integration in yeast Yarruia,Cure,Genet,26:38-44
    26. Kondok, Miura Y,Sone H etal,1997,A transformation system for the Yeast Candida utillitis:use:use of a modified en dogenous ribosomal protein gene as drug-resistant marker and ribosomal DNA as an integration target for vector DNA.J.Bacteriol,177(24):7171-7127
    27高向东,李育阳,1998,染色体位置对酵母SUC2基因表达的影响,复旦大学学报(自然科学学报),Vo1.37.No.4,555-558
    28.陈莹,吕红,袁汉英等,2008,毕氏酵母YPS1基因的失活对减少重组人血清降解作用,复旦大学学报(自然科学学报), V47(3):213-713
    29. Alberghaina Li, Porro D, Marotegani E.1991,Efficent production of recombinant DNA protein in Sacchyomyces cerevisiae by contrclled high-cell-density fermentation.Biotechnol, Appl,Biochem.l4(1):82-92
    30. Leung W, Malkova A, Haber JE 1997, Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94:6851-6856
    31.刘佚婷,袁汉英,沈其梅等,1998,在杂合启动子控制下乙肝病毒表面抗原SA-28融合基因在酵母中的表达与调控,复旦大学学报(自然科学学报),Vo1.37.No.4,439-444
    32.李蔚,李育阳,1997,酵母ADH2-SUC2融合基因启动子的构建及其对基因表达的调控,遗传学报,24(6):561—568
    33. J.L.Cerghino, J.M.Creegg 2000, Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbial Rev.24(1).45-66
    34. S.H.Liu,W.I.Chou,C.C.Shen etal,2005, Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochem, Biophys,Res.Commur,326(4),817-824
    35. N.S.Tan, B.Ho, J.L.Ding 2002, Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng.15(4)337-345
    36. H.A.Kang,S.W.Nam,K.S.Kwon,et al1996, J.Biotechnol.48(1-2,15-24)
    37. B.Chuang,D.Seo,S.Nam.Process Biochhemistry.1999,35,97-101
    38. A.J.Doherty, S.R.Ashford,J.A.Brannigan, etal,1995, a superior host strain for the over-expression of cloned genes using the T7 promoer based vectors, Nucleic Acids Res 23(1)2074-2075
    39. E.Chen,1994, Host strain selection for bacterial expression of toxic proteins,Methods Enzymol,241:29-46
    40. T.Hisatomi,K.Takahashi,T.Oomoto etal 1999, Construction of an effective host-vector system for the yeast Saccharomyces exiguus Yp74L-3. Bioscience Biotechnology and Biochemistry.63(5),847-850
    41. H.A.kang,S.J.Kim, E.S.Choi etal,1998, Efficient production of intact human parathyroid hormone in a Saccharomyces cerevisiae mutant deficient in yeast aspartic protease 3 (YAP3), Microbiol Biotechnol 50(2),187-192
    42. J.Reiser, V.Glumoff, M.Kain etal 1990, Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Biochem,Eng Biotechnol,43,75-102
    43. C.A.Seorer,R.G.Buckholz, J.J.Clare etal,1993, the intvacelu larproduction and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 13(1-2),111-119
    44. B.Yao,CY.Zhang,Y.Yan,1998, Sciences in China Ser. C28(3),237-241
    45. Miller, G.L.1959, Analytical Chem.,31,426
    46. Gietz,Schiestl,1995,Methods in Molecular and Cellular Biology 5(5):255-269
    47. Morrow DM, Connelly C, Hieter P,1997,Break Copy duplication:a model for chromosome fragment formation in Saccharomyces cerevisiae.Genetics 147:731-38248. Paques F,Leung WY,Haber JE 1998,Expansions and contractions in a tandem repeat induced by double-strand break repair.Mol.Cell.Biol.18:2045-2054
    48. Paques F.Leung WY.Haber JE 1998.Expansions and contractions in a tandem repeat induced by double-strand break repair.Mol.Cell.Biol.18:2045-2054
    49. Surosky RT, Tye BK,1985 Construction of telocenteic chromosomes in Saccharomyces cerevisiae.Proc.Natl Acad.Sci.USA 82:2106-2110
    50. Paterson, R. G., and R. A. Lamb.1993. The molecular biology of influenza viruses and paramyxoviruses, p.35-73.
    51. Hon, T., A. Dodd, R. Dirmeier etal,2003, A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity. J. Biol. Chem.278:50771 50780
    52. Jiang, Y., M. J. Vasconcelles, S. Wretzel etal,2002. Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae:impact on LORE-dependent gene expression. Eukaryot. Cell 1:481 490
    53. Kastaniotis, A. J., T. A. Mennella etal,2000. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Mol. Cell. Biol. 20:7088 7098
    54. Kwast, K. E., L. C. Lai, N. Menda etal,2002. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae:functional roles of Roxl and other factors in mediating the anoxic response. J. Bacteriol.184:250 265
    55. Ter Linde, J. J., and H. Y. Steensma.2002. A microarray-assisted screen for potential Hapl and Roxl target genes in Saccharomyces cerevisiae. Yeast.19:825 840
    56. Zhang, L., and A. Hach.1999. Molecular mechanism of heme signaling in yeast: the transcriptional activator Hapl serves as the key mediator. Cell. Mol. Life Sci. 56:415 426
    57. Zitomer, R. S., and C. V. Lowry.1992. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev.56:111
    58. Labbe-Rois R. And Labbe P.1990. Tetrapyrrole and heme Biosynthesis in the yeast Sacchromyces cerevisiae. In:Biosynthesis of Heme and Cholorophylls, pp. 235-285.
    59. Volland C. and Felix F etal,1984. Isolation and properties of 5-aminolevulinate synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem.142:551 557
    60. Myers A. M., Crivellone M. D., Koerner T. J., etal,1987. Characterization of the yeast HEM2 gene and transcriptional regulation of COX5 and COR1 by heme. J. Biol. Chem.262:16822 16829
    61. Keng T., Richard C. and Larocque R.,1992. Structure and regulation of yeast HEM3, the gene for porphobilinogen deaminase. Mol. Gen. Genet.234:233 243
    62. Amillet J. M. and Labbe-Bois R.,etal,1995. Isolation of the gene HEM4 encoding uroporphyrinogen III synthase in Saccharomyces cerevisiae. Yeast 11:419 424
    63. Garey J. R., Labbe-Bois R., Chelstowska A. etal,1992. Uroporphyrinogen decarboxylase in Saccharomyces cere6isiae. HEM12 gene sequence and evidence for two conserved glycines essential for enzymatic activity. Eur. J. Biochem.205: 10111016
    64. Zagorec M., Buhler J. M., Treich I., etal 1988. Isolation, sequence and regulation by oxygen of the yeast HEM 13 gene coding for coproporphyrinogen oxidase. J. Biol. Chem.263:9718 9724
    65. Camadro J. M. and Labbe P,1996. Cloning and characterization of the yeast HEM 14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J. Biol. Chem.271:9120 9128
    66. Labbe-Bois R. (1990) The ferrochelatase from Saccharomyces cerevisiae. Sequence, disruption and expression of its structural gene HEM15. J. Biol. Chem. 265:7278 7283
    67. Kwast, K. E., P. V. Burke, and R. O. Poyton etal,1998. Oxygen sensing and thetranscriptional regulation of oxygen-responsive genes in yeast. J. Exp. Biol. 201:1177 1195
    68. We'solowski-Louvel, M., K. D. Breunig, and H. Fukuhara, etal,1996. Kluyveromyces lactis, p.139 201. In K. Wolf (ed.), Nonconventional yeasts in biotechnology. Springer-Verlag, Berlin, Germany.
    69. Gancedo, J. M,1998. Yeast carbon catabolite repression. Microbiol. Mol.Biol. Rev.62:334 361.
    70. Alberti, A., P. Goffrini. I. Ferrero, and T. Lodi.2000. Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Yeast 16:657 665
    71. Bourgarel, D., C. C. Nguyen, and M. Bolotin-Fukuhara.1999. HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Mol. Microbiol.31:1205 1215
    72. Breunig, K. D., M. Bolotin-Fukuhara, M. M. Bianchi, etal,2000. Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb. Technol. 26:771 780
    73. Brons, J. F., A. A. Dryla, E. B. Pluger.etal,2001. Carbon source-dependent transcriptionalregulation of the QCR8 gene in Kluyveromyces lactis. Identification ofcis-acting regions and trans-acting factors in the K1QCR8 upstream region. Curr. Genet.39:311 318
    74. Lodi, T., M. Saliola, C. Donnini, and P. Goffrini, etal,2001. Three target genes for the transcriptional activator Cat8p of Kluyveromyces lactis:acetyl coenzyme A synthetase genes KlACS1 and KlACS2 and lactate permease gene KlJEN1. J. Bacteriol.183:5257 5261
    75. Fairhead C, Llorente B, Denis F, etal,1996.New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using 'split-marker' recombination. Yeast.12(14):1439-57
    76. Claisse, M. L., G. A. Pere-Aubert, L. P. Clavilier, etal,1970. Method for the determination of cytochrome concentrations in whole yeast cells. Eur. J. Biochem. 16:430 438.
    77. Kagi, J. H., and B. L. Vallee, etal,1960. The role of zinc in alcohol dehydrogenase. V. The effect of metal-binding agents on the structure of the yeast alcoholdehydrogenase molecule. J. Biol. Chem.235:3188 3192
    78. Bourgarel, D., C. C. Nguyen, and M. Bolotin-Fukuhara.1999. HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Mol. Microbiol.31:1205 1215.
    79. Brons, J. F., A. A. Dryla, E. B. Pluger, etal,2001. Carbon source-dependent transcriptional regulation of the QCR8 gene in Kluyveromyces lactis. Identification of cis-acting regions and trans-acting factors in the KlQCR8 upstream region Curr. Genet.39:311 318
    80. Chen, X. J., and G. D. Clark-Walker.1993. Mutations in MGI genes convertKluyveromyces lactis into a petite-positive yeast. Genetics 133:517 525
    81. Gbelska, Y., K. Horvathova, Q. J. van der Aart,etal,1996. Isolation and molecular analysis of the gene for cytochrome c1 from Kluyveromyces lactis. Curr. Genet. 30:145 150.
    82. Fukuhara, H.2003. The Kluyver effect revisited. FEMS Yeast Res.3:327 331.
    83. Schneider, J. C., and L. Guarente.1991. Regulation of the yeast CYT1 gene encoding cytochrome c1 by HAP1 and HAP2/3/4. Mol. Cell. Biol.11:4934 4942.
    84. Ter Linde, J. J., and H. Y. Steensma.2002. A microarray-assisted screen for potential Hapl and Roxl target genes in Saccharomyces cerevisiae. Yeast. 19:825 840.
    85. Thorsness, M., W. Schafer, L. D'Ari, etal,1989. Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5702 5712.
    86. Gonzalez-Dominguez, M., M. A. Freire-Picos, E. Ramil,etal,2000. Heme-mediated transcriptional control in Kluyveromyceslactis. Curr. Genet. 38:171 177.
    87. Breunig, K. D., M. Bolotin-Fukuhara, M. M. Bianchi,,etal,2000. Regulation of primary carbon metabolism in Kluyveromyces lactis.Enzyme Microb. Technol. 26:771 780.
    88. Verdiere, J., M. Gaisne, and R. Labbe-Bois.1991. CYP1 (HAP1) is a determinant effector of alternative expression of heme-dependent transcribed genes in yeast. Mol. Gen. Genet.228:300 306.
    89. Zhao, X. J., D. Raitt, P. V. Burke, etal,1996. Function and expression of flavohemoglobin in Saccharomycescerevisiae. Evidence for a role in the oxidative stress response. J. Biol. Chem.271:25131 25138.
    90. Crawford, M. J., D. R. Sherman, and D. E. Goldberg.1995. Regulation of Saccharomyces cerevisiae flavohemoglobin gene expression. J. Biol. Chem. 270:6991 6996.
    91. Karpichev, I. V., and G. M. Small.1998. Global regulatory functions of Oaflp and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol.18:6560 6570.
    92. Saerens, S. M., K. J. Verstrepen, S. D. Van Laere, etal,2006. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem.281:4446 4456
    93. Schnier J, et al,1991. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11(6):3105-14
    94. Hodge MR, et al, (1989) Inverse regulation of the yeast COX5 genes by oxygen and heme. Mol Cell Biol 9(5):1958-64
    95. Taanman JW and Capaldi RA (1992) Purification of yeast cytochrome c oxidase with a subunit composition resembling the mammalian enzyme. J Biol Chem 267(31):22481-5
    96. Lamas-Maceiras, M., L. Nunez, E. Rodriguez-Belmonte,etal,2007. Functional characterization of KlHAP1:amodel to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene 405:96 107.
    97. Kim JH, Johnston M,2006. two glucose-sensing pathways converge on Rgtl to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem.281(36):26144-9
    98. Rolland S, Hnatova M, Lemaire M, etal,2006. Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis. Genetics 174(2):617-26
    1. Schmidt, F. R.2004. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol Biotechnol 65:363-372.
    2. Buckholz, R. G. and M. A. Gleeson.1991. Yeast systems for the commercial production of heterologous proteins. Biotechnology (N. Y.) 9:1067-1072.
    3. Buckholz, R. G.1993. Yeast systems for the expression of heterologous gene products. Curr. Opin. Biotechnol.4:538-542.
    4. Hinnen, A., F. Buxton, B. Chaudhuri, J. Heim, T. Hottiger, B. Meyhack, and G. Pohlig.1995. Gene expression in recombinant yeast. Bioprocess. Technol. 22:121-193.
    5. Romanos, M. A., C. A. Scorer, and J. J. Clare.1992. Foreign gene expression in yeast:a review. Yeast 8:423-488.
    6. Silva, A. and J. Benitez.1994. Yeast as an expression system for the production of bacterial and viral antigens. Arch. Med. Res.25:447-449.
    7. Hitzeman, R. A., D. W. Leung, L. J. Perry, W. J. Kohr, H. L. Levine, and D. V. Goeddel.1983. Secretion of human interferons by yeast. Science 219:620-625.
    8. Martini, A.2003. Biotechnology of natural and winery-associated strains of Saccharomyces cerevisiae. Int. Microbiol 6:207-209.
    9. Simon, J. A. and T. J. Yen.2003. Novel approaches to screen for anticancer drugs using Saccharomyces cerevisiae. Methods Mol. Biol.223:555-576.
    10. Ostergaard, S., L. Olsson, and J. Nielsen.2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol. Biol. Rev.64:34-50.
    11. Reiser, J., V. Glumoff, M. Kalin, and U. Ochsner.1990. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng Biotechnol 43:75-102.
    12. Braspenning, J., W. Meschede, A. Marchini, M. Muller, L. Gissmann, and M. Tommasino.1998. Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of phol+acid phosphatase. Biochem. Biophys. Res. Commun.245:166-171.
    13. Fujita, Y., Y. Giga-Hama, and K. Takegawa.2005. Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe. Yeast 22:193-202.
    14. Giga-Hama, Y. and H. Kumagai.1999. Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol Appl. Biochem. 30 (Pt 3):235-244.
    15. Dominguez, A., E. Ferminan, M. Sanchez, F. J. Gonzalez, F. M. Perez-Campo, S. Garcia, A. B. Herrero, A. San Vicente, J. Cabello, M. Prado, F. J. Iglesias, A. Choupina, F. J. Burguillo, L. Fernandez-Lago, and M. C. Lopez.1998. Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol 1:131-142
    16. Schaffrath, R. and K. D. Breunig.2000. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal. Genet. Biol.30:173-190.
    17. Shuster, J. R., D. Moyer, and B. Irvine.1987. Sequence of the Kluyveromyces lactis URA3 gene. Nucleic Acids Res.15:8573.
    18. Stark, M. J. and J. S. Milner.1989. Cloning and analysis of the Kluyveromyces lactis TRP1 gene:a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast 5:35-50.
    19. Chen, X. J. and H. Fukuhara.1988. A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903:use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. Gene 69:181-192.
    20. Sreekrishna, K., T. D. Webster, and R. C. Dickson.1984. Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903. Gene 28:73-81.
    21. Das, S. and C. P. Hollenberg.1982. A high frequency transformation transformation system for the yeast Kluyveromyces lactis, p.123-128. In.
    22. Meilhoc, E., J. M. Masson, and J. Teissie.1990. High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N. Y.) 8:223-227.
    23. Thompson, A. and S. G. Oliver.1986. Physical separation and functional interaction of Kluy veromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA. Yeast 2:179-191.
    24. Heus, J. J., B. J. Zonneveld, H. Y. Steensma, and J. A. Van den Berg.1990. Centromeric DNA of Kluyveromyces lactis. Curr. Genet.18:517-522.
    25. Chen, X. J., M. M. Bianchi, K. Suda, and H. Fukuhara.1989. The host range of the pKD1-derived plasmids in yeast. Curr. Genet.16:95-98.
    26. Fleer, R., X. J. Chen, N. Amellal, P. Yeh, A. Fournier, F. Guinet, N. Gault, D. Faucher, F. Folliard, H. Fukuhara, and.1991. High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis. Gene 107:285-295.
    27. Chen, X. J., M. Saliola, C. Falcone, M. M. Bianchi, and H. Fukuhara.1986. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res.14:4471-4481.
    28. Falcone, C, M. Saliola, X. J. Chen, L. Frontali, and H. Fukuhara.1986. Analysis of a 1.6-micron circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15:248-252.
    29. Fleer, R., P. Yeh, N. Amellal, I. Maury, A. Fournier, F. Bacchetta, P. Baduel, G. Jung, H. L'Hote, J. Becquart, and.1991. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology (N. Y.) 9:968-975.
    30. Chen, X., B. Gao, W. Shi, and Y. Li.1992. [Expression and secretion of human interferon alpha A in yeast Kluyveromyces lactis]. Yi. Chuan Xue. Bao. 19:284-288.
    31. Bianchi, M. M., R. Santarelli, and L. Frontali.1991. Plasmid functions involved in the stable propagation of the pKD1 circular plasmid in Kluyveromyces lactis. Curr. Genet.19:155-161.
    32. Hsieh, H. P. and N. A. Da Silva.1998. Partial-pKD1 plasmids provide enhanced structural stability for heterologous protein production in Kluyveromyces lactis. Appl. Microbiol. Biotechnol.49:411-416.
    33. Morlino, G. B., L. Tizzani, R. Fleer, L. Frontali, and M. M. Bianchi.1999. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl. Environ. Microbiol.65:4808-4813.
    34. Bergkamp, R. J., I. M. Kool, R. H. Geerse, and R. J. Planta.1992. Multiple-copy integration of the alpha-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr. Genet.21:365-370.
    35. Tokunaga, M., M. Ishibashi, D. Tatsuda, and H. Tokunaga.1997. Secretion of mouse alpha-amylase from Kluyveromyces lactis. Yeast 13:699-706.
    36. Swinkels, B. W., A. J. van Ooyen, and F. J. Bonekamp.1993. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187-201.
    37. Sheetz, R. M. and R. C. Dickson.1981. Lac4 is the structural gene for beta-galactosidase in Kluyveromyces lactis. Genetics 98:729-745.
    38. Adam, A. C., J. A. Prieto, M. Rubio-Texeira, and J. Polaina.1999. Construction of a lactose-assimilating strain of baker's yeast. Yeast 15:1299-1305.
    39. Van den Berg, J. A., K. J. van der Laken, A. J. van Ooyen, T. C. Renniers, K. Rietveld, A. Schaap, A. J. Brake, R. J. Bishop, K. Schultz, D. Moyer, and.1990. Kluyveromyces as a host for heterologous gene expression:expression and secretion of prochymosin. Biotechnology (N. Y.) 8:135-139.
    40. Webster, T. D. and R. C. Dickson.1988. The organization and transcription of the galactose gene cluster of Kluy veromyces lactis. Nucleic Acids Res. 16:8011-8028.
    41. Meyer, J., A. Walker-Jonah, and C. P. Hollenberg.1991. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Mol. Cell Biol.11:5454-5461.
    42. Hsieh, H. B. and N. A. Da Silva.2000. Development of a LAC4 promoter-based gratuitous induction system in Kluyveromyces lactis. Biotechnol. Bioeng. 67:408-416.
    43. Ferminan, E. and A. Dominguez.1997. The KIPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis:cloning, sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme. Microbiology 143 (Pt 8):2615-2625.
    44. Ferminan, E. and A. Dominguez.1998. Heterologous protein secretion directed by a repressible acid phosphatase system of Kluyveromyces lactis: characterization of upstream region-activating sequences in the KIPHO5 gene. Appl. Environ. Microbiol 64:2403-2408.
    45. Saliola, M., R. Gonnella, C. Mazzoni, and C. Falcone.1991. Two genes encoding putative mitochondrial alcohol dehydrogenases are present in the yeast Kluyveromyces lactis. Yeast 7:391-400.
    46. Saliola, M. and C. Falcone.1995. Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. Mol. Gen. Genet.249:665-672.
    47. Saliola, M., C. Mazzoni, N. Solimando, A. Crisa, C. Falcone, G. Jung, and R. Fleer.1999. Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. Appl. Environ. Microbiol.65:53-60.
    48. Walsh, D. J. and P. L. Bergquist.1997. Expression and secretion of a thermostable bacterial xylanase in Kluyveromyces lactis. Appl. Environ. Microbiol.63:3297-3300.
    49. Walsh, D. J., M. D. Gibbs, and P. L. Bergquist.1998. Expression and secretion of a xylanase from the extreme thermophile, thermotoga strain FjSS3B.1, in Kluy veromyces lactis. Extremophiles.2:9-14.
    50. Gellissen, G. and C. P. Hollenberg.1997. Application of yeasts in gene expression studies:a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluy veromyces lactis--a review. Gene 190:87-97.
    51. Bui, D. M., I. Kunze, C. Horstmann, T. Schmidt, K. D. Breunig, and G. Kunze. 1996. Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Appl. Microbiol. Biotechnol.45:102-106.
    52. Bao, W. G. and H. Fukuhara.2001. Secretion of human proteins from yeast: stimulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene 272:103-110.
    53. Hashida-Okado, T., A. Ogawa, I. Kato, and K. Takesako.1998. Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selection marker. FEBS Lett.425:117-122.
    54. Bartkeviciute, D. and K. Sasnauskas.2003. Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast 20:1-11.
    55. Bartkeviciute, D. and K. Sasnauskas.2004. Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae. FEMS Yeast Res.4:833-840.
    56. Hsieh, H. P. and N. A. Da Silva.1998. An autoselection system in recombinant Kluyveromyces lactis enhances cloned gene stability and provides freedom in medium selection. Appl. Microbiol. Biotechnol.49:147-152.
    57. Panuwatsuk, W. and N. A. Da Silva.2003. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol. Bioeng.81:712-718.
    58. Panuwatsuk, W. and N. A. Da Silva.2002. Evaluation of pKD1-based plasmid systems for heterologous protein production in Kluyveromyces lactis. Appl. Microbiol. Biotechnol.58:195-201.
    59. Donnini, C., F. Farina, B. Neglia, M. C. Compagno, D. Uccelletti, P. Goffrini, and C. Palleschi.2004. Improved production of heterologous proteins by a glucose repression-defective mutant of Kluy veromyces lactis. Appl. Environ. Microbiol.70:2632-2638.
    60. Uccelletti, D., F. Farina, P. Mancini, and C. Palleschi.2004. KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. J. Biotechnol.109:93-101.
    61. Wang, Y. C., L. L. Chuang, F. W. Lee, and N. A. Da Silva.2003. Sequential cloned gene integration in the yeast Kluyveromyces lactis. Appl. Microbiol. Biotechnol.62:523-527.
    62. Huo, K. and Y. Li.1995. Cloning and expression of Kluyveromyces fragilis LAC4 gene. Sci. China B 38:1332-1340.
    63. Raynal, A., C. Gerbaud, M. C. Francingues, and M. Guerineau.1987. Sequence and transcription of the beta-glucosidase gene of Kluyveromyces fragilis cloned in Saccharomyces cerevisiae. Curr. Genet.12:175-184.
    64. Mahoney, R. R., T. A. Nickerson, and J. R. Whitaker.1975. Selection of strain, growth conditions, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis. J. Dairy Sci.58:1620-1629.
    65. Huo, K. and Y. Li.1997. Development of Kluyveromyces fragilis transformation system. cn1166527A.
    66. Carvalho-Silva, M. and I. Spencer-Martins.1990. Modes of lactose uptake in the yeast species Kluyveromyces marxianus. Antonie Van Leeuwenhoek 57:77-81.
    67. Carrasco de Mendoza, M. S., J. C. Basilico, G. Umansky, and H. E. Scarinci. 1991. [Biological value of the unicellular protein of Kluyveromyces marxianus var. lactis]. Arch. Latinoam. Nutr.41:72-78.
    68. Belem, M. A. and B. H. Lee.1998. Production of bioingredients from Kluyveromyces marxianus grown on whey:an alternative. Crit Rev. Food Sci. Nutr.38:565-598.
    69. Iborra, F.1993. High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Curr. Genet.24:181-183.
    70. Brun, C., D. D. Dubey, and J. A. Huberman.1995. pDblet, a stable autonomously replicating shuttle vector for Schizosaccharomyces pombe. Gene 164:173-177.
    71. Bergkamp, R. J., R. H. Geerse, J. M. Verbakel, W. Musters, and R. J. Planta. 1991. Cloning and disruption of the LEU2 gene of Kluyveromyces marxianus CBS 6556. Yeast 7:963-970.
    72. Laloux, O., J. P. Cassart, J. Delcour, J. Van Beeumen, and J. Vandenhaute.1991. Cloning and sequencing of the Inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett.289:64-68.
    73. Bergkamp, R. J., R. H. Geerse, J. M. Verbakel, and R. J. Planta.1993. Cloning and sequencing of the URA3 gene of Kluyveromyces marxianus CBS 6556. Yeast 9:677-681.
    74. Holloway, P. and R. E. Subden.1993. The isolation and nucleotide sequence of the pyruvate decarboxylase gene from Kluyveromyces marxianus. Curr. Genet. 24:274-277.
    75. Ladriere, J. M., J. Delcour, and J. Vandenhaute.1993. Sequence of a gene coding for a cytoplasmic alcohol dehydrogenase from Kluyveromyces marxianus ATCC 12424. Biochim. Biophys. Acta 1173:99-101.
    76. Bergkamp, R. J., T. C. Bootsman, H. Y. Toschka, A. T. Mooren, L. Kox, J. M. Verbakel, R. H. Geerse, and R. J. Planta.1993. Expression of an alpha-galactosidase gene under control of the homologous Inulinase promoter in Kluyveromyces marxianus. Appl. Microbiol Biotechnol 40:309-317.
    77. Ball, M. M., A. Raynal, M. Guerineau, and F. Iborra.1999. Construction of efficient centromeric, multicopy and expression vectors for the yeast Kluyveromyces marxianus using homologous elements and the promoter of a purine-cytosine-like permease. J Mol. Microbiol Biotechnol 1:347-353.
    78. Siekstele, R., D. Bartkeviciute, and K. Sasnauskas.1999. Cloning, targeted disruption and heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1). Yeast 15:311-322.
    79. Bartkevi&cbreve, i&umacr, D. te, Siek&sbreve, R. tele, and K. Sasnauskas.2000. Heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1) using versatile autonomously replicating vector for a wide range of host. Enzyme Microb. Technol.26:653-656.
    80. Wen, T. Q., F. Liu, K. K. Huo, and Y. Y. Li.2003. Cloning and analysis of the Inulinase gene from Kluyeromyces cicerisporus CBS4857. World J Microbiol Biotechnol 19:426.
    81. Xu, G. Z., F. Pan, K. K. Huo, and Y. Y. Li.1998. Cloning of DNA Fragments Possessing Promoter Function from Kluyveromyces cicerisporus. Sheng Wu Hua Xue. Yu Sheng Wu Wu Li Xue. Bao. (Shanghai) 30:35-40.
    82. Zhang, J., H. Yuan, T. Wen, F. Xu, Y. Di, K. Huo, and Y. Y. Li.2003. Cloning of the KcURA3 gene and development of a transformation system for Kluyveromyces cicerisporus. Appl. Microbiol. Biotechnol.62:387-391.
    83. Muller, S., T. Sandal, P. Kamp-Hansen, and H. Dalboge.1998. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267-1283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700