沈阳地区健康人群四个衰老相关基因的遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     衰老(ageing, senescence)又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡,不可逆转的现象。20世纪后期,在老年学研究中引入分子生物学与细胞生物学理论与技术后,研究者们发现,衰老虽然机理复杂,涉及面广,学说虽多,但不外乎遗传与环境两个方面。位于染色体8p-12上的WRN基因突变所致的隐性遗传病Wemer早老综合征(成人型早老症);同一种属不同个体具有不同衰老表型和不同的寿命;家系调查、双生子以及流行病学研究都表明,衰老是一个高度个体化的过程,衰老与遗传因素密切相关。
     个体衰老的速度各不相同,随着年龄的增加,人类个体间的差异也在加大。有的人在85岁还有很好的生理和认知功能,但有的人在55岁可能就会出现广泛的认知功能障碍或生理功能失调,时序年龄(Chronological age, CA)不能作为衰老过程准确的指示。从衰老基础和临床研究的目的而言,研究者关心的是个体的衰老变化,目的是筛查衰老高危个体并及时给予干预。而为了解决以上的问题,研究者提出了“生物学年龄(Biological age, BA)"的概念。生物学年龄在个体相对于时序年龄同龄人的功能状态的基础上,评价了个体的功能状态。个体衰老速度不同导致时序年龄和生物学年龄的差异,因此在任何给定的时序年龄,个体间的生物学年龄的值都可能会存在差异,并最终可以预期与个体在衰老过程的结果的时间和/或幅度的差异性相一致。
     衰老时人体机能下降,而对一些疾病的易感性增强,有人将长寿看做是衰老一个成功的表型,从这个角度而言,某些老年疾病相关基因和长寿相关基因,也可看作是衰老相关基因。很多学者认为衰老和高血压,动脉粥样硬化,痴呆,癌症等疾病一样,并非单一基因决定,而很可能是一个庞杂的衰老相关基因的基因群。研究衰老过程基因的表达谱,筛选新基因,分离、克隆衰老相关基因,弄清其功能、调控、影响因素是弄清衰老机制的一条必由之路。以生物学功能相关基因作为候选基因进行关联研究是当前衰老遗传易感性研究的主要策略。研究表明,基因组序列上的变异,即基因多态性(gene polymorphism)是决定人体对衰老相关疾病易感性与抵抗性、衰老临床表型多样性以及人体对药物治疗反应差异性的重要因素。
     DNA多态性研究进展可分为3阶段:限制性片段长度多态性、微卫星多态性和单核苷酸多态性(single nucleotide polymorphism, SNP)。SNPs相比于前两代遗传标记其密度高、遗传稳定性好、具有代表性、分布不均匀且其分析易自动化。SNPs的变化,尤其是位于编码区和位于表达调控序列中SNPs的改变,可能引起蛋白质表达的质或量的变化,进而影响蛋白质的结构或表达水平。因而研究SNPs有助于解释个体的表型差异、不同群体和个体对于衰老和长寿的易感性差异。怎样从众多SNPs中,找到确有临床意义的与衰老和衰老疾病相关的SNP位点,是揭示人类衰老致病原因的重要途径之一。
     胰岛素/胰岛素样生长因子1(insulin/insulin-like growth factor, insulin/IGF-1)途径交互作用于许多种蛋白同时调控大量的基因表达,Sirt1、IL-6、P16及Klotho四个基因或者参与insulin/IGF-1信号途径,或者和insulin/IGF-1信号途径交互作用从而可能影响衰老的进程。IL-6是一个炎性细胞因子,其能影响多个炎性和衰老相关疾病的发生、发展从而可能最终影响衰老的进程;Sirtl是一个哺乳动物NAD+依赖的脱乙酰基酶,在细胞周期停滞和DNA修复中起作用,其能减弱凋亡,调节细胞老化;p16相关于端粒缩短,在细胞衰老时其表达常明显增强;Klotho能影响细胞内信号通路,调节成纤维细胞生长因子23信号,p53/p21, cAMP,蛋白激酶C (PKC)和Wnt信号通路,修复内皮的机能障碍和调节一氧化氮的产生,从而可能影响衰老的进程。
     本研究采用候选基因和病例对照的方法,以中国沈阳地区汉族健康人群为研究对象,按照生物学年龄分组,用Snapshot方法检测Sirt1、IL-6、P16及Klotho四个基因10个位点的基因型及基因频率,探讨这些基因SNP与衰老的关系。所获得的结果有助于深入阐明衰老的分子遗传学机制,并可为实现在基因水平上的衰老个体化评价,乃至将来诊断治疗病理性衰老奠定重要的实验基础。
     材料与方法
     本研究采用病例对照研究,从1500余人中筛选出健康人442人,从反映脑功能、心功能、血管功能、肺功能、肾脏功能和反应日常生活状况的一般指标总计70个指标利用统计学方法挑选出生物学标志物并构建生物学年龄积分(Biological age score,BAS)计算公式,将研究对象按照生物学年龄分组,分为衰老组228例和年轻组213人。利用生物信息学方法在四个候选基因上选择10个SNPs遗传标记。利用Snapshot方法检测个体基因型。用拟合优度卡方检验验证每个SNP基因型在抽样群体中的分布是否符合H-W(Hardy*Weinberg)平衡,用Genepop3.4软件检验H-W平衡。采用SPSS统计软件分析每个SNP位点等位基因及基因型在年轻组与衰老组之间的分布是否有显著性差异,从而推测SNPs位点与衰老的关系。使用SPSS统计软件对相关数据进行X2检验、计量资料采用均数±标准差表示,以p<0.05为显著性水准。使用Shesis软件分析SNPs之间的连锁不平衡程度、分析同一基因不同位点之间的相互作用。
     实验结果
     1、挑选出7个生物学标志物TMT,CCR,MVES,IMTmin,Dmax,MMEF75/25, PP,并成功构建生物学年龄积分公式,BAS=-0.169(CCR)-0.179(MVES)+0.184 (IMTmin)+0.155(Dmax)-0.158(MMEF75/25)+0.226(CA)+0.148(PP)+0.159 (TMT).
     2、衰老组和年轻组每个SNP基因型的H-W平衡检验都符合H-W遗传平衡,我们所选择的研究对象的基因频率能够代表群体的基因分布。
     3、IL-6的基因多态性在健康衰老组和对照年轻组中频率分布比较:rs2066992位点两组间各基因型无显著性差异,X2=0.05,P=0.82;等位基因频率在两组间无显著性差异,X2=0.09,OR=0.95,95%CI:0.70-1.31,P=0.76:rs1524107位点两组间各基因型无显著性差异,X2=0.32,P=0.57;等位基因频率在两组间无显著性差异,X2=0.20,P=0.66,OR=0.932,95%CI:0.68-1.27.
     4、P16基因的基因多态性在衰老组和年轻组中频率分布比较:rs2811708位点两组间各基因型无显著性差异,X2=0.28,P=0.59;等位基因频率在两组间无显著性差异,X2=0.24,P=0.62, OR=0.94,95%CI:0.72-1.22; rs3731245位点两组间各基因型无显著性差异,X2=0.34,P=0.79;等位基因频率在两组间无显著性差异,X2=0.15, OR=0.94,95%CI=0.70-1.27, P=0.70。
     5、Klotho基因的基因多态性在衰老组和年轻组中频率分布比较:rs571118位点衰老组CC型频率高于对照组,而CT型和TT型频率低于对照组,有显著性差异X2=7.28,P=0.006;T等位基因和C等位基因在两组间有显著性差异,X2=6.78, P=0.009,OR=1.424,95%CI:1.09-1.86。rs1207568位点衰老组CC型,CT型和TT型频率在衰老组和年轻组比较,差异有显著性,X2=5.18,P=0.023;等位基因频率在两组间比较,也有显著性差异,X2=5.18, OR=1.31,95%CI=0.78-1.38, P=0.02。rs2149860位点两组间各基因型无显著性差异,X2=0.30,P=0.58;等位基因频率在两组间无显著性差异,X2=0.31, OR=1.08,95%CI=0.83-1.40, P=0.58。Klotho基因的rs648202位点两组间各基因型无显著性差异,X2=0.11,P=0.74;等位基因频率在两组间无显著性差异,X2=0.21, P=0.64, OR=0.93,95%CI:0.69-1.26。
     6、Sirt1基因的基因多态性在衰老组和年轻组中频率分布,Sirt1基因的rs3758391位点两组间各基因型无显著性差异,X2=0.13,P=0.71;等位基因频率在两组间无显著性差异,X2=0.71, OR=1.14,95%CI=0.83-2.02, P=0.02。Sirt1基因的rs4746720位点衰老与对照组的基因型及基因频率相比较,衰老组CC型频率低于对照组差异有显著意义:X2=3.85,P=0.04;C等位基因频率低于对照组,差异有显著性意义:X2=4.35, OR=1.33,95%CI=1.02-1.73, P=0.03。
     7、连锁不平衡分析结果
     Klotho的rs571118, rs2149860, rs 1207568, rs648202的四个位点之间显示D'<0.6, rs571118, rs2149860, rs 1207568, rs648202四个位点之间不存在连锁不平衡。
     IL-6的rs2066992, rs1524107之间D'=0.99, rs2066992, rs1524107位点之间强相关。
     P16的rs2811708, rs3731245的之间D'=0.92, rs2811708, rs3731245位点之间强相关。
     Sirt1的rs3758391, rs4746720位点之间进行连锁不平衡及单倍型分析。结果显不D'=0.53, rs3758391,rs4746720位点之间不相关。
     结论
     1、成功地构建了生物学年龄积分公式;按照生物学年龄分组,较传统时序年龄更合理地反映个体的衰老化进程。
     2、Klotho基因的rs571118的GG基因型和rs1207568位点CC基因型可能为沈阳汉族健康人群衰老的危险因素,其遗传易感性主要来自于等位基因G和C。Klotho基因的rs2149860和rs648202的两个位点的多态性和沈阳汉族健康人群的衰老未见相关。
     3、IL-6基因的rs2066992, rs1524107的两个位点的多态性和沈阳汉族健康人群衰老未见相关。
     4、P16基因的rs2811708, rs3731245的两个位点的多态性和沈阳汉族健康人群衰老未见相关。
     5、Sirtl基因的rs4746720位点CC基因型可能为沈阳汉族人群衰老的危险因素,其遗传易感性主要来自于等位基因C, Sirtl基因的rs3758391位点的多态性和沈阳汉族健康人群衰老未见相关。
Background
     Aging also known as senescence, usually refers to the normal conditions of biological maturity, increased with age, their function decline, stable capacity and stress within the environment reduced capacity, structure, composition degeneration gradually towards death and irreversible. In the late 20th century, the theory of molecular biology and cell biology technology utilize in Gerontology research, the researchers found that although there has a wide range of the theories of aging, but no more than genetic and environmental aspects. Mutation of the WRN gene located on chromosome 8p-12 induce Wemer progeria syndrome (adult progeria); the same aging of different individuals have different phenotypes and different life; family investigation, twin, and popular disease studies all shown that aging is a highly individualized process, closely related to genetic factors.
     Rate of aging varies in different Individuals, the differences between human individuals has also increased with age. Some people are very good of physical and cognitive function in 85 years, but some people may occur a wide range of cognitive impairment or physical dysfunction in 55 years, Chronological age (CA) can not serve as aging the process of accurate instructions. For basic and clinical research of aging purposes, researchers concerned with aging changes in the individual the purpose of screening individuals at high risk of aging and provide timely intervention. To solve the above problems, researchers proposed the "Biological Age (BA)" concept. Biological age relative to the timing age of the individual functional state of their peers based on the evaluation of the individual's functional status. Individual aging at different rates leading to timing differences in age and biological age, so the timing of any given age, individuals between the value of biological age may be different, and ultimately the individual can be expected with the aging process results in time and/or the magnitude of the difference was consistent.
     Decreased in senescent human body functions, and enhanced susceptibility to some diseases, some people will live longer seen as a successful aging phenotypes, from this point of view, some of the older disease-related genes and longevity-related genes can also be seen as aging-related genes. Many scholars believe that aging like hypertension, atherosclerosis, dementia, cancer and other disease, not the decision of a single gene, but is likely to be influenced by a large and complex aging-related genes in gene cluster. Study the aging process of gene expression profile, screening of new gene, isolated and cloned senescence-related genes, to understand its function, regulation, impact factor is the real way to find out the mechanism of aging. Biological function to genes as candidate genes for association studies of genetic susceptibility to the current aging of the main strategy. The results show that variations in the genome sequence, that gene polymorphism is to determine the susceptibility of the human body to age related diseases and resistance to aging and the clinical phenotype diversity of human response to drug treatment an important factor in differences.
     Polymorphism of DNA can be divided into three phases:Restriction Fragment Length Polymorphism, Microsatellite Polymorphisms and Single Nucleotide Polymorphisms (SNP). SNPs compared to the previous two generations its high density of genetic markers, genetic stability, representative, are distributed unevenly and its analysis automation.
     SNPs changes, especially in the coding region and the SNPs in the expression and regulation changes in the sequence, protein expression may lead to changes in the quality or quantity, thereby affecting protein structure or expression. Thus SNPs may help explain the phenotypic differences between individuals, groups and individual susceptibility to aging and longevity difference. Find the aging and diseases of aging-related SNP, is one of the important way to reveal the cause of human aging. Insulin/insulin like growth factor-1 (insulin/IGF-1) way to many kinds of protein interactions at the same time regulating the expression of a large number of genes, Sirt1, IL-6, P16, and Klotho genes or the involvement of four insulin/IGF-1 signaling pathway and the insulin/IGF-1 signaling pathway, or interactions which may affect the aging process. IL-6 is an inflammatory cytokine, which can affect the number of inflammatory and aging-related diseases, the development of which may ultimately affect the aging process; Sirt1 is a mammalian NAD+dependent deacetylase, in the cell cycle arrest and play a role in DNA repair, which can be reduced apoptosis, regulation of cell aging; p16 related to telomere shortening, cell senescence in markedly enhanced when the regular expression; Klotho can affect the intracellular signaling pathway to regulate fibroblast growth factor 23 signals, p53/p21, cAMP, protein kinase C (PKC) and the Wnt signaling pathway, repair, and regulation of endothelial dysfunction, production of nitric oxide, which may affect the aging process.
     In this study, case-control candidate gene approach to China, Shenyang Han population, according to biological age groups, using Snapshot method detected 10 SNPs in Sirtl, IL6, P16, and Klotho genes, and detect the genotypes and gene frequency of these genes the relationship between these SNPs and aging. The results obtained will help to further elucidate the molecular genetic mechanisms of aging, and can achieve the level of the genes on the aging individual evaluation, as well as the future treatment of pathological aging diagnostic lay an important experimental basis.
     Materials and methods
     This study used case-control study, selected from more than 1,507 people, choose 442 healthy people, the 70 indexes reflecting the brain functions, heart function, vascular function, lung function, kidney function and reaction conditions of the general indicators of daily using statistical methods construction the Biological age score (BAS) formula, the study according to biological age group, divided into 228 patients aged group and 213 young people. Bioinformatics approach to select 10 SNPs in four of candidate genes. Individual genotypes were detected using Snapshot. With the goodness of fit chi-square test verifies that each SNP genotype distribution in the sample population is consistent with HW equilibrium, using Genepop3.4 software testing H-W (Hardy-Weinberg) equilibrium. Using SPSS statistical software to analyze each SNP allele and genotype in the young group and the distribution between the aging group is significantly different to speculate SNPs, the relationship with aging. Using SPSS statistical software-related data X2 test, measurement data with mean±sd, p<0.05 as significant difference. Shesis software analysis using linkage disequilibrium between SNPs level of the same gene interaction between the different sites.
     Results
     1. Selected seven biomarkers TMT, CCR, MVES, IMTmin, Dmax, MMEF75/25, PP, and biological age successfully constructed integral formula, BAS=-0.169 (CCR)-0.179(MVES)+0.184 (IMTmin)+0.155 (Dmax)-0.158 (MMEF75/25)+0.226 (CA) +0.148 (PP)+0.159 (TMT).
     2. Aging and young groups for each SNP genotype H-W equilibrium test are keep balance, we chose the study sample can represent the whole people.
     3. The frequency distribution of IL-6 gene polymorphism in healthy young and aging group compared:rs2066992 locus genotypes between the two groups no significant difference, X2=0.05, P=0.82; alleles between the two groups no significant difference, X2=0.09, OR=0.95,95%CI=0.69-1.30, P=0.76; rs1524107 locus genotypes between the two groups no significant difference, X2=0.32, P=0.57; allele frequencies between the two groups no significant difference, X2=0.20, P=0.66, OR=0.932,95% CI:0.685-1.268.
     4. The frequency distribution of P16 gene polymorphism in aging and young groups compared:rs2811708 locus genotypes between the two groups no significant difference, X2=0.28, P=0.59; allele frequencies between the two groups There was no significant difference, X2=0.24, P=0.62, OR=0.94,95%CI:0.718-1.219; rs3731245 locus genotypes between the two groups no significant difference, X2=0.34, P=0.79; allele frequency between the two groups have no significant difference, X2=0.15, OR=0.94,95%CI= 0.70-1.27, P=0.70.
     5. The frequency distribution of Klotho gene polymorphism in aging and young groups compared:rs571118 site CC genotype frequency higher aging group, while the CT type and TT genotype frequency lower than the control group, there was significant difference in X2=7.28, P=0.006; T allele and C allele has significant difference between the two groups, X2=6.78, P=0.01, OR=1.42,95%CI:1.09-1.86. rs1207568 CC-type locus aging group, CT-based and TT genotype frequency in the aging and young groups, the difference was significant, X2=5.18, P=0.02; there are significant differences allele frequencies between the two groups, X2=5.18, OR=1.308,95%CI=0.78-1.38, P=0.02. rs2149860 genotypes between the two groups have no significant difference, X2=0.30, P=0.58; allele frequencies between the two groups no significant difference, X2=0.31, OR=1.077,95%CI=0.827-1.403, P=0.58. Klotho gene rs648202 genotypes between the two groups have no significant difference, X=0.11, P=0.74; allele frequencies between the two groups have no significant difference, X=0.21, P=0.64, OR=0.93, 95%CI:0.69-1.26.
     6. Sirt1 gene polymorphism in aging and young groups in the frequency distribution, Sirtl gene locus rs3758391 genotype between the two groups no significant difference, X2=0.13, P=0.71; allele frequencies in two there were no significant differences, X2=0.71, OR=1.14,95%CI=0.83-2.02, P=0.026. Sirtl gene rs4746720 genotype CC genotype frequency aging group compared with the control group showed significant:X2=3.85, P=0.04; C lower than the control group allele frequency The difference was statistically significant:X2=4.35, OR=1.328,95%CI= 1.02-1.73, P= 0.03.
     7. Linkage Disequilibrium analysis
     Rs571118, rs2149860, rs 1207568, rs648202 in Klotho, the four sites D′<0.6, rs571118, rs2149860, rs1207568, rs648202 has no correlation with each other.
     The D′of rs2066992, rs1 524107 in IL-6=0.99, rs2066992 strong correlation with rs1524107.
     The D'of rs2811708, rs3731245 in P16=0.92, rs2811708 strong correlation with rs3731245.
     Rs3758391, rs4746720 of Sirtl gene D'=0.53. Rs3758391and rs4746720 has no relation.
     Conclusion
     1. Biological age score formula successfully constructed, devide group using biological age, more reasonable than the traditional timing age of the individual to reflect the aging process.
     2. Klotho gene rs571118 of the GG genotype and rs1207568 CC genotype may be sites of Shenyang Han population aging risk factors, mainly from the genetic susceptibility alleles G and C. Klotho gene rs2149860 and rs648202 no correlation with Shenyang Han population aging.
     3. IL-6 gene rs2066992, rs 1524107 polymorphism has no correlation with Shenyang Han population aging.
     4. P16 gene rs2811708, rs3731245 polymorphism as no correlation with Shenyang Han population aging.
     5. Sirtl gene rs4746720 CC genotype may impact as Shenyang Han population aging risk factors, mainly from the genetic susceptibility allele C, Sirtl gene rs3758391 polymorphism and Shenyang Han population aging no correlation.
引文
1 De la Fuente M. Role of neuroimmunomodulation in aging. Neuroimmunomodulation. 2008; 15:213-23.
    2 Anstey KJ, Lord SR, Smith GA. Measuring human functional age: a review of empirical findings. Exp Aging Res.1996; 22:245-66.
    3 MacDonald SW, Dixon RA, Cohen AL, et al. Biological age and 12-year cognitive change in older adults: findings from the Victoria Longitudinal Study. Gerontology.2004; 50:64-81.
    4 Nakamura E, Miyao K. Sex differences in human biological aging. J Gerontol A Biol Sci Med Sci.2008; 63:936-944.
    5 Inzitari M, Carlo A, Baldereschi M, et al. Risk and predictors of motor-performance decline in a normally functioning population-based sample of elderly subjects: the Italian Longitudinal Study on Aging. J Am Geriatr Soc.2006; 54:318-24.
    6 Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA):A 50-Year-Long Journey and Plans for the Future. J Gerontol A Biol Sci Med Sci.2008; 63:1416-1419.
    7 http://www.infoaging.org/b-biomarker-home.html;2005.
    8 Bai X, Han L, Liu Q, Shan H, Lin H, et al. Evaluation of biological aging process-a population-based study of healthy people in China. Gerontology.2010; 56:129-140.
    9 Yashin AI, Iachine IA, Harris JR, et al. Half of the variation in susceptibility to mortality is genetic:findings from Swedish twin survival data. Behav Genet.1999; 29:11-19.
    10 Mitchell BD, Hsueh WC, King TM, et al. Heritability of life span in the old order Amish. Am. J.Med. Genet 2001; 102:346-352.
    11 Chua KF, Mostoslavsky R, Lombard DB, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab.2005; 2:67-76.
    12 Alcendor RR, Gao S, Zhai P, et al. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res.2007; 100:1512-1521.
    13 Salminen A, Kaamiranta K. NF-kappaB Signaling in the Ageing Process. J Clin Immunol. 2009; 29:397-405.
    14 Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 2005; 16:237-243.
    15 Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24:7410-7425.
    16 Hursting SD, Perkins SN, Phang JM, et al. Diet and cancer prevention studies in p53-deficient mice. J Nutr 2001: 131:3092-3094.
    17 Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53:the feedback loop. Cell Cycle 2009; 8: 712-715
    18 Westerheide SD, Anckar J, Stevens SM Jr, et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009; 323:1063-1066.
    19 Borradaile NM, Pickering JG. NAD (+), sirtuins, and cardiovascular disease. Curr Pharm Des 2009; 15:110-117.
    20 Sauve AA, Wolberger C, Schramm VL, et al. The Biochemistry of Sirtuins. Annu Rev Biochem.2006; 75:435-465.
    21 Salminen A, Kauppinen A, Suuronen T, et al. SIRT1 longevity factor suppresses NF-kappaB-driven immune responses:regulation of aging via NF-kappaB acetylation? Bioessays.2008; 30:939-942.
    22 van der HA, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol.2007; 8:440-50.
    23 Salminen A, Kaarniranta K. SIRT1:regulation of longevity via autophagy. Cell Signal 2009; 21:1356-1360.
    24 Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-776.
    25 Raymond M, Rousset F. GENEPOP (Version 12):population genetics software for exact tests and ecumenicism. J Hered 1995; 86:248-249.
    26 Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science.2004; 303:2011-2015.
    27 Li K, Casta A, Wang R, Lozada E, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem.2008; 283:7590-7598.
    28 Shan HY, Bai XJ, Chen XM. Apoptosis is involved in the senescence of endothelial cells induced by angiotensin Ⅱ. Cell Biol Int.2008; 32:264-270.
    29 Kim EJ, Kho JH, Kang MR, et al. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell.2007; 28:277-290.
    30 Jung-Hynes B, Ahmad N. Role of p53 in the anti-proliferative effects of Sirtl inhibition in prostate cancer cells. Cell Cycle 2009; 8:1478-1483.
    31 Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha. Cell.2006; 127: 1109-1122.
    32 Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.Science.2004.16; 305:390-2.
    33 Longo VD, Kennedy BK. Sirtuins in ageing and age-related disease. Cell.2006; 126:257-268.
    34 Bordone L, Motta MC, Picard F, et al. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol.2006; 4:e31.
    35 Tang BL. SIRT1, neuronal cell survival and the insulin/IGF-1 aging paradox. Neurobiol Aging 2006; 27:501-505.
    36 Heilbronn LK, Ravussin E. Calorie restriction and ageing: review of the literature and implications for studies in humans. Am. J. Clin. Nutr.2003; 78:361-369.
    37 Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.1999; 13: 2570-2580.
    38 Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature.2001; 410:227-230.
    39 Chen D, Steele AD, Lindquist S, et al. Increase in activity during calorie restriction requires Sirtl. Science.2005; 310:1641.
    40 Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev.2008; 22:1753-7.
    41 Huang J, Gan Q, Han L, et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One.2008; 3:e1710.
    42 Koo SH, Montminy M. In vino veritas:a tale of two sirtls? Cell.2006; 127:1091-1093.
    43 Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell.2008; 135:907-918.
    44 Mattson MP, Duan W, Guo Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease:cellular and molecular mechanisms. J Neurochem.2003; 84:417-431.
    45 Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science.2004; 305:390-392.
    46 Kuningas M, Putters M, Westendorp RG, et al. SIRT1 Gene, Age-Related Diseases, and Mortality:The Leiden 85-Plus Study. J Gerontol A Biol Sci Med Sci.2007; 62:960-965.
    47 Flachsbart F, Croucher PJ, Nikolaus S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol.2006; 41:98-102.
    48 Zillikens MC, van Meurs JB, Sijbrands EJ, et al. SIRT1 genetic variation and mortality in type 2 diabetes:interaction with smoking and dietary niacin. Free Radic Biol Med 2009; 46: 836-841.
    49 Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet.2005; 366:662-664.
    50 Lee YH, Kang ES, Kim SH, et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet.2008; 53:991-998.
    51 van HM, Dehghan A, Witteman JC, et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies:a population-based study. Diabetes.2008; 57: 2911-2914.
    52 J Gan Q, Huang J, Zhou R, et al. PPAR (gamma) accelerates cellular senescence by inducing p16INK4 (alpha) expression in human diploid fibroblasts. Cell Sci.2008; 121:2235-2245.
    53 Zuchner S, Gilbert JR, Martin ER, et al. Linkage and association study of late-onsef alzheimer disease families linked to 9p21.3. Ann Hum Genet.2008; 72:725-731.
    54 Yang DG, Liu L, Zheng XY, et al. Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence, Ageing Res Rev. 2008; 7: 137-46.
    55 Hurme M, Lehtimaki T, Jylha M, et al. Interleukin-6-174G/C polymorphism and longevity:a follow-up study. Mech Ageing Dev.2005; 126:417-418.
    56 Wieczorowska-TK, Niemir ZI, Podkówka R, et al. Can an increased level of circulating IL-8 be a predictor of human longevity? Med Sci Monit.2006; 12:118-21.
    57 Caruso C, Balistreri CR, Crivello A, et al. The genetics of innate immunity and inflammation in ageing, age-related diseases and longevity.In: Pawelec G. Immunosenescence, Landes Bioscience and Springer Science, Austin, TX 78701, United States, 2007; ISBN: 978-0-387-76840-3,154-173.
    58 Mocchegiani E, Giacconi R, Costarelli L, et al. Zinc deficiency and IL-6-174G/C polymorphism in old people from different European countries:effect of zinc supplementation. ZINCAGE study. Exp. Gerontol.2008; 43:433-444.
    59 Bennermo M, Held C, Green F, et al. Prognostic value of plasma interleukin-6 concentrations and the-174 G>C and-572 G>C promoter polymorphisms of the interleukin-6 gene in patients with acute myocardial infarction treated with thrombolysis. Atherosclerosis.2004; 174: 157-163.
    60 Caruso C, Balistreri CR, Crivello A, et al. The genetics of innate immunity and inflammation in ageing, age-related diseases and longevity. Immunosenescence.2007;28:154-173.
    61 Cederholm T, Persson M, Andersson P, et al. Polymorphisms in cytokine genes influence long-term survival differently in elderly male and female patients. J Intern Med.2007; 262: 215-223.
    62 Pes GM, Lio D, Carru C, et al. Association between longevity and cytokine gene polymorphisms. A study in Sardinian centenarians. Aging Clin Exp Res.2004; 16:244-248.
    63 LinksDi, Bona D, Vasto S, et al. Effect of interleukin-6 polymorphisms on human longevity:A systematic review and meta-analysis. Ageing Res Rev.2008; 27
    64 Raber J, Sorg O, Horn TF, et al. Inflammatory cytokines: putative regulators of neuronal and neuro-endocrine function. Brain Res Brain Res Rev.1998; 26:320-326.
    65 Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med.2000; 51:245-270.
    66 Licastro F, Candore G, Lio D, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun. Ageing.2005; 2:8.
    67 Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA.2001; 286:327-334.
    68 Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med.2000; 51:245-270.
    69 Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp. Gerontol. 2004; 39:687-699.
    70 Bruunsgaard H. The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality. Dan. Med. Bull. 2006; 53:285-309.
    71 Vasto S, Candore G, Balistreri CR, et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev.2007; 128:83-91.
    72 Vasto S, Candore G, Duro G, et al. Alzheimer's disease and genetics of inflammation: a pharmacogenomic vision. Pharmacogenomics.2007; 8:1735-1745.
    73 Bruunsgaard H, Andersen-Ranberg K, Hjelmborg JB, et al. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am. J. Med.2003; 115:278-283.
    74 Bruunsgaard H, Ladelund S, Pedersen AN, et al. Predicting death from tumour necrosis factoralpha and interleukin-6 in 80-year-old people. Clin. Exp. Immunol.2003; 132:24-31.
    75 Reuben DB, Cheh AI, Harris TB, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J. Am. Geriatr. Soc.2002; 50:638-644.
    76 Volpato S, Guralnik JM, Ferrucci L, et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's health and aging study. Circulation. 2001; 103: 947-953.
    77 Hoffmann SC, Stanley EM, Darrin Cox E, et al. Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation.2001; 72:1444-1450.
    78 Bennermo M, Held C, Green F, et al. Prognostic value of plasma interleukin-6 concentrations and the-174 G> C and-572 G> C promoter polymorphisms of the interleukin-6 gene in patients with acute myocardial infarction treated with thrombolysis. Atherosclerosis.2004; 174: 157-163.
    79 Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem.2000; 275:18138-18144.
    80 Rivera-Chavez FA, Peters-Hybki DL, Barber RC, et al. GEInterleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock.2003; 20:218-223.
    81 Mocchegiani E, Giacconi R, Costarelli L, et al. Zinc deficiency and IL-6-174G/C polymorphism in old people from different European countries:effect of zinc supplementation. ZINCAGE study. Exp. Gerontol.2008; 43:433-444.
    82 Maitra A, Shanker J, Dash D, et al. Polymorphisms in the IL6 gene in Asian Indian families with premature coronary artery disease-the Indian Atherosclerosis Research Study. Thromb Haemost.2008; 99:944-950.
    83 Sanderson SC, Kumari M, Brunner EJ, et al. Association between IL6 gene variants-174G>C and-572G>C and serum IL-6 levels:interactions with social position in the Whitehall II cohort. Atherosclerosis.2009; 204:459-464.
    84 Koh SJ, Jang Y, Hyun YJ, et al. Interleukin-6 (IL-6)-572C->G promoter polymorphism is associated with type 2 diabetes risk in Koreans. Clin Endocrinol.2009; 70:238-244.
    85 Ross OA, Curran MD, Meenagh A, et al. Study of age-association with cytokine gene polymorphisms in an aged Irish population. Mech. Ageing Dev.2003; 124:199-206.
    86 Di Bona D, Vasto S, Capurso C, et al. Effect of interleukin-6 polymorphisms on human longevity:a systematic review and meta-analysis. Ageing Res Rev.2009; 8:36-42.
    87 Kurosu H, Yamamoto M, Clark J D, et al. Suppression of aging in mice by the hormone Klotho. Science.2005; 309:1829-1833.
    88 Tatar M, Bartke A, Antebi A, et al. The endocrine regulation of aging by insulin-like signals. Science.2003; 299:1346-1351.
    89 Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature.2003; 421:182-187.
    90 Taguchi A, Wartschow LM, White MF, et al. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science.2007; 317:369-372.
    91 Elena Cellini, Benedetta Nacmias, Fabiola Olivieri, et al. Cholesteryl ester transfer protein (CETP) I405V polymorphism and longevity in Italian centenarians. Mechanisms of Ageing and Development.2005; 126:826-828.
    92 Rheea EJ, Oha KW, Leea WY, et al. The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism Clinical and Experimental.2006; 55:1344-1351
    93 Akiko IA, Kenji O, Yasuhiro Oa, et al. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Toyoaki Murohara Japan Clinica Chimica Acta.2006; 371:66-70.
    1 De BG, Tan Q, Jeune B, et al. Recent advances in human gene-longevity association studies. Mech Ageing Dev.2001; 122:909-920.
    2 Barbieri M, Gambardella A, Paolisso G, et al. Metabolic aspects of the extreme longevity. Exp Gerontol.2007; 43:74-78.
    3 Abbatecola AM, Ferrucci L, Martella R, et al. Insulin resistance and cognitive decline may be common soil for frailty syndrome. Arch Intern Med.2007; 167:2145-2146.
    4 Barbieri M, Bonafe M, Franceschi C, et al. Insulin/IGFI-signaling pathway:an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol. Endocrinol Metab. 2003; 285:E1064-E1071.
    5 Bishop NA, Guarente L. Genetic links between diet and lifespan:shared mechanisms from yeast to humans. Nat Rev Genet.2007; 8:835-844.
    6 Bartke A, Masternak MM, Al-Regaiey, et al. Effects of dietaryrestriction on the expression of insulin-signaling-related genes in long-lived mutant micelnterdiscip.Top Gerontol.2007.35:69-82.
    7 Russell SJ, Kahn CR. Endocrine regulation of ageing.Nat Rev Mol Cell Biol.2007,8:681-691.
    8 8.Stessman J, Maaravi Y, Hammerman-Rozenberg R, et al. Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. Mech Ageing 2005,126: 333-339.
    9 van Heemst D, Mooijaart SP, Beekman M, et al. Long Life study group. Variation in the human TP53 gene affects old age survival and cancer mortality.Exp Gerontol.2005,40:11-15.
    10 Kojima T, Kamei H, Aizu T, et al. Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways.Exp Gerontol,2004,39:1595-1598.
    11 Kimura K, Tanaka N, Nakamura N, et al. Knockdown of mitochondrial heat shock protein 70 promotes progeria-likephenotypes in caenorhabditis elegans. J Biol Chem,2007,282: 5910-5918.
    12 Lunetta KL, D Agostino RB Sr, Karasik D, et al. Genetic correlates of longevity and selected age-related phenotypes:a genome-wide association study in the Framingham Study. BMC Med Genet.2007; 19:Suppl 1:S13.
    13 McElwee JJ, Schuster E, Blanc E, et al. Evolutionary conservation of regulated longevity assurance mechanisms.Genome Biol.2007; 8:R132E.
    14 Amador-Noguez D, Yagi K, Venable S, et al. Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging Cell.2004; 3:423-441.
    15 Curtis C, Landis GN, Folk D, et al. Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes.Genome Biol.2007; 8:R262
    16 Ayyadevara S, Dandapat A, Singh SP, et al. Life span and stress resistance of Caenorhabditis elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mech Ageing Dev.2007; 128:196-205.
    17 Christiansen L, Brasch-Andersen C, Bathum L, et al. A longitudinal study of the effect of GSTT1 and GSTM1 gene copy number on survival.Mech Ageing Dev.2006; 127:597-599.
    18 Pesch B, Pesch R, Dusing S, et al. Polymorphic metabolic susceptibility genes and longevity:a study in octagenarians.Toxicol Lett.2004; 151:283-290.
    19 Yokoyama K, Fukumoto K, Murakami T. et al. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F a homolog of mot-2 (mortalin)/mthsp70/Grp75.FEBS Lett.2002; 516:53-57.
    20 Altomare K, Greco V, Bellizzi D, et al. The allele (A) (-110) in the promoter region of the HSP70-1 gene is unfavorable to longevity in women.Biogerontology.2003,4:215-2320
    21 Singh R, Kolvraa S, Bross P, et al. Heat-shock protein 70 genes and human longevity:a view from Denmark. Acad Sci.2006.1067:301-308.
    22 Ross OA, Curran MD, Crum KA, et al. Increased frequency of the 2437T allele of the heat shock protein 70-Hom gene in an aged Irish population. Exp Gerontol.2003; 38:561-565.
    23 Nanji M, Hopper NA, Gems D, et al. LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans.Aging Cell.2005; 4:235-45.
    24 Bonafe M, Salvioli S, Barbi C, et al. The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ.2004; 11; 962-973.
    25 Holzenberger M, Dupont J, Ducos B, et al. IGF1R regulates lifespan and resistance to oxidative stress in mice. Nature.2003; 421:182-187.
    26 Nemoto S, Combs CA, French S, et al. The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol. Chem.2006; 281:10555-10560.
    27 Mooijaart SP, van Heemst D, Schreuder J, et al. Long Life'Study Group. Variation in the SHC1 gene and longevity in humans.Exp Gerontol.2004.39:263-268.
    28 Kamei H, Adati N, Arai Y, et al. Association analysis of the SHC1 gene locus with longevity in the Japanese population. J Mol Med.2003; 81:724-728.
    29 Kurosu H, Yamamoto M, Clark J D, et al. Suppression of aging in mice by the hormone Klotho. Science.2005; 309:1829-1833
    30 Tatar M, Bartke A, Antebi A, et al. The endocrine regulation of aging by insulin-like signals. Science,2003; 299:1346-1351.
    31 Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature,2003,421:182-187.
    32 Taguchi A, Wartschow L M, White M F, et al. Brain IRS2 signaling coordinates life span and nutrient homeostasis.Science.2007,317:369-372.
    33 Elena Cellini, Benedetta Nacmias, Fabiola Olivieri, et al. Cholesteryl ester transfer protein (CETP) I405V polymorphism and longevity in Italian centenarians. Mechanisms of Ageing and Development,2005,126:826-828
    34 Eun-Jung Rheea, Ki-Won Oha, Won-Young Leea, et al. The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism Clinical and Experimental,2006,55:1344-1351
    35 Akiko Imamura a, Kenji Okumura, Yasuhiro Ogawa a, et al. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Toyoaki Murohara Japan Clinica Chimica Acta.2006; 371:66-70
    36 Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev.2004; 18:306-319.
    37 Arum O, Johnson TE. Reduced expression of the Caenorhabditis elegans p53 ortholog cep-1 results in increased longevity. J Gerontol A Biol Sci Med Sci,2007,62:951-959.
    38 Bauer JH, Chang C, Morris SN, et al. Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling.Proc Natl Acad Sci USA.2007; 104:13355-13360.
    39 Orsted DD, Bojesen SE, Tybjaerg-Hansen A, et al. Tumor suppressor p53 Arg72Pro polymorphism and longevity cancer survival and risk of cancer in the general population. J Exp Med.2007; 204:1295-1301.
    40 Rietveld I, Janssen JA, Hofinan A, et al. A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels. Eur J Endocrinol.2003; 148:171-175.
    41 Rutherford S, Hirate Y, Swalla BJ, et al. The Hsp90 capacitor developmental remodeling and evolution:the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol Biol.2007; 42:355-372.
    42 Bishop NA, Guarente L. Genetic links between diet and liféspan:shared mechanisms from yeast to humans. Nat Rev Genet.2007; 8:835-844
    43 Berdichevsky A, Viswanathan M, Horvitz Hr, et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell.2006; 125:1165-1177.
    44 Guarente L, and Picard F. Calorie restriction-the SIR2 connection. Cell.2005; 120:473-482.
    45 Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma.Nature,2004,429:771-776.
    46 Pillai JB, Isbatan A, Imai S, et al. Poly (ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+depletion and reduced Sir2alpha deacetylase activity. J Biol Chem.2005; 280:43121-43130.
    47 Alcendor RR, Kirshenbaum LA, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res.2004; 95:971-980.
    48 Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirtl contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell. Biol.2008; 10:385-394.
    49 Han M K, Song EK, Guo Y, et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008; 2: 241-251.
    50 Yang T, Fu M, Pestell R, et al. SIRT1 and endocrine signaling. Trends Endocrinol Metab. 2006; 17:186-191.
    51 Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science.2005; 310:314-317.
    52 Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med.2007; 4:76.
    53 Bordone L, Guarente L.Calorie restriction, SIRT1 and metabolism:understanding longevity. Nat Rev Mol Cell Biol.2005,6:298-305.
    54 Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab.2005; 2:105-117.
    55 Bordone L, Motta MC, Picard F, etal.Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells.PLoS Biol,2006,4:e31.
    56 Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 and SIRT1. Nature.2005; 434:113-118.
    57 Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1. Cell.2006; 127: 1109-1122.
    58 Milne JC, Lambert PD, SchenkS, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.Nature.2007; 450:712-716.
    59 Flachsbart F, Croucher PJ, Nikolaus S, et al. Sirtuin 1(SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol.2006; 41:98-102.
    60 Kuningas M, Magi R, Westendorp RG, et al. Haplotypes in the human Foxola and Foxo3a genes; impact on disease and mortality at old age. Eur J Hum Genet.2007; 15:294-301.
    61 Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics,2005, 85:258-263.
    62 Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol.2007; 17:292-301.
    63 Masternak MM, Bartke A, PPARs in calorie restricted and genetically long-lived mice. PPAR Res; 2007:284-36.
    64 Conti B, Sanchez-Alavez M, Winsky-Sommerer R, et al. Transgenic mice with a reduced core body temperature have an increased life span. Science.2006; 314:825-828.
    65 Kojima T, Kamei H, Aizu T, et al. Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol.2004; 39:1595-1598.
    66 van Heemst D, Mooijaart SP, Beekman M, et al. Long Life study group. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol.2005; 40: 11-15.
    67 Shaw WM, Luo S, Landis J, et al. The C. elegans TGF-beta dauer pathway regulates longevity via insulin signaling.2007; 17:1635-1645.
    68 Carrieri G, Marzi E, Olivieri F, et al. The G/C915 polymorphism of transforming growth factor betal is associated with human longevity:a study in Italian centenarians. Aging Cell,2004, 3:443-448.
    69 Lee YH, Kang ES, Kim SH, et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population.J Hum Genet.2008; 53:991-998..
    70 van Hoek M, Dehghan A, Witteman JC, et al. Predicting type 2 diabetes based onpolymorphisms from genome-wide association studies: a population-based study. Diabetes. 2008;57:2911-2914.
    71 J Gan Q, Huang J, Zhou R, et al. PPAR-gamma accelerates cellular senescence by inducing p16INK4-alpha expression in human diploid fibroblasts. Cell Sci.2008; 121:2235-2245.
    72 Zuchner S, Gilbert JR, Martin ER, et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann Hum Genet. et al.2008 Nov;72(Pt 6):725-31.
    73 Yang DG, Liu L, Zheng XY. et al. Cyclin-dependent kinase inhibitor p16 (INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev.2008; 7: 137-46.
    74 Blanche H, Cabanne L, SahbatouM, et al. A study of French centenarians:are ACE and APOE associated with longevity? C R Acad Sci Ⅲ.2001; 324:129-135
    75 Rea IM, Mc Dowell I, McMaster D, et al. MONICA group (Belfast) Monitoring of Cardiovascular trends study group. Apolipoprotein E alleles in nonagenarian subjects in the Belfast Elderly Longitudinal Free-living Ageing Study (BELFAST). Mech Ageing Dev.2001; 122:1367-1372
    76 Chowdhury AH, Yokoyama T, Kokubo Y, et al. Apolipoprotein E genetic polymorpism and stroke subtypes in a Bangladeshi hospital based study.J Epidemiol.2001; 11:131-138.
    77 Kokubo Y, Chowdbury AH, Date C, et al. Age-dependent association of apolipoprotein E genotype with stroke subtypes in a Japanese ruralpopulation. Stroke,2000,31:1299-1306.
    78 白小涓,赵玫,王勃.心肌梗死患者及同胞血脂异常ApoE基因多态性分析.中华医学杂志.2001,81:340-343.
    79 Forero DA, Pinzón J, Arboleda GH, et al. Analysis of common polymorphisms in angiotensin-converting enzyme and apolipoprotein e genes and human longevity in Colombia. Arch Med Res.2006.37:890-894.
    80 Novelli V, Viviani, Anselmi C, et al. Lack of replication of genetic associations with human longevity. Biogerontology.2008.9:85-92.
    81 Rea IM, McKeown PP, McMaster D, et al. Paraoxonase polymorphisms PON1 192 and 55 and longevity in Italian centenarians and Irish nonagenarians.A pooled analysis. Exp. Gerontol. 2004; 39:629-635.
    82 Christiansen L, Bathum L, Frederiksen H, et al. Paraoxonase 1 polymorphisms and survival. Eur J Hum Genet.2004.12:843-847.
    83 Vergani C, Lucchi T, Caloni M, et al. I405V polymorphism of the cholesteryl ester transfer protein (CETP) gene in young and very old people. Arch Gerontol Geriatr, 2006, 43(2): 213-21.
    84 Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA.2008; 299:2795-2796.
    85 Qureischie, H Heun R, Liitjohann D, et al. CETP polymorphisms influence cholesterol metabolism but not Alzheimer's disease risk. Brain Res.2008; 26:1-6.
    86 Chung HY, Cesari M, Anton S, et al. Molecular inflammation:Underpinnings of aging and age-related diseases. Ageing Res Rev.2009,8:18-30
    87 Wieczorowska-Tobis K, Niemir ZI, Podkowka R, et al. Can an increased level of circulating IL-8 be a predictor of human longevity? Med Sci Monit.2006; 12:118-121.
    88 Hurme M, Lehtimaki T, Jylha M, et al. Interleukin-6-174G/C polymorphism and longevity:a follow-up study. Mech Ageing Dev.2005,126:417-418.
    89 Caruso C, Balistreri CR, Crivello A, et al. The genetics of innate immunity and inflammation in ageing, age-related diseases and longevity. Pawelec G. Immunosenescence, Landes Bioscience and Springer Science.2007; ISBN:978-0-387-76840-3,154-173.
    90 Mocchegiani E, Giacconi R, Costarelli L, et al. Zinc deficiency and IL-6-174G/C polymorphism in old people from different European countries:effect of zinc supplementation. ZINCAGE study. Exp Gerontol.2008; 43:433-444.
    91 Pes GM, Lio D, Carru C, et al. Association between longevity and cytokine gene polymorphisms. A study in Sardinian centenarians.Aging Clin Exp Res.2004; 16:244-248.
    92 Cederholm T, Persson M, Andersson P, et al. Polymorphisms in cytokine genes influence long-term survival differently in elderly male and female patients.J Intern Med.2007; 262: 215-23.
    93 Di Bona D, Vasto S, Capurso C, et al. Effect of interleukin-6 polymorphisms on human longevity:A systematic review and meta-analysis. Ageing Res Rev.2008; 27:35-37.
    94 Okayama N, Suehiro Y, Hamanaka Y, et al. Association of interleukin-19 gene polymorphisms with age. Biol Sci Med Sci.2007; 62:507-511.
    95 Ridker PM, Rifai N, Rose L, et al. Comparison of C reactive protein and low density lipoprote in cholesterol levels in the prediction of first cardiovascular events. N Engl J Med.2002; 347: 1557-1565.
    96 Cao H, Hegele RA. Human C-reactive protein (CRP) gene 105G/Cpolymorphism. J Hum Genet.2000; 55:100-101.
    97 Hindorff LA, Rice KM, Lange LA, et al. Common variants in the CRP gene in relation to longevity and cause-specific mortality in older adults:the Cardiovascular Health Study. Atherosclerosis.2008; 197:922-930.
    98 Lee SJ, Drabik K, Van Wagoner NJ, et al. ICAM-1induced expression of proinflammatory cytokines in astrocytes:involvement of extracellular signal-regulatedkinase and p38 mitogen-activated protein kinase pathway. Jimmunol.2000; 165:4658-4666
    99 Petrovic MG, Osredkar J, Saraga-Babic M, et al. K469E polymorphism of the intracellular adhesion molecule 1 gene is associated with proliferative diabetic retinopathy in Caucasians with type 2 diabetes. Clin Experiment Ophthalmol,2008; 36:468-472.
    100 Nuzzo D, Vasto S, Balistreri CR, et al. Role of proinflammatory alleles in longevity and atherosclerosis:results of studies performed on-1562C/T MMP-9 in centenarians and myocardial infarction patients from Sicily. Ann N Y Acad Sci.2006; 1089:496-501.
    101 Shu Ye. Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome. Cardio Res.2006; 69:636-645.
    102 Demasi M, Cleland LG, Cook Johnson RJ, et al. Effects of hypoxia on monocyte inflammatory mediator production. J Biol Chem.2003; 278:38607-38616.
    103 Colaizzo D, Fofi L, Tiscia G, et al. The COX-2 G/C-765 polymorphism may modulate the occurrence of cerebrovascular ischemia. Blood Coagul Fibrinolysis.2006; 17:93-96.
    104 Shun Kohsaka, Kelly A, Volcik, et al. Increased risk of incident stroke associated with the cyclooxygenase 2 (COX-2) G765C polymorphism in African-Americans:The Atherosclerosis Risk in Communities Study. Atherisclerosis.2007; 3:197-199.
    105 Del Bo R. Role of VEGF gene variability in longevity:A lesson from the Italianpopulation. Neurobiol Aging.2007; doi:10.1016/j.neurobiolaging.2007.05.003
    106 Stessman J, Maaravi Y, Hammerman-Rozenberg R, et al. Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. Mech Ageing Dev.2005; 126: 333-339.
    107 Visscher PM, Tynan M, Whiteman MC, et al. Lack of association between polymorphisms in angiotensin-converting-enzyme and methylenetetrahydrofolate reductase genes and normal cognitive ageing in humans. Neurosci Lett.2003; 28:175-178.
    108 Xia Y, Gueguen R, Vincent-Viry M, et al. Effect of six candidate genes on early aging in a French population. Aging Clin. Exp. Res.2003; 15:111-116.
    109 Frederiksen H, Gaist D, Bathum L, et al. Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival-a follow-up study of elderly Danish twins. Ann Epidemiol.2003; 13:57-65
    110 Rizzo MR, Ragno E, Barbieri M, et al. Elevated plasma activator inhibitor 1 is not related to insulinresistance and to gene polymorphism in healthy centenarians. Atherosclerosis.2002; 160:385-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700