高密度沉淀池—超滤膜组合处理低浊水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着给水水源日益受到污染,传统的常规工艺已难以满足日益严格的饮用水水质标准,寻求新的饮用水处理工艺已成为给水领域最重要的研究课题。超滤膜被誉为21世纪的水处理技术,是替代传统的饮用水处理工艺的最佳选择之一。但超滤膜的截留分子量较大,去除原水中的溶解性有机物的效果较低。为了提高膜去除有机物的效果,在超滤膜前设置高密度沉淀池作为膜前预处理,减轻后续膜工艺的处理负荷。
     东营市饮用水水源典型特点为浊度低,本论文以东营市饮用水水源黄河口水作为试验用水,研究混凝剂聚合氯化铝(PAC)投药量,阴离子型聚丙烯酰胺(PAM)投加量及投加位置,污泥回流比和粉末活性炭回流投加等些参数对高密度沉淀池处理试验水的影响。
     对于配制的试验用水进行粉末活性炭吸附试验,研究发现,活性炭对有机物吸附较快,30分钟左右便达到吸附平衡。进一步通过正交试验L9(34)分析了PAC投药量、PAM投药量及投加位置、污泥回流比这四个因素对有机物去除效果的影响大小。试验表明,四因素对有机物去除效果影响由大到小依次为: PAC投加量→PAM的投加量→回流污泥百分比→PAM的投加位置;最佳试验条件为: PAC投加25mg/L,PAM的投加0.10mg/L,回流污泥60%,PAM同时投加于第1个和第3个反应器内,投加量各为0.05mg/L。在此试验参数下CODMn去除率达到60%左右。在上述试验基础上再投加KMnO4(0.4mg/L)后,对有机物的去处率还会提高3%左右。
     进行中试试验,高密度沉淀池和超滤膜的组合工艺在PAC投加20mg/L, PAM投加0.15mg/L,且PAM投加在反应池末端的工况下,和直接采用超滤膜处理试验水相比表明,有机物去除率由原来(直接超滤)的35%提高到50%。
     在原水藻类含量较高期间,通过高密度沉淀池和超滤膜的组合工艺对藻类去除效果好于水厂传统工艺对藻类的去除效果。并发现,高密度沉淀池耦合超滤工艺在减轻膜污染方面有很大作用,提高膜除藻率的稳定性。
With the serious pollution of drinking water resource,the environmental drinking water treatment Proeesses can not meet the more stringent requirement of the drinking water quality standard. So it has been the most important research subject in the drinking water treatment field to explore new drinking water treatment proeess. Ultra-filtration(UF) proeess was paid more and more attention beeause of the rapid development of membrane in dustry and its high removal effieieney to turbidity and virus.UF teehnology was regarded as“water treatment technology in the 21st Century,It was one of the optimal selections to alternate the conventional drinking water treatment proeesses.However,the dissolvedorganie matter removal effieiency was verylowinrawwater by UF beeause of the high molecular weight cut off of the membrane. so the UF membrane can be combine dused with the eoagulation or powder activated carbon(PAC) to improve the organiesre moval effeet.The improvement effeeton organies removal by Powderaetivatedc ar bonanditsin fluenee on the ultra filtration membrane fluxan dresistanee were the key researeh problems.
     Drinking water source is typically characteristic of low turbidity in Dongying.The paper which takes Dongying drinking water source water of Yellow River Estuary as test water, study the addition dosage amount and dosing position of coagulant as PAC and PAM anionic. some parameters as the recycle ratio of sludge and the Powdered activated carbon returning addition have effect on the Densadeg dealing with the test water.
     For testing the preparation of the test water for powdered activated carbon absorption Experimental, the study found, the activated carbon’adsorption of organic matter is fast, about 30 minutes to achieve equilibrium. PAC is not high recycling value by all appearance. Further through Orthogonal L9 (34) Analysis of PAC dosage as well as PAM, the dosing point and the recyle radio of sludge, four factors on the effect of removing organic matter. Tests showed that the four factors on the effect of removing organic as followed:PAC dosage→PAM dosage→recyle radio of sludge→the dosing point of PAM ;the best test conditions: PAC dosage 25 mg/L, PAM of 0.10 mg/L, returning sludge 60%, PAM added at the same time in the first and three reactor, which dosage of 0.05 mg/L. Under this test parameters, the removal rate of CODMn reach 60 percent. On the basis of the above test , adding KMnO4 (0.4mg/L) together, it will improve about 3 percent of removal rate of organic matter .
     Under the condition as the densadeg combinated with the UF and PAC dosage 20mg/L,PAM added in the end of the tank with dosage 0.15mg/L, the removal rate of the organic matter is raised from 35% to 50%, compared with the test water which is just treated directly by UF.
     In the raw water with high level of algae, a combination of densadeg and UF on removal of algae is better than the traditional one. And find that: it has a great role inl lightening up the pollute of menbrane through use UF combined with densadeg.
引文
1. 2005年中国环境状况公报,2005
    2. World Health Organization (WHO).Guidelines for Drinking Water Quality. and Ed. Vol 1. Geneva: WHO, 1993
    3. United States Environmental Protection Agency. Current Drinking Water Standard. Aug. 9, 2002
    4. Yasumoto Magara, Shoichi Kunikane, Masaki Itoh. Advanced Membrane Technology for Application to Water Treatment. Water Science and Technology, 1998, 37(10): 91-99
    5. Gunther, Hapke J., Design of Membrane Separation Plants Using a Module Data Base. Desalination, 1996, 104(1~2): 19~128
    6. H. Sumitomo., pH and Mg/Ca Control for Biological Treatment of an Offensive Flavour(2-M1B).Water Science and Technology.1998,37(10):101~106
    7. Jian-lun Qin. Mauny Htun Oo, Maung Nyunt Wai.Yi-Ming Cao, Enhancement of Boron Removal in Treatment of Spent Rinse from a Plating Operation Using RO.Desalination 2005,172 (2): I5l~156
    8. Pierre Le-Clech. Eun-Kyung Lee.Vicki Chen, Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters.Water Research.2006, 40 (2): 323~330
    9. Masahiro Otaki, Kazuvoshi Yano, Shinichiro Ohgaki.. Virus Removal in a Membrane Separation Process. Water Science and Technology. 1998, 37(10): 107~116
    10. Zheng Teng.Jian Yuan Huang.Kenji Fujita.Satoshi Takizawa, Manganese Removal by Hollow Fiber micro-filter Membrane Separation for Drinking Water.Desalination 2001.139(1~3), 411~418
    11. Katta J.Reddy.Jianping Lin Nitrate Removal from Groundwater Using Catalytic Reduction.Water Research. 2000, 34 (3). 995~1001
    12. Al.Schafer, A .G Fane.T.D.Wait.Cost Factors and Chemical Pretreatment Effects in the Membrane Filtration of Water Containing Natural Organic Matter. Water Research. 2001.35: 1509~1597
    13. Ultratiltration of Karstic Spring Water.Desalination 1998.117: 61~71
    14. W. Doyen.B. Baee.F .Lambrechts.R. Leysen.Methodology for Accelerated Pre-selection of Type of Membranes for Lame-scale Applications. Desalination. 1998.117: 85~94
    15. T.Suzuki.Y.Watanabe.G.Ozawa.S.Iheda.Removal of Soluble Organics and Manganese by a Hybrid MF Hollow Fiber Membrane System. Desalination. 1998.117: 119~30
    16. Wataru Nishijima.Mitsumasa Okada., Particle Separation as a Pretreatment of an Advanced Drinking Water Treatment Process by Ozonation and Biological Activated Carbon. Water Science and Technology. 1998. 37(10): 117~124
    17. A. Graveland., Particle and Micro-organism Removal in Conventional and Advanced Treatment Technology, Water Science and Technology, 1998, 37(10): 125~134
    18. Hyeok Choi, Hyung-Soo Kim, Ick-Tae Yeom,Dionvsios D.Dionvsiou., Pilot Plant Study of an Ultrafiltration Membrane System Fordrinking Water Treatment Operated in the Feed-and-bleed Mode, Desalination, 2005, 172 (3): 281~291
    19. Paul Fu et al. Selecting Membranes for Removing NOM and DBP Precursors. Jour.AWWA.l994, 86(12): 55~72
    20. Koffi Marcus Agbekodo et al. Organics in NF Permeate.Jour. AWWA. 1996. 88(5): 67~74
    21. Maryam Alborzfar et al. Removal of Natural Oganic Matter from Two Types of Humic Ground Waters by Nanotiltration.Wat. Res.1998, 32(10): 2983~2994
    22. Samer S. Adham et al. Predicting and Verifying Organis Removal by PAC in an Ultrafiltration System.Jour. AWWA. 1991, 83(12): 81~91
    23.李伟英,长江原水超滤膜处理工艺研究.同济大学工学博士学位论文. 2002.
    24. C.Blocher, M. Noronha .L. Fiinfrocken, J. Dorda, V. Mavrov, H. D. Janke. H. Chmiel., Recycling of Spent Process Water in the Food Industry by an Integrated Process of Biological Treatment and Membranes Eparation, Desalination, 2002, 44(1~3). 143~150
    25. Akira Yuasa., Drinking Water Production by Coagulation-micro Filtration and Adsorption-ultratiltration.Water Science and Technology, 1998,37(10): 135~146.
    26. Kazutaka Takata. Kazyuoshi Yamamoto, Rulin Bian, Yoshimasa Watanabe, Removal of Humic Substances with Vibratory Shear Enhanced ProcessingMembrane Filtration, Desalination, 1998. 117 (1-3): 273~282
    27. Hyeok Choi.Hyung-Soo Kim, Ick-Tae Yeom.Dionysios D.Dionvsiou., Pilot Plant Study of an Ultrafiltration Membrane System Fordrinking Water Treatment Operated in the Feed-and-bleed Mode. Desalination, 2004, 172 (3). 281~291
    28. M.Arora, R. C. Maheshwari.S.K.Jain, A.Guptal!se of Membrane Technology for Potable Water Production. Desalination, 2004.170 (2): 105~112
    29. Abdul Latif Ahmad. Suzylawati Ismail, Subhash Bhatia., Water Recycling from Palm Oil Mill Ettluent (POME) Using Membrane Technology. Desalination. 2003, 57(1~3): 87~95.
    30. Carroll T. King S, Gray S. et al. The Fouling of Microfiltration Membranes by NOM after Coagulation Treatment. Journal Wat. Res., 1997, Vol. 31(5): 1021~1026
    31. Joseph G.lacangelo et al. Assessing Hollow-fiber ultratiltration for Particulate Removal. Jour. AWWA, 1989,81(11): 68~75
    32.孔繁钰,胡海修.吴爱兵.中空纤维超滤净化长江水的试验研究.重庆工业高等专科学报.2004, 19(2): 10~11
    33. Jean-Michel Laine et al.Ultrafiltration of lake water:effect of pretreatment on the partitioning of organics,THMFP and flux,lour.AWWA, 1990. 82(12), 82~87.
    34. ludith Herschell Green. Michael Tylla. A Comparison of Uitrafiltration on Various River Waters.Desalination.l998, 118: 79-84
    35. J. M. Laine, K. Glucina.L. Malleret.A.Bruchet.I.Baudin.J. G. Jacanelo. Assessment of Membrane Processes for Taste and Odour RemovaI.Water Science and Technology: Water Supply.2001.1(4): 19~24
    36. K. Glucina, J. M.Laine.L.Durand-Bourlier.Assessment of Filtration Mode for the Ultratiltration Membrane Procee. Desalination, l998.118: 205~211
    37. V. Mavrov. H. Chmiel, I. Kluth. J. Meier. F. Heinrich, P. Ames. K. Backes. P. Usne. Comparative Study of Ditterent MF and UF Membranes for Drinking Water Production. Desal ination. l998,117: 89~96
    38. Michal Bodzek. Krystyna Konieczny.Comparison of Various Membrane Types and Module Configurations in the Treatment of Natural Water by Means of Low-pressure Membrane Methods. Separation and Technology. 1998, 14: 69~78
    39. P. Lipp, G. Baldaut: R. Schick. K. Elesenhans, H.-H. Stabe. Integration ofUltrafiltration to Conventional Drinking Water Treatment for a Better Particle Removal-Efficiency and Costs Desalination. 1998, 119: 133~142
    40.夏圣骥.超滤膜净化地表水研究. :哈尔滨工业大学博士论文: 2005, 6
    41. Samet S. Adham et al. Characteristics and Costs of MF and UF plans. Jour. AWWA, 1996, 88(5): 22~31
    42. Jean-Michel Laine et al.Ultrafiltration of Lake Water: Effect of Pretreatment on the Portioning of Organics, THMFP and Flux.Jour. Awwa, 1990, 82(12). 82~87
    43. Jean-Michel L. Aine et al. Ultrafiltration of Lake Water: Effect of Pretreatment on the Partitioning of Organics, THMFP and f1ux. Jour. AV'W. A. 1990, 82(12). 82-87
    44. Joseph G. Jacangelo et al. UF with Pretreatment for Removing DBP Precursors Jour. AWWA. 1995.87(3): 100~112
    45. Anne M. Jack et al. Using PAC-UF to Treat a Low-quality Surface water. Jour. AWWA. 1998, 90(11). 83~91
    46. Baehe D H, Rasool E.. Floc charaeter: measurement and role in optimum dosing. Water SRT-Aqua,1995, 44(2): 83~92
    47.汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.北京:中国环境科学出版社, 2000
    48. Chakraborti.R.K, Atkinson Joseph F.Van Bensehoten John E. et al. Charaeterization of Alum Floc by Image Analysis.Environmental Scienee and Eehnology, 2000, 54(18): 3969~3976
    49.王东升,王新娟,陈友军.聚合铝混凝过程中pH值的计算与调控.环境化学,2001,20(6): 544~549
    50. Carlos N, Luis M S, Elena F, et al. Polyacrylamide Induce Dflocculation of a Cement Suspension. Chemical Engineering Science, 2006, 61(8): 2522~2532
    51. Angus M, Kristen B, Jonas A M. Improved Dewatering Behavior of Clay Minerals dispersions via Interfacial Chemistry and Particle Interactions Optimization. Journal of Colloid and Interface Science, 2006, 293, (1): 116~127
    52.许嘉炯,郑毓佩,沈裘昌,等.新型高密度沉淀池优化投药试验研究,给水排水,2007, (2): 22~24
    53.张建第,李彦伟,蔡雪萍.关于低温低浊水混凝剂里的讨论.净水技术. 2002,22(2): 40~41
    54.霍明晰.低温低浊水质特性分析.中国给水排水. 1998, 14(6): 33~34
    55.柯水洲,袁辉洲,李宁,等.滤池反冲洗废水回用生产性试验研究.给水排水.1 992, (5): 4 ~7
    56.张纪军,石文明.利用排泥水回流处理低浊水的探讨.给水排水.1998,(2): 31~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700