耐酸石榴酒酵母的筛选及其耐酸性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石榴品种资源丰富、分布广、营养价值高、保健功能强,开发石榴酒不仅利于石榴的消费、增加产业值,而且符合发展果酒的产业政策。目前缺乏对酸石榴酒的研发。针对高酸、低pH特点,筛选出既能耐受高酸环境、又能高效降解其中有机酸的酵母具有重要意义。本文从酸、甜石榴汁成分差异,不同酵母在酸石榴汁中发酵特性,SO2对酿酒酵母代谢有机酸的影响,酿酒酵母对柠檬酸的耐性四方面进行了研究,对了解酵母的耐酸性能、解决高酸石榴及其它高酸水果的加工具有重要意义。主要结果如下:
     1.对酸、甜石榴汁的理化分析表明,酸、甜石榴汁的滴定酸分别为39.2g/L和4.4g/L,pH值分别为1.92和2.45。酸石榴汁除了高酸、低pH特点外,其它成分含量均满足酵母生长所需的营养要求。
     2.用反相高效液相(RP-HPLC)测定石榴汁中的有机酸组分。发现石榴汁中含有草酸、乳酸、柠檬酸、苹果酸、α-酮戊二酸、乙酸、琥珀酸、葡萄糖酸、酒石酸、富马酸。甜石榴中的有机酸以乳酸、草酸和柠檬酸为主,分别占总有机酸含量的51.2%、26.8%和16.8%;酸石榴中的有机酸以柠檬酸、乳酸为主,分别占总有机酸含量的84.4%与14.0%。
     3.酿酒酵母(Saccharomyces cerevisiae)WY-1、WY-2、WY-3和拜耳结合酵母(Zygosaccharomyces bailii)WY-4在酸石榴汁中耐50mg/L的SO2,前三株酿酒酵母的发酵性能均优于拜耳结合酵母WY-4,其发酵速度快,产酒率高,但发酵结束时滴定酸、总糖、还原糖、挥发酸含量在两种酵母之间没有差别。4株酵母代谢酸石榴汁中柠檬酸的能力没有显著差异(P>0.05),发酵结束后与柠檬酸含量下降了8.7%~13.3%相对应,总有机酸含量下降了8.1%~12.8%。
     4.奇异酵母(Saccharomyces paradoxus)WY-5、柠檬形克勒克酵母(Klockera apiculata)WY-6、WY-7和马科斯克鲁维酵母(Kluyveromyces marxianus)WY-8在酸石榴汁中添加50mg/L SO2的情况下不能发酵。榨汁后不进行SO2处理,WY-5和WY-6的发酵性能优于WY-8优于WY-7。酒精度差别较大,WY-5、WY-6产酒精最高为5.96%,其次为WY-8的5.79%,WY-7的最低为5.34%;WY-6产挥发酸最多(0.5g/L),其余3株在0.2g/L~0.3g/L之间;滴定酸、pH值、总糖、干浸出物差别不大。4株酵母代谢酸石榴汁中柠檬酸、乳酸的能力没有显著差异(P>0.05),发酵结束后总有机酸含量变化幅度在0.69%~3.81%之间。
     5.对8株酵母发酵的酸石榴酒进行感官品评发现,酒液均澄清透明、有光泽、酸味重;在颜色、香气浓郁程度和果香突出程度上,WY-6优于WY-1、WY-5。结合菌株的发酵特性与耐SO2能力,酿酒酵母WY-1更适于发酵酸石榴汁。
     6.添加60mg/L SO2对酿酒酵母WY-1生成琥珀酸有显著的促进作用(P<0.05);对酒石酸、苹果酸、α-酮戊二酸、柠檬酸和富马酸的含量则没有显著影响(P>0.05);对草酸、乙酸和乳酸的影响依石榴成分不同而有差异。
     7.在苹果汁中分别添加柠檬酸2.6、5.4、9.9、19.0、32.8、47.1、61.5g/L,对应苹果汁的pH值分别为3.20、2.97、2.74、2.51、2.31、2.17、2.03,研究了酿酒酵母WY-1在其中的生长、酒精发酵情况。柠檬酸浓度为2.6g/L~61.5g/L时,WY-1均能起发,发酵周期随柠檬酸浓度增大而延长。柠檬酸浓度2.6、5.4、9.9、19.0g/L时,对WY-1的细胞的总数、死亡率、残糖量、酒精与挥发酸含量没有显著影响(P>0.05);柠檬酸浓度为32.8g/L、47.1g/L时,WY-1细胞总数显著减少(P<0.05),死亡率极显著提高、残糖量极显著增多、挥发酸生成极显著升高(P<0.01),对酒精生成没有显著影响(P>0.05)。柠檬酸浓度2.6g/L、5.4g/L时,酵母细胞体积无显著变化(P>0.05);柠檬酸浓度大于等于9.9g/L时,细胞体积极显著减小(P<0.01)。比较47.1g/L和61.5g/L两个柠檬酸浓度,发酵苹果汁中WY-1细胞总数、死亡率没有显著差异(P>0.05),细胞体积显著减小(P<0.05),后者发酵不彻底。柠檬酸浓度为0、2.6、5.4、9.9、19.0、32.8g/L时,发酵后滴定酸升高;柠檬酸浓度为47.1g/L、61.5g/L时,发酵后滴定酸降低。
Punica granarum L. is rich in cultivar resources and widely distributed. Its fruit is featured by high nutritional value and health function. Pomegranate wine products could be fit for the development of liquor all over the world. It is important to select the wine yeast with high titratable acidity resistance and its characteristic of deacidification for the sour pomegranate juice fermentation. In this research, components of sour and sweet pomegranate juices, fermentation characteristics of 8 strains of yeasts in sour pomegranate juice, effect of sulfur dioxide (SO2) on organic acid metabolism by Saccharomyces cerevisiae, and resistance of Saccharomyces cerevisiae to citric acid were studied. The main research results were as follows:
     1. In the sour pomegranate juice, titratable acidity (TA) was 39.2g citric acid /L with pH value 1.92; whereas in the sweet juice, TA was 4.4g/L with pH value 2.45. Other components in sour juice, such as total sugar,α-AN and so on, were enough for wine yeasts growth except for the high acidity and low pH value.
     2. A RP-HPLC method for simultaneous determination of organic acids in pomegranate juices and wines was developed. Oxalic, lactic, citric, malic,α-ketoglutaric, acetic, succinic, fumaric, tartaric and gluconic acids were found in pomegranate juices. The main organic acids were lactic acid (51.2%), oxalic acid (26.8%), and citric acid (16.8%) in sweet pomegranate juice; while citric acid (84.4%) and lactic acid (14%) were the main organic acids in sour juice.
     3. Saccharomyces cerevisiae (WY-1, WY-2, WY-3) and Zygosaccharomyces bailii (WY-4) were able to endure 50mg/L SO2 in sour pomegranate juice. The wine yeast WY-1, WY-2, WY-3 had better fermentation performance with more rapid and steady fermentation speed and higher alcohol production; while WY-4 had a longer lag phase and slower fermentation speed. In all the finished wines, TA, total sugar, residual sugar and volatile acid content had no significant difference. Among the 4 wine yeast, no significant difference (P>0.05) was found in the ability of citric acid degradation, which was the main organic acid component in sour megranate juice. The total organic acid content in the finished wines decreased by 8.1~12.8% coinciding with citric acid decreasing by 8.7~13.3%.
     4. Saccharomyces paradoxus (WY-5), Klockera apiculata (WY-6, WY-7), Kluyveromyces marxianus (WY-8) couldn’t ferment the sour pomegranate juice with adding 50mg/L SO2. The wine yeast WY-5, WY-6 had the best fermentation performance both with alcoholic content 5.96% in the finished wines, while WY-6 produced the most volatile acid that was 0.5g/L. The TA, pH value, total sugar, and dry extractive content had almost no difference in all finished wines. The ability of citric acid degradation for the 4 yeast had no significant difference (P>0.05) and the variation range of total organic acid content in finished wines was between 8.1% and 12.8%.
     5. Sensory evaluations showed that pomegranate wines fermented by 8 strains of yeasts were all luster-transparent but have a strong acid taste. The wine fermented by WY-6 was better in natural coulor and moderate flavor than that fermented by WY-1 and WY-5. Simultaneously, considering the fermentation characteristics and SO2 resistance, the Saccharomyces cerevisiae WY-1 was the optimal strain to ferment sour pomegranate juice.
     6. Adding 60mg/L SO2 could significantly enhance the succinic acid production of Saccharomyces cerevisiae WY-1 (P<0.05), while decrease the production of pyruvic acid (P<0.05). SO2 addition had no significant effect on the formation of tartaric, malic,α-ketoglutaric, citric, and fumaric acids during pomegranate wine fermentation (P>0.05). Moreover, effect of adding 60mg/L SO2 on oxalic, acetic and lactic acids was different between the sweet and sour fermented pomegranate juice.
     7. The Saccharomyces cerevisiae WY-1 could ferment the apple juice with citric acid addition of 0g/L to 61.5g/L, but the fermentation period was prolonged in turn. Total cell number, size, and mortality of the yeast and residual sugar, alcohol and volatile acid of the fermented apple juice were not influenced significantly (P>0.05) by citric acid at level of 0, 2.6, 5.4, 9.9, and 19.0g/L. When the citric acid added to the apple juice was up to 32.8g/L and 47.1g/L, the total cell number of the yeast was decreased significantly (P<0.05), the cell size of it was decreased extreme significantly (P<0.01), and the cell mortality of it, residual sugar content and production of volatile acid of the fermented apple juice were increased extreme significantly (P<0.01), however the production of alcohol of the yeast was not effected significantly (P>0.05). At addition of 61.5g/L citric acid, the total cell number and cell mortality were not remarkably different (P>0.05) compared to that of 47.1 g/L citric acid addition, while cell size was reduced significantly (P<0.05) and the alcohol fermentation could not finished thoroughly. When citric acid was added at level of 0, 2.6, 5.4, 9.9, 19.0, and 32.8g/L, titration acidity of the fermented apple juice was increased after fermentation, however it was decreased at level of 47.1g/L and 61.5g/L.
引文
[1]白逢彦.酿酒酵母属的分类学研究进展[J].微生物学报, 2000, 27(2): 139~142.
    [2].陈永福,王记成,云振宇,等.高效液相色谱法测定传统发酵乳中的有机酸组成[J].中国乳品工业, 2007, 35(1): 54~58.
    [3]大连轻工业学院主编,食品分析[M].中国轻工业出版社, 1994.
    [4]杜琨,刘钊.低度石榴果酒的生产工艺[J].酿酒科技, 2006, 11: 81~82.
    [5]冯书勤,曹金娥,张月英.酸石榴的营养及药用价值[J].河北林业科技, 1996 (2): 28.
    [6]冯玉增,宋梅亭.我国石榴生产现状与发展建议[J].林业科技开发, 2000, 14(5): 7~9.
    [7]高海燕,廖小军,王善广等.反相高效液相色谱法测定果汁中11种有机酸条件的变化[J].分析化学, 2004, 32(12): 1645~1648.
    [8]高年发,王淑豪,李小刚等.酿酒酵母与粟酒裂殖酵母属间原生质体融合选育降解苹果酸强的葡萄酒酵母[J].生物工程学报, 2000, 16(6): 718~722.
    [9]高翔.石榴的营养保健功能及其食品加工技术[J].中国食物与营养, 2005, (7): 40~42.
    [10]高玉容.原生质体融合葡萄酒酵母用于葡萄酒降酸[J].酿酒科技, 2001, 3: 59~60.
    [11]郭根和,潘葳,苏德森等.反相高效液相色谱法同时测定枇杷中的某些有机酸[J].福建农业学报, 2005, 3: 198~201.
    [12]何志刚,李维新,林晓姿,等.枇杷果实成熟和贮藏过程中有机酸的代谢[J].果树学报, 2005, 22(1): 23~26.
    [13]何忠宝.原生质体融合构建葡萄酒降酸酵母的研究[D].西北农林科技大学, 2004,学位论文.
    [14]贺小贤.低度石榴洒的加工技术[J].农产品加工, 2003, 9: 18~19.
    [15]胡学智.醋和柠檬酸的保健功能[J].上海医药, 2001, 22(3): 131~134.
    [16]孔祥虹,李建华.反相高效液相色谱法测定果汁中的有机酸[J].理化检验-化学分册. 2004, 40(6): 331~333.
    [17]李剑芳,张灏.发酵猕猴桃汁中产香酵母的分离、鉴定及生长特性的研究[J].食品科学, 2001, 22(9): 19~22.
    [18]林华影,林风华,盛丽娜,等.淋洗液自动发生-离子色谱法同时测定食品中的21种有机酸[J].色谱, 2007, 25(1): 107~111.
    [19]刘爱凤,彭勋才.石榴丰产优质配套栽培技术[J].中国南方果树, 2002, 31(5): 64~66.
    [20]刘月永,高红心.干型石榴酒的研制[J].食品工业, 2000, 4: 23~25.
    [21]柳玉勇.亦食亦药话石榴[J].药膳食疗研究, 2001, 5: 20.
    [22]曲泽洲,孙云蔚.果树种类论[M].北京:农业出版社, 1990: 139~143.
    [23]任平,阮祥稳,秦涛等.石榴资源的开发利用[J].食品研究与开发, 2005, 26(3): 118~120.
    [24]史东健,林杨,张伟等.一步降解苹果酸葡萄酒酵母的构建及特性研究[J].酿酒, 2005, 32(3): 43~50.
    [25]唐虎利,谢亚玲.浸渍发酵法酿制干红石榴酒[J].酿酒科技, 2004, 6: 74~76.
    [26]王宪伟,杜琨,张百钢.石榴果酒的研制[J].中国酿造, 2006, 6: 75~76.
    [27]王志坚.酵母发酵副产物与啤酒风味[J].酿酒科技, 2001, 5: 68~70.
    [28]吴永平,高智席,王满力. HPLC-CL柱后同时检测葡萄酒中的有机酸[J].酿酒科技, 2007, 1: 99~101.
    [29]许跃华.建水酸石榴量增价跌[J].柑桔与亚热带果树信息, 2003, 19(11): 20.
    [30]薛晓珍.新疆石榴的营养成分及用途[J].仪器仪表与分析监测, 2002, 3: 44~45.
    [31]张明.葡萄酒酵母与粟酒裂殖融合实验[J].真菌学报, 1996, 15(3): 204~209.
    [32]张星元编著.发酵原理[M].无锡:无锡轻工大学出版, 1997.
    [33]赵玉平,杜连祥,刘丽丽等.降解山楂汁中柠檬酸酵母菌的筛选及其降酸特性研究[J].微生物学报, 2004, 44(2): 235~239.
    [34]周光洁,袁永勇,曾凡哲等.中国石榴生产的现状及发展前景[J].西南农业学报, 1995, 8(1): 111~115.
    [35]诸葛键.工业微生物实验技术手册[M].中国轻工业出版社, 1994. 39~42.
    [36] Al-Maiman S.A. and Ahmad D.. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation[J]. Food Chemistry, 2002, 76: 437~441.
    [37] Ansanay V., Dequin S., Camarasa C., et al.. Malolatctic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Saccharomyces pombe[J]. Yeast, 1996, 12: 215~225.
    [38] Apichai S., Pattana T., Rodjana B., et al.. Capillary zone electrophoresis of organic acids in beverages[J]. LWT - Food Science and Technology, 2007, 40(10): 1741~1746.
    [39] Aviram M, Rosenblat M, Gaitini D, et al.. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation[J]. Clin Nutr., 2004; 23(3):423~433.
    [40] Aviram M., Dornfeld L., Kaplan M., et al. Pomegranate juice flavonoids inhibit LDL oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans[J]. In: M. Colic, K. Pavelic and H.J. Seitz, Editors, ICMAN Proceedings, Bioscience Ediprint, 2002, 49~62.
    [41] Baranowski. K., Radler, F. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii[J]. Antonie Van Leeuwenhoek, 1984, 50: 329~340.
    [42] Berlitz H.D. and Grosch W.. Química de los alimentos (2nd ed.)(M). Acribia, Zaragoza, Espa?a. 1992.
    [43] Brandolini V., Romano P., Maietti A., et al.. Automated multiple development method for determination of glycerol produced by wine yeasts[J]. World Journal of Microbiology and Biotechnology, 2002, 18: 481~485.
    [44] Bridget J.P., Anthony H.R.. Reactions of Saccharomyces cerevisiae andZ.bailii to Sulphite[J]. J. Gen. Microbiol, 1988, 134: 2823~2830.
    [45] Castellari L, Ferruzzi M, Magrini A, et al. Unbalanced wine fermentation by cryotolerant vs non-cryotolerant Saccharomyces strains[J]. Vitis, 1994, 33: 49~52.
    [46] Casti?eira A., Pe?a R.M., Herrero C., et al. Analysis of organic acids in wine by capillary electrophoresis with indirect UV detection[J]. Journal of Food Composition and Analysis, 2002, 15: 319~331.
    [47] Ciani M. R., enological properties and potential use of non-Saccharomyces wine yeasts[J]. Recent Res Dev Microbiol, 1997, 1: 17~31.
    [48] Cortacero-Ramírez S., Segura-Carretero A., Hernáinz-Bermúdez de Castro M., et al. Determination of low-molecular-mass organic acids in any type of beer samples by coelectroosmotic capillary electrophoresis[J]. Journal of Chromatography A, 2005, 1064: 115~119.
    [49] Cunha S.C., Fernandes J.O., Ferreira I.M.P.L.V.O.. HPLC/UV determination of organic acids in fruit juices and nectars[J]. European Food Research and Technology, 2002, 214: 67~71.
    [50] Delcourt F, Taillandier P, Vidal F, et al. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 1995, 43: 321~324.
    [51] Derdelinckx G, Maudoux M, Collin S. et al Statistical and sensory differerces among special bottle refermented beers of a same type [J]. Monatsschrift fuer Brauwissenschaft, 1994(3): 88~93.
    [52] Ding M.Y., Koizumi H. and Suzuki Y.. Comparison of three chromatographic systems for determination of organic acids in wine[J]. Analytical Sciences, 1995, 11: 239~243.
    [53] Du C T, Wang P L, Francis F J. Anthocyanins of pomegranate, punica granatum[J]. J Food Sci., 1975;40(2): 417~418.
    [54] Edwin V., Jacqueline S., Fran?oise P., et al. Deacidification of clarified tropical fruit juices by electrodialysis. Part II. Characteristics of thedeacidified juices[J]. Journal of Food Engineering, 2007, 78(4): 1439~1445.
    [55] Esteves V.I., Lima S.S.F., Lima D.L.D. et al. Using capillary electrophoresis for the determination of organic acids in Port wine[J]. Analytica Chimica Acta, 2004, 513: 163~167.
    [56] Gao. C., Fleet. G.H. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts[J]. Food microbiology, 1995, 12(1): 65~71.
    [57] GB/T15038-2006.
    [58] Gil M I, Tomas-Barberan F A, Hess-Pierce B, et al. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing[J]. J Agric Food Chem, 2000, 48(10): 4581~4589.
    [59] Graca M, Susana D, Dulce A, et al. The Effect of Two Methods of Pomegranate (Punica granatum L) Juice Extraction on Quality during Storage at 4oC[J]. Journal of Biomedicine and Biotechnology, 2004, 5: 332~337.
    [60] Gregus Z, Klaassen CD. Mechanisms of toxicity. In: Casarett and Doull’s Toxicology: The Basic Science of Poisons. New York, NY: McGraw-Hill; 1996: 35~74.
    [61] Guido L F, Rodrigues P G, Rodrigues J A, et al. The impact of the physiological condition of the pitching yeast on beer flavour stability: an industrial approach[J]. Food Chemistry, 2004, 87: 187~193.
    [62] Harborne J.B. and Williams C.A., Advances in flavonoid research since 1992[J]. Phytochemistry, 2000, 55: 481~504.
    [63] Heftaman E. and Bennett S.T.. Identification of estrone in pomegranate seeds[J]. Phytochemistry, 1966, 5: 1337~1340.
    [64] Herrera M.O., Garcia H.L., Mir M.V. and Mar-tinez M.C.L. J. Liq. Chromatogr, 1993, 16: 3101~3112.
    [65] http://www.tiany.pzh.net.
    [66] Jarvls B, Forster M J , and Kinsella W P. Factors affecting thedevelopment of cider flavour[J]. J Appl Bacter Symp Sup, 1995, 79: 5~18.
    [67] Kerem Z., Bravdo B., Shoseyov O., et al. Rapid liquid chromatography-ultraviolet determination of organic acids and phenolic compounds in red wine and must[J]. Journal of Chromatography, 2004, 1052: 211~215.
    [68] Kocheva, E. T. , Bambalov, G. K., Spasov, KH. S., Selection of yeasts for production of red wines, Nauchni Tr.-Vissh lnst. Khranit.Vkusova Prom-st.,Plovdiv, 1998, 43: 185~191.
    [69] Kowalczyk E, Kopff A, Fija?kowski P, et al. Effect of anthocyanins on selected biochemical parameters in rats exposed to cadmium[J]. Acta Biochim Pol, 2003, 50(2): 543~548.
    [70] Lamikanra O., Inyang I.D., Leong S.. Distribution and effect of grape maturity on organic acid content of red muscadine grapes[J]. Journal of Agricultural and Food Chemistry, 1995, 43: 3026~3028.
    [71] Langley P.. Why a pomegranate?, Br. Med. J. 2000, 321: 1153~1154.
    [72] Lawrence C L, Botting C H, Antrobus R, and et al. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stress[J]. Mol. Cell. Biol, 2004, 24: 3307~3323.
    [73] Lea A G H. Cidermaking[M]. In Fermented Beverage Production. London: Blackie Academic and Professional Press. 1995.
    [74] Legua P, Melgarejo P, Martnez M, Hernandez F. Evolution of sugars and organic acid content in three pomegranate cultivars (Punica granatum L). Options Medit, 2000, 42: 99~104.
    [75] Lord P G, Wheals A E. Viability in Individual Cell Cycles of Saccharomyces cerevisiae[J]. Cell Sci., 1981, 50: 361~376.
    [76] Louis J. I., Russell E. B., Daigo S., et al. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide[J]. Nitric Oxide, 2006, 15(2): 93~102.
    [77] Macris B. J. and Markakis P.. Transport and toxicity of sulphur dioxide in Saccharomyces cerevisiae var. ellipsoideus [J]. Journal of the Science of Food and Agriculture, 1974, 25: 21~29.
    [78] Maestre J, Melgarejo P, Tom′as-Barber′an FA, Garcia-Viguera C. New food products derived from pomegranate. Options Medit. 2000, 42: 243~245.
    [79] Maier K., Hinze H. and Leuschel L.. Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae [J]. Biochimica et Biophysica Acta, 1986, 848: 120~130.
    [80] Marina B., Alessandra R., Denis D.. Influence of Assimilable Nitrogen on Volatile Acidity Production by Saccharomyces cerevisiae during High Sugar Fermentation [J]. Journal of Bioscience and Bioengineering, 2003, 96(6): 507~512.
    [81] Marina K N, Nils A. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures[J]. Food Microbiology, 2007, 24: 101~105.
    [82] Medeni M.. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: colour degradation and kinetics[J]. Journal of Food Engineering, 2006, 72(3): 218~224.
    [83] Melgarejo P, Salazar DM, Art′es F. Organic acids and sugars composition of harvested pomegranate fruits[J]. Eur Food Res Technol, 2000, 211(3): 185~190.
    [84] Moneam N.M., El Sharasky A.S. and Badreldin M.M.. Oestrogen content of pomegranate seeds[J]. J. Chromatogr, 1988, 438: 438~442.
    [85] Montanari L, Perretti G, Natella F, et al.. Organic and phenolic acids in beer [J]. Lebensmittel Wissenschaft und Technologie, 1999(8): 535~539.
    [86] Morales. LM., Gonzalez. GA, Troncoso. Ana M. Ion-exclusion chromatographic determination of organic acids in vinegars[J]. Journal of Chromatography, A, 1998, 822(1): 45~51.
    [87] Neelakantam V, Kolothumnnil C., Thomas W., et al. Acetic Acid and Lactic Acid Inhibition of Growth of Saccharomyces cerevisiae by Different Mechanisms[J]. J. Am. Soc. Brew. Chem., 2001, 59: 187~194.
    [88] Negi P.S., Jayaprakasha G.K. and Jena B.S., Antioxidant and antimutagenic activities of pomegranate peel extracts[J]. Food Chemistry, 2003, 80: 393~397.
    [89] Patel S. and Shibamoto S.. Effect of different strains of Saccharomyces cerevisiae on production of volatiles in Napa gamay wine and petite syrah wine [J]. J. Agric. Food Chem, 2002, 50: 5649~5653.
    [90] Pérez-Ruíz T., Martínez-Lozano C., Tomás V. and Martín J.. High-performance liquid chromatography separation of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection[J]. Journal of Chromatography A, 2004, 1026: 57~64.
    [91] Poyrazoglu E, Gokmen V, Artik N. Organic acids and phenolic compounds in pomegranates (Punica granatum L) grown in Turkey. J Food Compos Anal, 2002, 15(5): 567~575.
    [92] Pretorius I.S., Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking[J]. Yeast, 2000, 16: 675~729.
    [93] Pretorius I.S., van der Westhuizen T.J. and Augustyn O.P.H.. Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry[J]. South African Journal of Enology and Viticulture, 1999, 20: 61~74.
    [94] Pulvirenti A, Nguyen H, Caggia C, et al. Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto[J]. FEMS Microbiol Lett, 2002, 192: 191~196.
    [95] QB1686-93.
    [96] Radin. L., Pronzato. C., Casareto. L., et al. Tartaric acid in wines may be useful for preventing renal calculi: rapid determination by HPLC[J].Journal of Liquid Chromatography, 1994, 17(10): 2231~2246.
    [97] Rainieri S, Zambonelli C, Giudici P, et al. Characterisation of thermotolerant Saccharomyces cerevisiae hybrids[J]. Biotechnol Lett, 1998a, 20: 543~547.
    [98] Rainieri S, Zambonelli C, Tini V, et al. The enological traits of thermotolerant Saccharomyces strains[J]. Am J Enol Vitic, 1998b, 49: 319~324.
    [99] Ramon P F, Seiller I, Taillandier P et al. Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisae [J]. Food Technology and Biotechnology, 1999, 37(4): 235~240.
    [100] Redzepovic S, Orlic S, Majdak A, et al. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation[J]. Int J Food Microbiol, 2003, 83: 49~61.
    [101] Romano P., Fiore C., Paraggio M., et al. Function of yeast species and strains in wine flavour[J]. International Journal of Food Microbiology, 2003, 86(1-2): 169~180.
    [102] Romano P., Suzzi G., Comi G. and Zironi R. Higher alohol and acetic acid production by apiculate wine yeasts[J]. J. Appl. Bacteriol, 1992, 73: 126~130.
    [103] Romano P., Suzzi G., Zironi R., and Comi G.. Biometric study of acetoin production in Hanseniaspora guilliermondii and kloeckera apiculata[J]. Appied and Environmental Microbiology, 1993, 59(6): 1838~1841.
    [104] Salmon JM, Vezinhet F, Barre P. Anabolic role of L-malic acid in Saccharomyces cerevisiae in anerobiosis during alcoholic fermentation[J]. Appl Environ Microbiol, 1987, 55: 953~958.
    [105] Salmon JM. L-Malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae[J]. Biochim Biophys Acta, 1987, 901: 30~34.
    [106] SB/T10203-1994.
    [107] Schubert S Y, Lansky E P, Neeman I, Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids[J]. J Ethnopharmacol, 1999, 66(1): 11~17.
    [108] Sharaf A. and Nigm S.A.. The oestrogenic activity of pomegranate seed oil[J]. J. Endocrinol, 1964, 29: 91~92.
    [109] Shimazu Y, Watnabe M. Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation[J]. Ferment. Technol, 1981, 59: 27~32.
    [110] Shui G., Leong L.P.. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography[J]. Journal of Chromatography A, 2002, 977: 89~96.
    [111] Soyer Y., Koca N., Karadeniz F.. Organic acid profile of Turkish white grapes and grape juices[J]. Journal of Food Composition and Analysis, 2003, 16: 629~636.
    [112] Subden RE, Krizus A, Osothsilp C, et al. Mutational analyis of malate pathways in Schizosaccharomyces pombe[J]. Food Res Int, 1998, 31: 37~42.
    [113] Sudheesh S. and Vijayalakshmi N.R.. Flavonoids from Punica granatum-potential antiperoxidative agents[J]. Fitoterapia, 2005, 76(2): 181~186.
    [114] Taillandier. P., Strehaiano. P., The role of L-malic acid in the metabolism of Schizosaccharomyces pombe: substrate consumption and cell growth[J]. Appl. Microbiol. Biotechnol, 1991. 35, 541~543.
    [115] Teresa G. C., A. Robert M. F., Margaluz A. G., et al. Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields [J]. Food Chemistry, 2007, 103(3): 771~777.
    [116] Thornton R. J. and Rodriguez S. B.. Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions[J]. Food Microbiology, 1996, 13(6):475~482.
    [117] Torija M. J., Beltran G., Novo M., Poblet M., et al.. Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 916~922.
    [118] Vardin H. and Fenercio?lu H. , Study on the development of pomegranate juice processing technology: clarification of pomegranate juice[J]. Nahrung, 2003, 47: 300~303.
    [119] Viegas, C A, I. Sa-Correia. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid[J]. Gen. Microbiol, 1991, 137: 645~651.
    [120] Volschenk H., Viljoen M., Grobler J., Petzold B., et al. Engineering pathways for malate degradation in Saccharomyces cerevisiae[J]. Nat. Biotechnol, 1997, 15: 253~257.
    [121] Warth A.D. Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide[J]. J. Fd Prot, 1985, 48: 564~569.
    [123] Yang Ming-Hua, Choong Youk-Meng. A rapid gas chromatographic method for direct determination of short-chain (C2–C12) volatile organic acids in foods[J]. Food Chemistry, 2001, 75(1): 101~108.
    [124] Zotou A., Loukou Z., Karava O.. Method development for the determination of seven organic acids in wines by Reversed-Phase High Performance Liquid Chromatography[J]. Chromatographia, 2004, 60: 39~44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700