骨髓间充质干细胞和造血干细胞的体内示踪及其促进肝损伤修复的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝硬化对人类健康仍然是一个巨大的威胁。对于失代偿期肝硬化,原位肝移植是唯一能够延长患者生存期的治疗方法,但供肝缺乏、费用高昂等因素严重限制了其临床应用。近年来,干细胞研究领域取得了一系列重要进展。大量研究表明,成体干细胞具有可塑性、能够被诱导分化为多种组织细胞。临床探索性研究发现,自体干细胞移植能够有效地促进肝脏疾病的恢复。
     目前用于肝脏疾病治疗的干细胞主要包括骨髓来源的间充质干细胞(mesenchymal stem cells,MSCs)、造血干细胞(hematopoietic stem cells,HSCs)及未分类的混合细胞。基础与临床研究表明,MSCs和HSCs都能改善肝损伤、促进肝功能恢复,但目前尚不清楚哪一种干细胞效果更好。此外,干细胞治疗骨损伤、糖尿病和心脏病的研究提示,MSCs和HSCs可能具有一定的协同作用。但在干细胞促进肝损伤恢复的过程中,MSCs和HSCs是否发挥协同效应仍未见报道。
     本研究拟采用绿色荧光蛋白(Green fluorescent protein,GFP)转基因雄性小鼠分离纯化MSCs和HSCs,将这些细胞单一和两者组合之后移植给同品系肝损伤雌性小鼠(CCl_4肝损伤模型,不表达GFP),进而对比观察两种干细胞在小鼠体内的示踪及其促进肝损伤修复的作用与机制。
     实验目的
     1、观察骨髓来源的MSCs和HSCs移植后在肝损伤小鼠体内的分布,比较两种干细胞向损伤肝脏归巢的能力;
     2、对比分析骨髓来源的MSCs和HSCs促进小鼠肝损伤恢复的效果,观察MSCs和HSCs有无协同作用;
     3、初步明确MSCs和HSCs促进小鼠肝损伤恢复的机制。材料和方法
     1、取GFP转基因小鼠(雄性小鼠)的骨髓,利用全骨髓细胞贴壁培养法分离MSCs,利用流式分选技术分离纯化HSCs;
     2、借助细胞形态学、流式细胞术和成骨成脂诱导等方法对分离的干细胞进行表型和功能鉴定;
     3、用CCl_4制备肝损伤小鼠模型(雌性小鼠)。将正常小鼠或肝损伤小鼠随机分为五组,一组接受MSCs回输,一组接受HSCs回输,一组接受MSCs和HSCs混合细胞回输(按1:1比例),一组作为空白对照,一组作为模型对照组,每只小鼠接受的细胞数量为1x106;
     4、通过小动物荧光成像技术、荧光细胞示踪和PCR检测Y染色体序列等技术,比较移植的干细胞在小鼠各个主要脏器的分布,观察干细胞向损伤肝脏的归巢能力;
     5、通过生存分析、肝组织HE染色及血清学检查等方法比较MSCs和HSCs促进肝损伤修复的效果;
     6、通过苦味酸天狼星红染色、免疫组织化学染色和Real-time PCR等方法,检测干细胞移植对小鼠肝纤维化及纤维化相关分子表达的影响;
     7、借助激光共聚焦显微镜观察干细胞在损伤肝脏中的定植;
     8、通过免疫组化和免疫荧光染色等方法,观察干细胞移植对肝细胞再生能力的影响;
     9、通过ELISA方法检测干细胞移植对小鼠体内多种生长因子及免疫因子的影响。
     结果
     1、分离鉴定GFP小鼠骨髓来源的MSCs及HSCs
     用全骨髓贴壁培养法成功分离出MSCs。第一代的MSCs在显微镜下表现为形状不规则的细胞,在荧光显微镜下可见细胞荧光强度不均匀。当体外培养至第三代时,MSC细胞大小及形状较规则,荧光强度也较均匀。绝大多数细胞表达CD90(95.2±6.1%)、CD29(85.6±3.5%)、CD105(96.5±4.3%)、CD45(6.3±2.2%)、CD34(7.2±1.8%)和CD80(3.8±1.2%),符合MSCs表型。功能试验显示,MSCs可向成骨细胞及脂肪细胞分化。提示我们成功获得了MSCs。同时,我们采用流式细胞术成功分选获得了HSCs。
     2、MSCs和HSCs的体内示踪
     当把MSCs、HSCs及两者等比例混合的细胞(MSCs+HSCs)通过尾静脉注入肝损伤小鼠或正常小鼠,GFP信号首先在小鼠肺内蓄积,2h后GFP信号在肺内开始逐渐减弱,之后开始在肝脏和脾脏中蓄积。在接下来的观察时间内GFP信号强度在肝脏中一直保持增长趋势,然而脾中的信号强度从7d开始减弱。肾脏中的GFP信号强度几乎检测不到。三组中GFP强度变化趋势一致。肝脏中的GFP信号在MSCs组较HSCs组及MSCs+HSCs组显著增强,提示MSCs较HSCs向损伤肝脏的归巢能力更强。此外,无论是MSCs还是HSCs,在4w时在肝脏中的蓄积都比2w时要多。Y染色体示踪的结果与GFP示踪结果相似。
     与接受干细胞的正常小鼠相比,在所有的观察点上,肝损伤小鼠肝脏内的GFP信号均显著增强,提示肝损伤是诱导干细胞向肝脏归巢的重要因素。
     流式细胞术分析及Real-Time PCR发现,MSC(培养至第三代时)上的CXCR4(干细胞的归巢受体)表达量显著高于HSC。
     3、MSCs和HSCs促进肝损伤修复效果的对比
     制备肝损伤小鼠模型,并使用MSCs、HSCs或两者等比例混合细胞进行尾静脉回输治疗。生存分析结果显示,三组接受不同干细胞移植的小鼠生存率较肝损伤模型组显著提高,其中MSCs组的生存率显著高于HSCs和MSCs+HSCs组。肝组织切片的HE染色显示,肝损伤模型小鼠的肝组织内可见大量的炎性细胞浸润和大量的肝细胞坏死。天狼星红染色显示,肝损伤模型小鼠肝组织内可见大量的胶原沉积。与未接受干细胞治疗的对照小鼠相比,干细胞治疗显著减轻了小鼠的肝纤维化和炎症,其中以MSCs的效果最强。研究还表明,MSCs和HSCs在促进肝损伤修复中未显示协同效应。
     4、MSCs和HSCs促进肝损伤修复的机制
     分离接受干细胞治疗的肝损伤小鼠的肝脏。对肝组织进行免疫荧光染色结果显示,HSCs组GFP+/AFP+和GFP+/ALB+双阳性细胞数量(分别为4.3±0.6%和3.5±0.7%)较MSCs组(1.4±0.5%和2.1±0.3%)及MSCs+HSCs组(2.8±0.4%和2.4±0.6%)显著提高。干细胞治疗组α-SMA+细胞数量较对照组均显著降低,其中MSCs组α-SMA+细胞数量最低。未发现GFP+/α-SMA+双阳性细胞,提示移植的干细胞未转分化为肝星状细胞。干细胞治疗组肝组织中Ki-67和PCNA的表达量显著升高,以MSCs组最高。
     接受干细胞治疗4w后,用ELISA法检测各组小鼠血清中的生长因子及免疫调节相关因子。结果显示,MSCs组神经生长因子(NGF)水平较其它干细胞组显著提高,而肝细胞生长因子(HGF)及血管内皮生长因子(VEGF)水平在各干细胞移植组之间未见显著差异。MSCs组IL-10水平较其它干细胞移植组显著升高而IL-6、TNF-α水平较其它干细胞移植组显著降低。
     结论
     1、骨髓来源的MSCs和HSCs均能向损伤肝脏归巢,并且MSCs的肝脏归巢能力更强。
     2、对于CCl_4诱导的小鼠肝损伤,MSCs和HSCs都能有效促进损伤修复,其中MSCs的作用更强。
     3、干细胞可能通过调节肝细胞再生相关因子和免疫因子的表达促进肝损伤的恢复。
     4、在促进CCl_4诱导小鼠肝损伤修复过程中,MSCs和HSCs未表现出协同效用。
Cirrhosis and its related morbidity place a significant burden on health careworldwide. Liver transplantation remains the definitive treatment option for end-stageliver disease. But the mismatch between the number of patients requiring transplantationand the amount of available organs is set to grow, highlighting the need to develop newstrategies to reduce liver scarring and stimulate liver regeneration.More recently, reportsof unexpected plasticity in adult bone marrow have raised hopes that stem cell therapymay offer exciting therapeutic possibilities for patients with chronic liver disease.To date,there are several published human clinical studies investigating the effects of stem celltherapy in patients with liver disease and most of the studies yielded positive results.
     The cells mostly used to transplant were derived from bone marrow including MSCs,HSCs and unsorted mononuclear cells.Among them, MSCs and HSCs can be obtained in a great quantity. Both stem cells have anti-fibrotic and proregenetative effects in the injuredliver. However, which cell type is more effective in treating the injured liver remains to bedetermined. Moreover, several recent studies have suggested that MSCs and HSCsfunction synergistically for the therapy of diabetes and heart failure and for vascularizingbioengineered tissues. Whether these cells can work synergistically in the injured liver isunclear.
     In this experiment, the MSCs and HSCs were isolated from the male green fluorescenceprotein transgenic mice. A total of1×106isolated stem cells were resuspended in PBS andslowly infused into the female liver injured mice via the tail vein to evaluate thebiodistribution after the peripheral and the anti-fibrotic activities of these two stem cells.
     Objectives
     1. Our aim was to evaluate the biodistribution of the stem cells after the peripheralinfusion of MSCs or HSCs into liver injured mice and compared their homing capacity tothe injured liver.
     2. To evaluated the anti-inflammatory and anti-fibrotic activities of these two stem cells inthe injured liver and to study whether MSCs and HSCs exhibit synergistic effects intreating liver injury.
     3. To investigate the underlying molecular mechanisms through which MSCs and HSCsparticipate in injuried liver repair. We hope that these findings contribute to betterunderstanding of the interactions between stem cells and the environment that leads tohoming and integration into livers.
     Materials and methods
     1. MSCs were isolated using whole bone marrow culture method and purified usingattachment method. HSCs from bone marrow were sorted by magnetic nanoparticles andflow cytometry using multiple antibody panels.
     2. The adhered cells in the first passage and the third passage were observed byfluorescence microscope.Stem cell surface markers were identified by flowcytometer.The cells were also induced to difierentiate into bone and fat cells in vitro.
     3.After final CCl4injection at3months, the mice except the control group were randomlydivided into different groups to ensure that the relatively level of liver disfunction wasconstant. Mice from the same cohort were randomly allocated to receive different cellstem cells (1x106cells/mice)via injections of the tail vein.
     4. Distribution of transplanted cells in injuried liver was detected by bio-imaging system,fluorescence assay and Y chromosome sequence.
     5. Therapeutic potential of transplanted cell for liver cirrhosis was determined by serumassay, survival curve for the liver injured mice and representative photomicrographs ofH&E-stained mouse livers from the different groups.
     6. Liver fibrosis was quantified with sirius red staining, real-time PCR andimmunofluorescence analysis.
     7. The characterization of transplanted stem cells in injuried liver was detected byconfocal microscopy assay.
     8. Hepatocyte regeneration was determined by immunohistochemistry andimmunofluorescence analyses.
     9. Quantification of the mouse serum levels of growth factors and cytokine weredetermined using enzyme-linked immunosorbent assays kits per the manufacturer’sinstructions.
     Results
     1. Isolation and characterization of MSCs and HSCs from GFP transgenic mice
     The MSCs were isolated from the bone marrow of GFP-transgenic mice. In the firstpassage, the cells derived from the donors emitted heterogeneous levels of greenfluorescence when observed under the fluorescence microscope and were of various sizes,as observed in bright field. In the third passage, the GFP signal intensity was uniformamong the cells, and the cells exhibited a homogeneous morphology. Flow cytometryanalyses were used to characterize the surface markers of the cultured cells. Most of the cells expressed the standard MSC surface markers, CD90(95.2±6.1%), CD29(85.6±3.5%) and CD105(96.5±4.3%), whereas they were negative for CD45(6.3±2.2%),CD34(7.2±1.8%) and CD80(3.8±1.2%). MSCs could differentiate into osteoblasts andfat cells respectively. HSCs were also successfully isolated by flow cytometry for use inthe following experiments.
     2. In vivo tracking of MSCs and HSCs.
     After intravenous infusion, the GFP signals first accumulated in the lung, but by2h,those signals began to decrease, whereas they started to accumulate in the liver and spleenat2h after infusion. During the following hours to days, the GFP signal intensitygradually increased in the liver. From24h to7d, the GFP signal intensity graduallyincreased in the spleen and then decreased. The GFP signal was barely detectable in thekidney. These trends were similar in the MSCs, HSCs and MSCs+HSCs groups. The GFPintensity of the livers in the MSCs group was significantly higher than in the HSCs orMSCs+HSCs group. The number of homing stem cells to the CCl4-induced cirrhotic liverwas significantly higher than that in the normal group. The donor-derived signals werestronger in the livers4w after the cell injection than at2w. These results were confirmedby the percentage of GFP-positive cells detected after nuclear staining with DAPI. From2w on, most of the transplanted cells were located infiltrating the areas around the liver’sportal tracts and interlobular connective tissue. Only a few of the cells migrated toward thecentral region of the hepatic lobes and can be detected in the sinusoids. FACS analyses ofCXCR4expression on MSCs and HSCs shows that CXCR4expressed on MSCs (in thethird passage)(33.2±8.1%) was significantly higher than HSCs(24.5±6.8%, P<0.05).Real-time PCR revealed that CXCR4mRNA expression was higher in MSCs (in the thirdpassage) than in HSCs.
     3. Comparing the anti-inflammatory and anti-fibrotic activities of transplantatedstem cells in the injured liver.
     The mice in the normal group survived the observation period. The survival of themice in the three groups that underwent stem cell transplantation was significantly higherthan in the group treated with CCl4. The survival percentage in the MSCs group (68.2%) was significantly higher than in the HSCs (36.4%) or MSCs+HSCs (45.5%) group, whilethe survival percentage in the MSCs+HSCs group was significantly higher than in theHSCs group. The histological sections of the CCl4-injured mice demonstrated that whencompared with normal mice, a large number of inflammatory cells had infiltrated thesinusoids and centrilobular regions, and the coagulation necrosis of hepatocytes wasobserved (H&E staining). In addition, liver fibrosis had increased significantly,characterized by fibrotic septum formation starting in the portal areas (Sirius red staining).After transplantation of MSCs, the injured livers showed maximal restoration with thinnerfibrotic areas and decreased collagen depositions (3.6±0.7%). However, the fibrotic areashad decreased to a lesser extent in the mice transplanted with HSCs (7.6±0.8%) orMSCs+HSCs (6.2±1.7%, P<0.05). These results were confirmed by the expression oftype I collagen (4.0±1.1%,6.3±3.1%,5.7±1.5%, respectively, P<0.05). Moreover, whencompared with the mice in the HSCs group and the MSCs+HSCs group, the micereceiving MSCs showed the best improvement of liver function, however, liver function inMSCs group was still inferior than in the normal cohort, as demonstrated by the ALB,ALT and AST levels of the peripheral blood.
     4. The mechanism of transplanted MSCs and HSCs promoting liver function andreversing liver fibrosis.
     The immunofluorescence staining in the HSCs group revealed a higher percentage ofdouble-labeled GFP+/AFP+and GFP+/ALB+cells in the host livers (4.3±0.6%and3.5±0.7%, respectively), compared with the MSCs (1.4±0.5%and2.1±0.3%, respectively)or the MSCs+HSCs (2.8±0.4%and2.4±0.6%, respectively,P<0.05) groups. Theexpression of α-SMA was significantly decreased in the livers of mice transplanted withany cell type. The α-SMA expression in the MSCs group was significantly lower than inthe other two groups. Double-labeled GFP+/α-SMA+cells were not found in any of thegroups. To evaluate whether stem cell transplantation enhances the proliferation ofhepatocytes in cirrhotic livers, the PCNA and Ki-67expression levels were assessed byimmunofluorescence and immunohistochemistry. In the MSCs-transplanted livers, thepercentage of PCNA+(11.5±3.4%) and Ki-67+(8.2±2.7%) cells was increased significantly when compared with those of the HSCs (6.9±1.8%,6.0±1.1%, respectively) andMSCs+HSCs (8.5±3.1%,7.2±1.9%, respectively, P<0.05) groups.
     Four weeks after cell transplantation, the serum showed a significant increase in NGFin the MSCs (101±12pg/ml) group when compared with the HSCs and MSCs+HSCsgroups (53±5pg/ml and69±7pg/ml, respectively, P<0.05). The levels of HGF and VEGFwere not significantly different among the cell transplantation groups. The expression ofIL-10in the MSCs group (98±22pg/ml) was higher than in the other cell transplantationgroups (HSCs and MSCs+HSCs groups:42±14pg/ml,66±21pg/ml, respectively) or theCCl4group (21±4pg/ml, P<0.05), whereas the concentration of IL-6(45±15pg/ml) andTNF-α (140±75pg/ml) in the MSCs group was lower than that of HSCs (IL-6:77±13pg/ml, TNF-α:227±87pg/ml) and MSCs+HSCs (IL-6:60±9pg/ml, TNF-α:183±15pg/ml,P<0.05) groups.
     Conclusions
     1. When compared with HSCs alone and a combination of HSCs and MSCs, MSCs hadthe greatest homing capability to the injured liver.
     2. MSCs showed the greatest capability to restore the injured liver in vivo and facilitatemice survival when compared with other two groups.
     3. MSCs exhibited more remarkable paracrine effects and immunomodulatory propertieson hepatic stellate cells and native hepatocytes in the treatment of the liver pathology.
     4. Synergistic actions of MSCs and HSCs were most likely not observed because the stemcells in liver were detected mostly as single cells, and single MSCs are insufficient toprovide a beneficial niche for HSCs.
引文
1. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: A global view. Nat RevGastroenterol Hepatol7:448-458.
    2. Fung SK, Lok AS (2005) Management of patients with hepatitis B virus-inducedcirrhosis. J Hepatol42Suppl: S54-64.
    3. Liu J, Fan D (2007) Hepatitis B in China. Lancet369:1582-1583.
    4. Zhao Q, Ren H, Zhu D, Han Z (2009) Stem/progenitor cells in liver injury repair andregeneration. Biol Cell101:557-571.
    5. Carpentier B, Gautier A, Legallais C (2009) Artificial and bioartificial liver devices:present and future. Gut58:1690-1702.
    6. Rikker C (2009)[Liver support systems today]. Orv Hetil150:2299-2307.
    7. Alqahtani SA, Larson AM (2011) Adult liver transplantation in the USA. Curr OpinGastroenterol27:240-247.
    8. Teisseyre M, Teisseyre J, Kalicinski P, Wolska-Kusnierz B, Ismail H, et al.(2010) Livertransplantation for severe hepatic graft-versus-host disease in two children afterhematopoietic stem cell transplantation. Transplant Proc42:4608-4610.
    9. Takeda J, Horie K, Yusa K (2006) New strategy for comprehensive analysis of genefunctions in embryonic stem cells. Ernst Schering Res Found Workshop:15-22.
    10. Melville H, Carpiniello M, Hollis K, Staffaroni A, Golestaneh N (2013) Stem cells: anew paradigm for disease modeling and developing therapies for age-relatedmacular degeneration. J Transl Med11:53.
    11. Kallis YN, Alison MR, Forbes SJ (2007) Bone marrow stem cells and liver disease.Gut56:716-724.
    12. Ratajczak MZ, Kucia M, Majka M, Reca R, Ratajczak J (2004) Heterogeneouspopulations of bone marrow stem cells--are we spotting on the same cells from thedifferent angles? Folia Histochem Cytobiol42:139-146.
    13. Steinl C, Essl M, Schreiber TD, Geiger K, Prokop L, et al.(2012) Release of matrixmetalloproteinase8during physiological trafficking and induced mobilization ofhuman hematopoietic stem cells. Stem Cells Dev.
    14. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, et al.(2000) Isolation andcharacterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stemcells using cell surface markers AC133and CD7. Blood95:2813-2820.
    15. Ratajczak MZ, Pletcher CH, Marlicz W, Machalinski B, Moore J, et al.(1998) CD34+,kit+, rhodamine123(low) phenotype identifies a marrow cell population highlyenriched for human hematopoietic stem cells. Leukemia12:942-950.
    16. Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, et al.(2003) Hematopoieticorigin of glomerular mesangial cells. Blood101:2215-2218.
    17. Houlihan DD, Newsome PN (2008) Critical review of clinical trials of bone marrowstem cells in liver disease. Gastroenterology135:438-450.
    18. Russell HV, Panchal J, Vonville H, Franzini L, Swint JM (2013) Economic evaluationof pediatric cancer treatment: a systematic literature review. Pediatrics131:e273-287.
    19. Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, et al.(2008) Clinical applications ofblood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA299:925-936.
    20. Pierini M, Dozza B, Lucarelli E, Tazzari PL, Ricci F, et al.(2012) Efficient isolationand enrichment of mesenchymal stem cells from bone marrow. Cytotherapy14:686-693.
    21. Holden C, Vogel G (2002) Stem cells. Plasticity: time for a reappraisal? Science296:2126-2129.
    22. Li H, Guo H (2013) Cholesterol loading affects osteoblastic differentiation in mousemesenchymal stem cells. Steroids78:426-433.
    23. Gnecchi M, Melo LG (2009) Bone marrow-derived mesenchymal stem cells: isolation,expansion, characterization, viral transduction, and production of conditionedmedium. Methods Mol Biol482:281-294.
    24. Beyer Nardi N, da Silva Meirelles L (2006) Mesenchymal stem cells: isolation, in vitroexpansion and characterization. Handb Exp Pharmacol:249-282.
    25. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al.(1999)Multilineage potential of adult human mesenchymal stem cells. Science284:143-147.
    26. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al.(1997) Isolation ofputative progenitor endothelial cells for angiogenesis. Science275:964-967.
    27. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, et al.(2000) In vitrodifferentiation of endothelial cells from AC133-positive progenitor cells. Blood95:3106-3112.
    28. Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, et al.(2003) Bone marrowmonocyte lineage cells adhere on injured endothelium in a monocytechemoattractant protein-1-dependent manner and accelerate reendothelialization asendothelial progenitor cells. Circ Res93:980-989.
    29. Nakamura T, Torimura T, Sakamoto M, Hashimoto O, Taniguchi E, et al.(2007)Significance and therapeutic potential of endothelial progenitor cell transplantationin a cirrhotic liver rat model. Gastroenterology133:91-107e101.
    30. Taniguchi E, Kin M, Torimura T, Nakamura T, Kumemura H, et al.(2006) Endothelialprogenitor cell transplantation improves the survival following liver injury in mice.Gastroenterology130:521-531.
    31. Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues arecapable of in vitro hematopoietic differentiation. Exp Hematol30:1339-1345.
    32. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, et al.(2002)Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418:41-49.
    33. Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells,a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci938:231-233;discussion233-235.
    34. Verfaillie CM (2005) Multipotent adult progenitor cells: an update. Novartis FoundSymp265:55-61; discussion61-55,92-57.
    35. Reyes M, Li S, Foraker J, Kimura E, Chamberlain JS (2005) Donor origin ofmultipotent adult progenitor cells in radiation chimeras. Blood106:3646-3649.
    36. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotentstromal cells: the state of transdifferentiation and modes of tissue repair--currentviews. Stem Cells25:2896-2902.
    37. Pettengell R, Luft T, Henschler R, Hows JM, Dexter TM, et al.(1994) Directcomparison by limiting dilution analysis of long-term culture-initiating cells inhuman bone marrow, umbilical cord blood, and blood stem cells. Blood84:3653-3659.
    38. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, et al.(2002) Multipotentprogenitor cells can be isolated from postnatal murine bone marrow, muscle, andbrain. Exp Hematol30:896-904.
    39. Hoshi N, Kusakabe T, Taylor BJ, Kimura S (2007) Side population cells in the mousethyroid exhibit stem/progenitor cell-like characteristics. Endocrinology148:4251-4258.
    40. Howell JC, Lee WH, Morrison P, Zhong J, Yoder MC, et al.(2003) Pluripotent stemcells identified in multiple murine tissues. Ann N Y Acad Sci996:158-173.
    41. Young HE, Duplaa C, Romero-Ramos M, Chesselet MF, Vourc'h P, et al.(2004) Adultreserve stem cells and their potential for tissue engineering. Cell Biochem Biophys40:1-80.
    42. Qi H, Aguiar DJ, Williams SM, La Pean A, Pan W, et al.(2003) Identification of genesresponsible for osteoblast differentiation from human mesodermal progenitor cells.Proc Natl Acad Sci U S A100:3305-3310.
    43. Touboul T, Vallier L, Weber A (2010)[Robust differentiation of fetal hepatocytes fromhuman embryonic stem cells and iPS]. Med Sci (Paris)26:1061-1066.
    44. Cai J, Zhao Y, Liu Y, Ye F, Song Z, et al.(2007) Directed differentiation of humanembryonic stem cells into functional hepatic cells. Hepatology45:1229-1239.
    45. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, et al.(2004)Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for earlymuscle, liver and neural cells 'hide out' in the bone marrow. Leukemia18:29-40.
    46. Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulatingCXCR4+tissue-committed stem cells. Biol Cell97:133-146.
    47. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, et al.(1999)Dystrophin expression in the mdx mouse restored by stem cell transplantation.Nature401:390-394.
    48. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, et al.(2001) Regeneration ofischemic cardiac muscle and vascular endothelium by adult stem cells. J ClinInvest107:1395-1402.
    49. Fiegel HC, Lioznov MV, Cortes-Dericks L, Lange C, Kluth D, et al.(2003)Liver-specific gene expression in cultured human hematopoietic stem cells. StemCells21:98-104.
    50. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, et al.(2000) Hepatocytesfrom non-hepatic adult stem cells. Nature406:257.
    51. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, et al.(2002) Adulthematopoietic stem cells provide functional hemangioblast activity during retinalneovascularization. Nat Med8:607-612.
    52. Lutarewych MA, Quirk MR, Kringstad BA, Li W, Verfaillie CM, et al.(1997)Propagation and titration of murine cytomegalovirus in a continuous bonemarrow-derived stromal cell line (M2-10B4). J Virol Methods68:193-198.
    53. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, et al.(1999) Autologoustransplantation of bone marrow cells improves damaged heart function. Circulation100: II247-256.
    54. Wang PP, Wang JH, Yan ZP, Hu MY, Lau GK, et al.(2004) Expression ofhepatocyte-like phenotypes in bone marrow stromal cells after HGF induction.Biochem Biophys Res Commun320:712-716.
    55. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, et al.(2002) Clonalidentification and characterization of self-renewing pluripotent stem cells in thedeveloping liver. J Cell Biol156:173-184.
    56. Oh SH, Miyazaki M, Kouchi H, Inoue Y, Sakaguchi M, et al.(2000) Hepatocytegrowth factor induces differentiation of adult rat bone marrow cells into ahepatocyte lineage in vitro. Biochem Biophys Res Commun279:500-504.
    57. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneousfusion. Nature416:545-548.
    58. Anderson D, DeFor T, Burns L, McGlave P, Miller J, et al.(2003) A comparison ofrelated donor peripheral blood and bone marrow transplants: importance oflate-onset chronic graft-versus-host disease and infections. Biol Blood MarrowTransplant9:52-59.
    59. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation ofglucose-competent pancreatic endocrine cells from bone marrow without evidenceof cell fusion. J Clin Invest111:843-850.
    60. Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicativesenescence in cultured rat oligodendrocyte precursor cells. Science291:868-871.
    61. Miyazaki M, Akiyama I, Sakaguchi M, Nakashima E, Okada M, et al.(2002)Improved conditions to induce hepatocytes from rat bone marrow cells in culture.Biochem Biophys Res Commun298:24-30.
    62. Miyazaki M, Masaka T, Akiyama I, Nakashima E, Sakaguchi M, et al.(2004)Propagation of adult rat bone marrow-derived hepatocyte-like cells by serialpassages in vitro. Cell Transplant13:385-391.
    63. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, et al.(2005)Differentiation of in vitro-modified human peripheral blood monocytes intohepatocyte-like and pancreatic islet-like cells. Gastroenterology128:1774-1786.
    64. Gehling UM, Willems M, Dandri M, Petersen J, Berna M, et al.(2005) Partialhepatectomy induces mobilization of a unique population of haematopoieticprogenitor cells in human healthy liver donors. J Hepatol43:845-853.
    65. Ji R, Zhang N, You N, Li Q, Liu W, et al.(2012) The differentiation of MSCs intofunctional hepatocyte-like cells in a liver biomatrix scaffold and theirtransplantation into liver-fibrotic mice. Biomaterials33:8995-9008.
    66. Wang J, Zhou X, Cui L, Yan L, Liang J, et al.(2010) The significance of CD14+monocytes in peripheral blood stem cells for the treatment of rat liver cirrhosis.Cytotherapy12:1022-1034.
    67. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, et al.(1999) Bonemarrow as a potential source of hepatic oval cells. Science284:1168-1170.
    68. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, et al.(2000) Derivation ofhepatocytes from bone marrow cells in mice after radiation-induced myeloablation.Hepatology31:235-240.
    69. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, et al.(2000) Liver frombone marrow in humans. Hepatology32:11-16.
    70. Wang X, Ge S, McNamara G, Hao QL, Crooks GM, et al.(2003) Albumin-expressinghepatocyte-like cells develop in the livers of immune-deficient mice that receivedtransplants of highly purified human hematopoietic stem cells. Blood101:4201-4208.
    71. Nowak G, Ericzon BG, Nava S, Jaksch M, Westgren M, et al.(2005) Identification ofexpandable human hepatic progenitors which differentiate into mature hepatic cellsin vivo. Gut54:972-979.
    72. Oyagi S, Hirose M, Kojima M, Okuyama M, Kawase M, et al.(2006) Therapeuticeffect of transplanting HGF-treated bone marrow mesenchymal cells intoCCl4-injured rats. J Hepatol44:742-748.
    73. am Esch JS,2nd, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, et al.(2005) Portalapplication of autologous CD133+bone marrow cells to the liver: a novel conceptto support hepatic regeneration. Stem Cells23:463-470.
    74. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, et al.(2006) Improved liverfunction in patients with liver cirrhosis after autologous bone marrow cell infusiontherapy. Stem Cells24:2292-2298.
    75. Yannaki E, Anagnostopoulos A, Kapetanos D, Xagorari A, Iordanidis F, et al.(2006)Lasting amelioration in the clinical course of decompensated alcoholic cirrhosiswith boost infusions of mobilized peripheral blood stem cells. Exp Hematol34:1583-1587.
    76. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Bagheri M, Bashtar M,et al.(2007) Phase1trial of autologous bone marrow mesenchymal stem celltransplantation in patients with decompensated liver cirrhosis. Arch Iran Med10:459-466.
    77. Gaia S, Smedile A, Omede P, Olivero A, Sanavio F, et al.(2006) Feasibility and safetyof G-CSF administration to induce bone marrow-derived cells mobilization inpatients with end stage liver disease. J Hepatol45:13-19.
    78. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, et al.(2006)Migration of bone marrow and cord blood mesenchymal stem cells in vitro isregulated by stromal-derived factor-1-CXCR4and hepatocyte growth factor-c-metaxes and involves matrix metalloproteinases. Stem Cells24:1254-1264.
    79. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, et al.(2003) HGF, SDF-1,and MMP-9are involved in stress-induced human CD34+stem cell recruitment tothe liver. J Clin Invest112:160-169.
    80. Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, et al.(2010) Recruitment ofendogenous bone marrow mesenchymal stem cells towards injured liver. J CellMol Med14:1494-1508.
    81. Almeida-Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED (2004)Formation of human hepatocytes by human hematopoietic stem cells in sheep.Blood104:2582-2590.
    82. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regeneratesliver by cell fusion. Nature422:901-904.
    83. Quintana-Bustamante O, Alvarez-Barrientos A, Kofman AV, Fabregat I, Bueren JA, etal.(2006) Hematopoietic mobilization in mice increases the presence of bonemarrow-derived hepatocytes via in vivo cell fusion. Hepatology43:108-116.
    84. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, et al.(2007) Functionalintegration of hepatocytes derived from human mesenchymal stem cells intomouse livers. Gut56:405-415.
    85. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, et al.(2006) The bonemarrow functionally contributes to liver fibrosis. Gastroenterology130:1807-1821.
    86. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versusregenerative medicine. J Cell Physiol213:341-347.
    87. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved inthe therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev20:419-427.
    88. van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, et al.(2008)Mesenchymal stem cell-derived molecules directly modulate hepatocellular deathand regeneration in vitro and in vivo. Hepatology47:1634-1643.
    89. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, et al.(2008) Mesenchymal stemcell-mediated immunosuppression occurs via concerted action of chemokines andnitric oxide. Cell Stem Cell2:141-150.
    90. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet371:838-851.
    91. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, et al.(2007)Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells.Biochem Biophys Res Commun363:247-252.
    92. Lan L, Chen Y, Sun C, Sun Q, Hu J, et al.(2008) Transplantation of bonemarrow-derived hepatocyte stem cells transduced with adenovirus-mediated IL-10gene reverses liver fibrosis in rats. Transpl Int21:581-592.
    93. Lin N, Hu K, Chen S, Xie S, Tang Z, et al.(2009) Nerve growth factor-mediatedparacrine regulation of hepatic stellate cells by multipotent mesenchymal stromalcells. Life Sci85:291-295.
    94. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, et al.(2004)Treatment of severe acute graft-versus-host disease with third party haploidenticalmesenchymal stem cells. Lancet363:1439-1441.
    95. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al.(2002) Humanbone marrow stromal cells suppress T-lymphocyte proliferation induced by cellularor nonspecific mitogenic stimuli. Blood99:3838-3843.
    96. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break,but promotes the immunosuppressive capacity of adult human mesenchymal stemcells. Clin Exp Immunol149:353-363.
    97. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLAexpression and immunologic properties of differentiated and undifferentiatedmesenchymal stem cells. Exp Hematol31:890-896.
    98. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression ofallogeneic T-cell proliferation by human marrow stromal cells: implications intransplantation. Transplantation75:389-397.
    99. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, et al.(2005) Human mesenchymal stemcells inhibit differentiation and function of monocyte-derived dendritic cells. Blood105:4120-4126.
    100. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, et al.(2004)Mesenchymal stem cells inhibit the expression of CD25(interleukin-2receptor)and CD38on phytohaemagglutinin-activated lymphocytes. Scand J Immunol60:307-315.
    101. Bacigalupo A, Valle M, Podesta M, Pitto A, Zocchi E, et al.(2005) T-cell suppressionmediated by mesenchymal stem cells is deficient in patients with severe aplasticanemia. Exp Hematol33:819-827.
    102. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, et al.(2006) Humanmesenchymal stem cells modulate B-cell functions. Blood107:367-372.
    103. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, et al.(2008)Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, andcytokine production: role of indoleamine2,3-dioxygenase and prostaglandin E2.Blood111:1327-1333.
    104. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006)Mesenchymal stem cell-natural killer cell interactions: evidence that activated NKcells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cellproliferation. Blood107:1484-1490.
    105. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006)Mesenchymal stem cells inhibit generation and function of both CD34+-derivedand monocyte-derived dendritic cells. J Immunol177:2080-2087.
    106. Deng W, Han Q, Liao L, You S, Deng H, et al.(2005) Effects of allogeneic bonemarrow-derived mesenchymal stem cells on T and B lymphocytes from BXSBmice. DNA Cell Biol24:458-463.
    107. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G (2007) Cell therapy usingallogeneic bone marrow mesenchymal stem cells prevents tissue damage incollagen-induced arthritis. Arthritis Rheum56:1175-1186.
    108. Dong QY, Chen L, Gao GQ, Wang L, Song J, et al.(2008) Allogeneic diabeticmesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. ClinInvest Med31: E328-337.
    109. Katuchova J, Tothova T, Farkasova Iannaccone S, Toporcer T, Harvanova D, et al.(2012) Impact of different pancreatic microenvironments on improvement inhyperglycemia and insulin deficiency in diabetic rats after transplantation ofallogeneic mesenchymal stromal cells. J Surg Res178:188-195.
    110. Jayne D, Passweg J, Marmont A, Farge D, Zhao X, et al.(2004) Autologous stem celltransplantation for systemic lupus erythematosus. Lupus13:168-176.
    111. Jayne D, Tyndall A (2004) Autologous stem cell transplantation for systemic lupuserythematosus. Lupus13:359-365.
    112. Marmont AM (2008) Will hematopoietic stem cell transplantation cure humanautoimmune diseases? J Autoimmun30:145-150.
    113. Barron KS, Wallace C, Woolfrey CEA, Laxer RM, Hirsch R, et al.(2001) Autologousstem cell transplantation for pediatric rheumatic diseases. J Rheumatol28:2337-2358.
    114. Li L, Shen S, Ouyang J, Hu Y, Hu L, et al.(2012) Autologous hematopoietic stemcell transplantation modulates immunocompetent cells and improves beta-cellfunction in Chinese patients with new onset of type1diabetes. J Clin EndocrinolMetab97:1729-1736.
    115. Sancho-Bru P, Najimi M, Caruso M, Pauwelyn K, Cantz T, et al.(2009) Stem andprogenitor cells for liver repopulation: can we standardise the process from benchto bedside? Gut58:594-603.
    116. Peng L, Xie DY, Lin BL, Liu J, Zhu HP, et al.(2011) Autologous bone marrowmesenchymal stem cell transplantation in liver failure patients caused by hepatitisB: short-term and long-term outcomes. Hepatology54:820-828.
    117. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenicstem cells: in vitro cultivation and transplantation in diffusion chambers. CellTissue Kinet20:263-272.
    118. Deryugina EI, Muller-Sieburg CE (1993) Stromal cells in long-term cultures: keys tothe elucidation of hematopoietic development? Crit Rev Immunol13:115-150.
    119. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitroexpansion of human mesenchymal stem cells: choice of serum is a determinant ofcell proliferation, differentiation, gene expression, and transcriptome stability.Stem Cells23:1357-1366.
    120. Cho KA, Ju SY, Cho SJ, Jung YJ, Woo SY, et al.(2009) Mesenchymal stem cellsshowed the highest potential for the regeneration of injured liver tissue comparedwith other subpopulations of the bone marrow. Cell Biol Int33:772-777.
    121. Miyata E, Masuya M, Yoshida S, Nakamura S, Kato K, et al.(2008) Hematopoieticorigin of hepatic stellate cells in the adult liver. Blood111:2427-2435.
    122. Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, et al.(2010) Combination stemcell therapy for heart failure. Int Arch Med3:5.
    123. Wendt MK, Molter J, Flask CA, Schiemann WP (2011) In vivo dual substratebioluminescent imaging. J Vis Exp.
    124. Ren H, Zhao Q, Cheng T, Lu S, Chen Z, et al.(2010) No contribution of umbilicalcord mesenchymal stromal cells to capillarization and venularization of hepaticsinusoids accompanied by hepatic differentiation in carbon tetrachloride-inducedmouse liver fibrosis. Cytotherapy12:371-383.
    125. Kato T, Hisasue M, Segawa K, Fujimoto A, Makiishi E, et al.(2013) Accumulationof Xenotransplanted Canine Bone Marrow Cells in NOD/SCID/gamma(c)(null)Mice with Acute Hepatitis Induced by CCl(4). J Vet Med Sci.
    126. Dacres H, Michie M, Wang J, Pfleger KD, Trowell SC (2012) Effect of enhancedRenilla luciferase and fluorescent protein variants on the Forster distance ofBioluminescence resonance energy transfer (BRET). Biochem Biophys ResCommun425:625-629.
    127. Sales VL, Mettler BA, Lopez-Ilasaca M, Johnson JA, Jr., Mayer JE, Jr.(2007)Endothelial progenitor and mesenchymal stem cell-derived cells persist intissue-engineered patch in vivo: application of green and red fluorescentprotein-expressing retroviral vector. Tissue Eng13:525-535.
    128. Wang P, Hu P, Yue DC, Liang H, Xu JH (2007) The clinical value of Tc-99mTRODAT-1SPECT for evaluating disease severity in young patients withsymptomatic and asymptomatic Wilson disease. Clin Nucl Med32:844-849.
    129. Fang B, Shi M, Liao L, Yang S, Liu Y, et al.(2004) Systemic infusion of FLK1(+)mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis inmice. Transplantation78:83-88.
    130. Zhao W, Li JJ, Cao DY, Li X, Zhang LY, et al.(2012) Intravenous injection ofmesenchymal stem cells is effective in treating liver fibrosis. World J Gastroenterol18:1048-1058.
    131. Shi Y, Hu G, Su J, Li W, Chen Q, et al.(2010) Mesenchymal stem cells: a newstrategy for immunosuppression and tissue repair. Cell Res20:510-518.
    132. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res312:2169-2179.
    133. Zhao DC, Lei JX, Chen R, Yu WH, Zhang XM, et al.(2005) Bone marrow-derivedmesenchymal stem cells protect against experimental liver fibrosis in rats. World JGastroenterol11:3431-3440.
    134. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stemcells convert into liver cells within days without fusion. Nat Cell Biol6:532-539.
    135. LeSage GD, Benedetti A, Glaser S, Marucci L, Tretjak Z, et al.(1999) Acute carbontetrachloride feeding selectively damages large, but not small, cholangiocytes fromnormal rat liver. Hepatology29:307-319.
    136. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, et al.(2008) Synergisticactions of hematopoietic and mesenchymal stem/progenitor cells in vascularizingbioengineered tissues. PLoS One3: e3922.
    137. Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, et al.(2008) Mesenchymal stem cellscooperate with bone marrow cells in therapy of diabetes. Stem Cells26:244-253.
    138. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, et al.(2004)Mesenchymal stem cells contribute to the renal repair of acute tubular epithelialinjury. Int J Mol Med14:1035-1041.
    139. Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I (2007) Number andproliferative capacity of human mesenchymal stem cells are modulated positivelyin multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int80:294-300.
    140. Ciulla MM, Ferrero S, Gianelli U, Paliotti R, Magrini F, et al.(2007) Directvisualization of neo-vessel formation following peripheral injection of bonemarrow derived CD34+cells in experimental myocardial damage. Micron38:321-322.
    141. Wang XY, Lan Y, He WY, Zhang L, Yao HY, et al.(2008) Identification ofmesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of humanembryos. Blood111:2436-2443.
    142. Wells RG (2008) Cellular sources of extracellular matrix in hepatic fibrosis. ClinLiver Dis12:759-768, viii.
    143. Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, et al.(2006) Liverfibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. JHepatol45:419-428.
    144. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmaticcells of the liver. Physiol Rev88:125-172.
    145. Beaussier M, Wendum D, Schiffer E, Dumont S, Rey C, et al.(2007) Prominentcontribution of portal mesenchymal cells to liver fibrosis in ischemic andobstructive cholestatic injuries. Lab Invest87:292-303.
    146. Su LJ, Chang CC, Yang CH, Hsieh SJ, Wu YC, et al.(2013) Graptopetalumparaguayense ameliorates chemical-induced rat hepatic fibrosis in vivo andinactivates stellate cells and Kupffer cells in vitro. PLoS One8: e53988.
    147. Christ B, Bruckner S (2012) Rodent animal models for surrogate analysis of celltherapy in acute liver failure. Front Physiol3:78.
    148. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, et al.(2001)Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.Cell105:369-377.
    149. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, et al.(2003)Human cord blood-derived cells can differentiate into hepatocytes in the mouseliver with no evidence of cellular fusion. Gastroenterology124:1891-1900.
    150. Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, et al.(2007) Bone marrow-derivedhepatic oval cells differentiate into hepatocytes in2-acetylaminofluorene/partialhepatectomy-induced liver regeneration. Gastroenterology132:1077-1087.
    151. di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, et al.(2008) Humanmesenchymal stem cells as a two-edged sword in hepatic regenerative medicine:engraftment and hepatocyte differentiation versus profibrogenic potential. Gut57:223-231.
    152. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, et al.(2009) Hepatocytedifferentiation of mesenchymal stem cells from human adipose tissue in vitropromotes hepatic integration in vivo. Gut58:570-581.
    153. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, et al.(2005) Human mesenchymalstem cells xenografted directly to rat liver are differentiated into humanhepatocytes without fusion. Blood106:756-763.
    154. Korbling M, Estrov Z (2003) Adult stem cells for tissue repair-a new therapeuticconcept? N Engl J Med349:570-582.
    155. Orlic D (2003) Adult bone marrow stem cells regenerate myocardium in ischemicheart disease. Ann N Y Acad Sci996:152-157.
    156. Fassett J, Tobolt D, Hansen LK (2006) Type I collagen structure regulates cellmorphology and EGF signaling in primary rat hepatocytes throughcAMP-dependent protein kinase A. Mol Biol Cell17:345-356.
    157. Trak-Smayra V, Contreras J, Dondero F, Durand F, Dubois S, et al.(2004) Role ofreplicative senescence in the progression of fibrosis in hepatitis C virus (HCV)recurrence after liver transplantation. Transplantation77:1755-1760.
    158. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, et al.(2001) Numerous growth factors, cytokines, and chemokines are secreted byhuman CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts andregulate normal hematopoiesis in an autocrine/paracrine manner. Blood97:3075-3085.
    159. Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, et al.(2012) Comparativeanalysis of paracrine factor expression in human adult mesenchymal stem cellsderived from bone marrow, adipose, and dermal tissue. Stem Cells Dev21:2189-2203.
    160. Sassoli C, Pini A, Chellini F, Mazzanti B, Nistri S, et al.(2012) Bone marrowmesenchymal stromal cells stimulate skeletal myoblast proliferation through theparacrine release of VEGF. PLoS One7: e37512.
    161. Weil BR, Markel TA, Herrmann JL, Abarbanell AM, Meldrum DR (2009)Mesenchymal stem cells enhance the viability and proliferation of human fetalintestinal epithelial cells following hypoxic injury via paracrine mechanisms.Surgery146:190-197.
    162. Togel F, Hu Z, Weiss K, Isaac J, Lange C, et al.(2005) Administered mesenchymalstem cells protect against ischemic acute renal failure throughdifferentiation-independent mechanisms. Am J Physiol Renal Physiol289: F31-42.
    163. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, et al.(2007) Interleukin1receptor antagonist mediates the antiinflammatory and antifibrotic effect ofmesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A104:11002-11007.
    164. Pulavendran S, Vignesh J, Rose C (2010) Differential anti-inflammatory andanti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells incarbon tetrachloride-induced liver injury in mice. Int Immunopharmacol10:513-519.
    165. He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oraldelivery of TNF-alpha siRNA to macrophages. Biomaterials34:2843-2854.
    166. Hou X, Yu F, Man S, Huang D, Zhang Y, et al.(2012) Polyinosinic-polycytidylic acidattenuates hepatic fibrosis in C57BL/6mice with Schistosoma japonicum infection.Acta Trop121:99-104.
    167. Zhao Q, Qian Y, Li R, Tan B, Han H, et al.(2012) Norcantharidin facilitatesLPS-mediated immune responses by up-regulation of AKT/NF-kappaB signalingin macrophages. PLoS One7: e44956.
    168. Dominguez-Luis M, Herrera-Garcia A, Arce-Franco M, Armas-Gonzalez E,Rodriguez-Pardo M, et al.(2013) Superoxide anion mediates the L-selectindown-regulation induced by non-steroidal anti-inflammatory drugs in humanneutrophils. Biochem Pharmacol85:245-256.
    169. Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stemcells reduce systemic inflammation and attenuate LPS-induced acute lung injury inrats. J Inflamm (Lond)9:33.
    170. Nyati KK, Prasad KN, Kharwar NK, Soni P, Husain N, et al.(2012)Immunopathology and Th1/Th2immune response of Campylobacterjejuni-induced paralysis resembling Guillain-Barre syndrome in chicken. MedMicrobiol Immunol201:177-187.
    171. Muriel P (2009) NF-kappaB in liver diseases: a target for drug therapy. J ApplToxicol29:91-100.
    172. Peter J, Frey O, Stallmach A, Bruns T (2013) Attenuated antigen-specific T cell
    responses in cirrhosis are accompanied by elevated serum interleukin-10levels and
    down-regulation of HLA-DR on monocytes. BMC Gastroenterol13:37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700