超冷玻色费米气体的集体原子反冲行为和Feshbach共振
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以玻色子87Rb和费米子40K在磁阱中实现了量子简并为基础,研究了超冷原子的大范围转移,从QUIC阱转移到向玻璃气室的中心;在绝热展开量子简并费米气体的基础上研究了费米子的瑞利超辐射;搭建了远失谐的交叉偶极力阱,实现了混合气体的绝热转载,实现了光阱中玻色费米气体的量子简并,结合微波射频制备原子超精细态的技术,观测到了玻色子87Rb和费米子40K的s-,p-,d-波的Feshbach共振,实现了原子之间相互作用的精细调节。
     简要地描述了实验上在磁阱中实现玻色费米气体量子简并的冷却过程,介绍了实验上需要的光学系统,计算机控制系统,磁场系统和微波射频装置。主要就QUIC组合线圈的设计工作,以及实验结果与理论计算的对比作了详细叙述,然后讨论了玻色气体和费米气体在进入量子简并区域的不同实验现象,以及实验上BEC和DFG的实验判据。BEC的实验判据很明显,就是飞行吸收成像中原子密度分布的各向异性和bimodal的存在;而费米气体的量子简并度有专门的参数衡量,没有像BEC一样明显的判据,要通过对实验数据进行拟合才能得到准确的原子云信息。最后详细研究了在QUIC阱中,用玻色子87Rb作为中间媒介来共同冷却费米子40K达到量子简并的情况,分别讨论了蒸发冷却中微波和射频的作用。实验中发现87Rb原子的另一个超精细态原子的存在严重影响了费米子的冷却效果,我们提出了一种结合微波和射频共同作用的冷却机制,提高了蒸发冷却的效率。
     针对超冷原子大范围转移的困难,我们采取了两种方法来克服,即利用重力方向的磁场抵消重力和加大重力方向磁阱的束缚减小重力的影响。实验上采用上述方法水平转移超冷原子达到12mmm,最后应用一个巧妙的磁场跳跃实现了原子振荡的压缩。这种转移的方法可以叠加使用,用作原子更大范围内的转移;转移过程中原子加热不明显,不会导致大量的原子损耗。
     本论文还介绍了稀薄超冷简并费米气体中的集体原子反冲行为。通过应用一个绝热可控展开将得到量子简并的费米气体进一步动量压缩,然后采用一束垂直偏振泵浦光照射原子云。我们首次在实验上观测到了费米气体的瑞利超辐射现象,证明了超辐射与原子所服从的量子统计没有关系。实验上观测到的许多实验现象期待进一步的理论解释。
     应用射频微波绝热转移将超冷原子制备在各自的绝对基态上,在0G到600G的范围内扫描磁场,观测到了10个Feshbach共振,包括6个同核共振,四个异核共振,其中有s-,p-,d-波的Feshbach共振。为了精确测量共振的位置,实验上测量了原子的损耗和加热,通过理论拟合得到了共振的位置,宽度等信息。实现了精确调节原子之间的相互作用。
In this thesis, the experiment allowing for the creation of large mixtures of quantum degerate fermionic 40K and bosonic 87Rb are firstly presented. The design, construction and the apparatus are briefly described here. More detailsfocus to the designs of three coils for the QUIC trap. At low temperature, both the Bose and Fermi gases are expanded relative to a classical gas at the same temperature. For fermions, however, this effect is due to the Pauli exclusion principle rather than atom-atom interactions. While in Bose case a phase transition separates the degenerate and classical regime, a trapped Fermi gas undergoes a gradual crossover between the classical limit and the compact Fermi sea.
     We have transport horizontally lot of ultracold atoms over a distance of 12mm in a harmonic trap. By using a horizontal homogeneous magnetic field in the direction reverse to the QUIC trap to decrease the bias field, we achieve a enough radial frequency providing strong confinement in order to hold the atoms against gravity for the whole transport distance. We demonstrate suppression in the oscillation of the atomic clouds using a technique based on the interaction between the atom and the homogeneous magnetic field in the final transport. This transport technique avoids the heating and loss induced by the mechanical noise and might have applications in transporting larger distances with quantum degenerate mixed gases.
     We demonstrate clear collective atomic recoil motion in a dilute, momentum-squeezed, ultra-cold degenerate fermion gas by circumventing the effects of Pauli blocking. Although gain from bosonic stimulation is necessarily absent because the quantum gas obeys Fermi-Dirac statistics, collective atomic recoil motion from the underlying wave-mixing process is clearly visible. With a single pump pulse of the proper polarization, we observe two mutually-perpendicular wave-mixing processes occurring simultaneously. Our experiments also indicate that the red-blue pump detuning asymmetry observed with Bose-Einstein condensates does not occur with fermions.
     Homonuclear and heteronuclear Feshbach resonances have been used in order to change the interaction properties of the mixture in a controlled fashion. We report the experimental preparation of the absolute ground states by means of the radio-frequency and microwave adiabatic rapid passages and the observation of magnetic Feshbach resonances in the ultracold mixture between 0 and 600 G, including 6 homonuclear and 4 heteronuclear Feshbach resonances. The resonances are identified by the abrupt trap loss of atoms induced by the strong inelastic three-body collisions. These Feshbach resonances should enable experimental control of the interspecies interactions.
引文
[1]A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Bericht 1 3(1925).
    [2]S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett.,55 48(1985).
    [3]A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping, Phys. Rev. Lett.,61 826(1988).
    [4]P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, Observation of Atoms Laser Cooled below the Doppler Limit, Phys. Rev. Lett.,61 169(1988).
    [5]M. H. Anderson, J. R. Ensher, M. R. Mattews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science,269, 198(1995).
    [6]K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett.,75 3969(1995).
    [7]B. DeMarco, and D. S. Jin, Onset of Fermi Degeneracy in a Trapped Atomic Gas, Science,285 1703(1999).
    [8]C. J. Pethick, and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge, Cambridge University Press(2002).
    [9]W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, In Bose-Einstein condensation in atomic gases, Proceedings of the International School of Physics "Enrico Fermi", Course CXL, edited by M. Inguscio, S. Stringari and C.E. Wieman (IOS Press, Amsterdam,1999) pp.67-176.
    [10]C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys.,71 253(1999).
    [11]J. M. Goldwin, Quantum degeneracy and interactions in 87Rb-40K Boes-Fermi mixture, PhD thesis, University of Colorado(2005).
    [12]G. Ferrari, Collisional relaxation in a fermionic gas, Phys. Rev. A,59 R4125(1999).
    [13]A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge and R. G. Hulet, Observation of Fermi Pressure in a Gas of Trapped Atoms, Science,291 2570(2001).
    [14]F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea, Phys. Rev. Lett., 87 080403(2001).
    [15]Insights Flow From Ultracold Atoms That Mimic Superconductors, Science,319 1180(2008).
    [16]D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Bose-Einstein Condensation of Atomic Hydrogen, Phys. Rev. Lett.,81 3811(1998).
    [17]A. Robert, O. Sirjean, A. Browaeys, J. Poupard. S. Nowak, D. Boiron, C. I. Westbrook and A. Aspect, A Bose-Einstein Condensate of Metastable Atoms, Science,292 461 (2001); F. Pereira Dos Santos, J. Leonard, Junmin Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, Bose-Einstein Condensation of Metastable Helium, Phys. Rev. Lett.,86 3459 (2001).
    [18]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett.,75 1687 (1995).
    [19]K. B. Davis, M.-O. Mewes, M. R.Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett.,75 3969(1995).
    [20]G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni and M. Inguscio, Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling, Science,294 1320(2001).
    [21]S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable Rb Bose-Einstein Condensates with Widely Tunable Interactions, Phys. Rev. Lett.,85 1795(2000).
    [22]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science,269 198(1995)
    [23]T. Weber, J. Herbig, M. Mark, H.-Christoph Nagerl and R. Grimm, Bose-Einstein Condensation of Cesium, Science,299 232(2003).
    [24]S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, Bose-Einstein Condensation of Alkaline Earth Atoms:40Ca, Phys. Rev. Lett.,103 130401(2009).
    [25]M. Khoon Tey, S. Stellmer, R. Grimm, and F. Schreck, Double-degenerate Bose-Fermi mixture of strontium, Phys. Rev. A,82 011608(R)(2010).
    [26]S. Stellmer, M. K.Tey, R. Grimm, and F. Schreck, Bose-Einstein condensation of 86Sr, Phys. Rev. A,82 041602(R) (2010).
    [27]P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and T. C. Killian, Bose-Einstein condensation of 88Sr through sympathetic cooling with 87Sr, Phys. Rev. A, 81 051601(R) (2010).
    [28]A.Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Bose-Einstein Condensation of Chromium, Phys. Rev. Lett.,94 160401(2005).
    [29]Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms, Phys. Rev. Lett.,91 040404 (2003).
    [30]T. Fukuhara, S. Sugawal, and Y. Takahashi 1, Bose-Einstein condensation of an ytterbium isotope, Phys. Rev. A,76 051604(R) (2007).
    [31]T. Fukuhara 1, S. Sugawal, Y. Takasu, and Y. Takahashi. All-optical formation of quantum degenerate mixtures, Phys. Rev. A,79 021601(R) (2009).
    [32]J. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst, and W. Vassen, Degenerate Bose-Fermi Mixture of Metastable Atoms, Phys. Rev. Lett.,97 080404 (2006).
    [33]Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto 1 and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature462,628(2009).
    [34]Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential, Phys. Rev. Lett., 102 130401 (2009).
    [35]Y.-an Liao,A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, E. J. Mueller, Spin-imbalance in a one-dimensional Fermi gas, Nature,467 567(2010).
    [36]I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys.,80 885 (2008).
    [37]Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas, Phys. Rev. Lett.,97 030401(2006).
    [38]V. N. Efimov, Weakly bound states of three resonantly-interacting particles, Sov. J. Nucl. Phys.,12 589(1971).(original, russian)
    [39]T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nagerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature,440 315(2006).
    [40]S. Knoop, F. Ferlaino, M. Mark, J. G. Danzl, T. Kraemer, H.-C. Nagerl, and R. Grimm, Observation of an Efimov-like trimer resonance in ultracold atom-dimer scattering, Nat. Phys.5,227(2009).
    [41]F. Ferlaino, S. Knoop, M. Mark, M. Berninger, H. Schobel, H.-C. Nagerl, and R. Grimm, Collisions between tunable halo dimers:Exploring an elementary four-body process with identical bosons, Phys. Rev. Lett.,101 023201(2008).
    [42]J. von Stecher, J. P. D'Incao, and C. H. Greene, Signatures of universal four-body phenomena and their relation to the Efimov effect, Nat. Phys.,5417(2009).
    [43]S. E. Pollack, D. Dries, R. G. Hulet, Universality in Three- and Four-Body Bound States of Ultracold Atoms, Science,326 1683(2009).
    [44]H. Ott, E. d. Mirandes, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Collisionally induced transport in periodic potentials, Phys. Rev. Lett.,92 160601(2004).
    [45]L. Pezze, L. Pitaevskii, A. Smerzi, S. Stringari, G. Modugno, E. d. Mirandes, F. Ferlaino, H. Ott, G. Roati, and M. Inguscio, Insulating behavior of a trapped ideal Fermi gas, Phys. Rev. Lett.,93 120401(2004).
    [46]G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Atom interferometry with trapped Fermi gases, Phys. Rev. Lett.,92 230402(2004).
    [47]I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, and M. Inguscio, Sensitive measurement of forces at the micron scale using Bloch oscillations of ultracold atoms, Phys. Rev. Lett.,95093202(2005).
    [48]W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin, High temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett.,89220407(2002).
    [49]F. Werner, O. Parcollet, A. Georges, and S. R. Hassan, Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices, Phys. Rev. Lett.,95 056401-4(2005).
    [1]Xiong De-Zhi, Chen Hai-Xia, Wang Peng-Jun, Yu Xu-dong, Gao Feng and Zhang Jing, Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap, Chin. Phys. Lett.25,843 (2008).
    [2]Stephan Falke, Eberhard Tiemann, Christian Lisdat, Harald Schnatz, and Gesine Grosche, Transition frequencies of the D lines of 39K,40K, and 41K measured with a femtosecond laser frequency comb, Physical Review A 74,032503(2006).
    [3]T.G. Tiecke, Properties of Potassium, available online at http://staff.science.uva.nl/-tgtiecke/PotassiumProperties.pdf
    [4]Daniel A. Steck, Rubidium 87 D Line Data, available online at http://steck.us/alkalidata (revision 2.1.4,23 December 2010).
    [5]Jun Ye, Steve Swartz, Peter Jungner, and John L. Hall, Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state, Optics Letters 21,1280 (1996).
    [6]S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon, and C. Salomon, High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain, Europhysics Letters 45,558 (1999).
    [7]E. Arimondo, M. Inguscio, and P. Violino, Experimental determinations of the hyperfine structure in the alkali atoms, Rev. Mod. Phys.4931(1977).
    [8]卫栋,87Rb—40K玻色费米混和气体磁光阱的实验研究,博十论文,山西大学,(2007).
    [9]陈海霞,87Rb—40K玻色费米混和气体量子简并的实现,博士论文,山西大学,(2009).
    [10]熊德智,87Rb和40K玻色费米量子简并混合气体在磁阱和光阱中的操控,博十论文,山西大学,(2010).
    [11]卫栋,陈海霞,熊德智,张靖,40K_87Rb原子冷却的半导体激光器系统,物理学报556342(2006).
    [12]Wei Dong, Xiong De-Zhi, Chen Hai-Xia, Wang Peng-Jun, Guo Lu and Zhang Jing, Simultaneous magneto-optical trapping of fermionic 40K and bosonic 87Rb atoms, Chin. Phys. Lett.24,1541 (2008).
    [13]王鹏军,陈海霞,熊德智,于旭东,高峰,张靖,实现玻色-费米混合气体量子 简并的四极loffe组合磁阱设计,物理学报57 4840(2006).
    [14]Bergeman T, Erez G, Metcalf H J, Physical Review A 35,1535(1987).
    [15]D. Pritchard, Cooling neutral atoms in a magnetic trap for precision spectroscopy, Phys. Rev. Lett.,51,1336(1983).
    [16]Todd Philips Meyath, Experiments with Bose-Einsterin condensation in an optical box, Ph. D thesis, University of Texas at Austin, (2005).
    [17]W. Ketterle and N. J. Van Druten, Adv. At. Modl. Opt. Phys.37,181(1996).
    [18]J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarizartion gradient:simple theoretical models, J. Opt. Soc. Am. B 6,2023(1989).
    [19]C. J. Foot, Atomic physics, Oxford, Oxford university press,2005,203-207.
    [20]H. F. Hess,,Bull. Am. Phys. Soc.30,854 (1985).
    [21]H. F. Hess, Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen, Phys. Rev. B 34,3476 (1986).
    [22]M. H. Anderson, J. R. Ensher, M. R. Mattews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science,269, 198(1995).
    [23]K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett.,75,3969(1995).
    [24]B. DeMarco and D. S. Jin, Onset of Fermi Degeneracy in a Trapped Atomic Gas, Science,285,1703(1999).
    [25]Insights flow from ultracold atoms that mimic Superconductors, Science,319, 1180(2008)
    [26]D. Ciampini, E. Courtade, C. Sias, D. Cossart, G. Carelli, F. Mango, O. Morsch and E. Arimondo, Opt. Commun.,257,340(2006).
    [27]Wang Peng-jun, Xiong De-Zhi, Fu Zheng-Kun and Zhang-Jing, Experimental investigation of evaporative cooling mixture of bosonic 7Rb and fermionic 40K atoms with microwave and radio frequency radiation, Chin. Phys. B,20,016701(2011).
    [28]Xiong De-Zhi, Wang Peng-jun, Chen Hai-xia and Zhang-Jing, Evaporative cooling Rubidium atomswith Radiation,Chin. Opt. Lett.,8351(2010).
    [29]C. Silber, S. Gunther, C. Marzok, B. Deh, Ph.W. Courteille, and C. Zimmermann, Quantum-Degenerate Mixture of Fermionic Lithium and Bosonic Rubidium Gases, Phys. Rev. Lett.,95,170408(2005).
    [30]M Haas, V Leung, D Frese, D Haubrich, S John, C Weber, A Rauschenbeutel and D Meschede, Species-selective microwave cooling of a mixture of rubidium and caesium atoms, New J. Phys.,9 147(2007)
    [31]D. S. Durfee and W. Ketterle, Experimental studies of Bose-Einstein condensation, Opt. Express 8 299(1998)
    [32]徐震,周蜀渝,屈求智,刘华,周善钰和王育竹,QUIC阱中紧束缚状态下87Rb原子气体的玻色-爱因斯坦你具体相变的直接观测,物理学报,55 56443(2006).
    [33]Y. Castin and R. Dum, Bose-Einstein condensates in time-dependent traps, Phys. Rev. Lett.77,5315(1996).
    [32]D. G. Greif, Evaporative cooling and Bose-Einstein Condensation of Rb-87 in a moving-coil TOP trap geometry, Ph. D thesis, Stony Brook University(2007)
    [33]C.Ospelkaus, Fermi-Bose mixtures From mean-field interactions to ultracold chemistry. Ph. D thesis, University of Hamburg(2006)
    [34]王鹏军 熊德智 陈海霞 张靖,原子吸收成像的二维光学密度分布获得量子简并费米气体参数,光学学报,30 893(2010)
    .[35] Stefano Giorgini, Lev P. Pitaevskii and Sandro Stringari, Theory of ultracold Fermi gases, Rev. Mod. Phys.80 1215(2008)
    [1]F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, Cavity QED with a Bose-Einstein condensate, Nature,450268 (2007).
    [2]T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard and W. Ketterle, Phys. Rev. Lett.,88 020401(2001).
    [3]A. Couvert, T. Kawalec, G. Reinaudi and D. Guery-Odelin,Optimal transport of ultracold atoms in the non-adiabatic regime, Eur. Phys. Lett.,83 13001 (2008).
    [4]S. Schmid, G. Thalhammer, K. Winkler, F. Lang and J. Denschlag, Long distance transport of ultracold atoms using a 1D optical lattice, New J. Phys.,8 159(2006).
    [5]W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, Bose-Einstein condensation on a microelectronic chip, Nature,413 498 (2001).
    [6]J. Fortagh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys.,79 235 (2007).
    [7]C. Klempt, T. Henninger, O. Topic, J. Will, St. Falke, W. Ertmer, and J. Arlta, Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap, Eur. Phys. J. D,48 121(2008).
    [8]D. Xiong, P. Wang, Z. Fu and J. Zhang, Transport of Bose-Einstein condensate in QUIC trap and separation of trapping spin states, Opt. Express 18 1649(2010).
    [9]熊德智,87Rb和40K玻色费米量子简并混合气体在磁阱和光阱中的操控,博士论文,山西大学,(2010).
    [10]Daniel A. Steck, Rubidium 87 D Line Data, available online at http://steck.us/alkalidata (revision 2.1.4,23 December 2010).
    [11]Ketterle W and Zwierlein M 2006 Making, probing and understanding ultracold Fermi gases Ultracold Fermi Gases Proc. Int. School of Physics "Enrico Fermi'(Varenna, Italy,20-30 June 2006) ed M Inguscio et al Course CLXIV, arxiv:0801.2500.
    [12]J. J. Zirbel, K.-K. Ni, S. Ospelkaus, T. L. Nicholson, M. L. Olsen, P. S. Julienne, C. E. Wieman, J. Ye, and D. S. Jin, Heteronuclear molecules in an optical dipole trap, Phys. Rev. A,78 013416(2008).
    [13]T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, Bose-Einstein Condensation of Cesium, Science 299 232 (2003).
    [14]D. J. Han, M. T. DePue, and D. S. Weiss, Loading and compressing Cs atoms in a very far-off-resonant light trap, Phys. Rev. A 63,023405 (2001).
    [15]陈帅,87Rb原子玻色-爱因斯坦凝聚的实验研究,博士论文,北京大学(2004).
    [16]D. Xiong, P. Wang, Z. Fu, S. Chai and J. Zhang, Evaporative cooling of 87Rb atoms into Bose-Einstein condensate in an optical dipole trap, Chin. Opt. Lett.,7 627(2010). Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin, Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps, Phys. Rev. A 78,011604(R)(2008)
    [17]D. Chen, H. Zhang, X. Xu, T. Li, and Y. Wang, Nonadiabatic transport of cold atoms in a magnetic quadrupole potential, Appl. Phys. Lett.,96 134103(2010).
    [18]S. D. Hogan, A.W. Wiederkehr, H. Schmutz, and F. Merkt, Magnetic Trapping of Hydrogen after Multistage Zeeman Deceleration, Phys. Rev. Lett.,101 143001 (2008).
    [19]S. D. Hogan, D. Sprecher, M. Andrist, N. Vanhaecke, and F. Merkt, Zeeman deceleration of H and D, Phys. Rev. A,76 023412 (2007).
    [20]N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, Multistage Zeeman deceleration of hydrogen atoms, Phys. Rev. A,75 031402 (2007).
    [1]R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev.,9399 (1954).
    [2]N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, Observation of Dicke Superradiance in Optically Pumped HF Gas, Phys. Rev. Lett.,30 309 (1973); Y. N. Chen, D. S. Chuu, and T. Brandes, Current Detection of Superradiance and Induced Entanglement of Double Quantum Dot Excitons,Phys. Rev. Lett.,90 166802 (2003); Y. N. Chen, C. M. Li, D. S. Chuu, and T. Brandes, Proposal for teleportation of charge qubits via super-radiance, New J. Phys.7,172 (2005);
    [3]A. Mitra, R. Vyas, and D. Erenso, Generation and evolution of entanglement in coupled quantum dots interacting with a quantized cavity field, Phys. Rev. A,76 052317 (2007).
    [4]S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger. and W. Ketterle, Superradiant Rayleigh Scattering from a Bose-Einstein Condensate, Science,285 571 (1999).
    [5]L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, Coherence-Enhanced Imaging of a Degenerate Bose-Einstein Gas, Phys. Rev. Lett.,98 110401 (2007).
    [6]H. Uys, and P. Meystre, Theory of coherent Raman superradiance imaging of condensed Bose gases, Phys. Rev. A,75 033805 (2007).
    [7]H. Uys, and P. Meystre, Superradiant Raman scattering in an ultracold Bose gas at finite temperature, Phys. Rev. A,77 063614 (2008).
    [8]A. T. Black, J. K. Thompson, and V. Vuletic, On-Demand Superradiant Conversion of Atomic Spin Gratings into Single Photons with High Efficiency, Phys. Rev. Lett.,95 133601 (2005).
    [9]P. F. Herskind, A. Dantan, J. P. Marler, M. Albert, and M. Drewsen, Realization of collective strong coupling with ion Coulomb crystals in an optical cavity, Nat. Phys.,5 494 (2009).
    [10]W.ketterle, and S. Inouye, Does Matter Wave Amplification Work for Fermions?, Phys. Rev. Lett.,86 4203(2001)
    [11]M. G. Moore, and P. Meystre, Atomic Four-Wave Mixing:Fermions versus Bosons, Phys. Rev. Lett.,86 4199(2001)
    [12]P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, Four-wave mixing in degenerate atomic gases, Phys. Rev. A,64 023606 (2001)
    [13]Yutaka Yoshikawa, Yoshio Torii, and Takahiro Kuga, Superradiant Light Scattering from Thermal Atomic Vapors, Phys. Rev. Lett.,94 083602 (2005).
    [14]Pengjun Wang, L. Deng, E.W. Hagley, Zhengkun Fu, Shijie Chai, Jing Zhang, Observation of collective atomic recoil motion in a momentum-squeezed, ultra-cold, degenerate fermion gas, arXiv:1006.3250v2.
    [15]M Gross, and Serge Haroche, Superradiance:An essay on the theory of collective spontaneous emission, Phys Rep.,93301 (1982).
    [16]C. J. Foot, Atomic Physics, Department of Physics University of Oxford, Oxford University presses (2005) P180.
    [17]W. Ketterle, and S. Inouye, Collective enhancement and suppression in Bose-Einstein condensates. Compte rendus de l'academie des sciences, Serie Ⅳ-Physique Astrophysique, vol.2, pp.339-380 (2001); E-print:cond- mat/0101424.
    [18]L. Deng, E. W. Hagley, Qiang Cao, Xiaorui Wang, Xinyu Luo, Ruquan Wang, M. G. Payne, Fan Yang, Xiaoji Zhou, Xuzong Chen, and Mingsheng Zhan, Observation of a Red-Blue Detuning Asymmetry in Matter-Wave Superradiance, Phys. Rev. Lett.,105 220404(2010).
    [19]L. Deng, M. G. Payne, and E. W. Hagley, Electromagnetic Wave Dynamics in Matter-Wave Superradiant Scattering, Phys. Rev. Lett.,104 050402 (2010)
    [20]W. Ketterle, Comment on "Electromagnetic Wave Dynamics in Matter-Wave Superradiant Scattering", Phys. Rev. Lett.,106 118901 (2011); Deng, M. G. Payne, and E. W. Hagley, "Deng, Payne, and Hagley Reply:", Phys. Rev. Lett.,106 118902 (2011).
    [21]杨帆,玻色-爱因斯坦凝聚体动量操控的物理机制研究,博士论文,北京大学(2008).
    [22]Y. Yoshikawa, T. Sugiura, Y. Torii, and T. Kuga, Observation of superradiant Raman scattering in a Bose-Einstein condensate, Phys. Rev. A,69 041603(R) (2004).
    [23]D. Schneble, G. K. Campbell, E. W. Streed, M. Boyd, D. E. Pritchard, and W. Ketterle, Raman amplification of matter waves, Phys. Rev. A,69 041601(R) (2004).
    [24]J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, Entropy Exchange in a Mixture of Ultracold Atoms, Phys. Rev. Lett.,103 140401 (2009).
    [25]L. Costa, J. Brachmann, A.-C. Voigt, C. Hahn, M. Taglieber, T. W. Hansch, and K. Dieckmann, s-Wave Interaction in a Two-Species Fermi-Fermi Mixture at a Narrow Feshbach Resonance, Phys. Rev. Lett.,105 123201 (2010).
    [26]B. DeMarco, and D. S. Jin, Exploring a quantum degenerate gas of fermionic atoms, Phys. Rev. A,583267(1998).
    [1]H. Feshbach, Unified theory of nuclear reactions, Ann. Phys.,5,357(1958); H. Feshbach, Unified theory of nuclear reactions Ⅱ, Ann. Phys.,19287 (1962).
    [2]F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation, Rev.Mod.Phys.,71 463(1999).
    [3]A.J. Leggett, Bose-Einstein condensation in the alkali gases; Some fundamental concepts, Rev. Mod. Phys.,73 307 (2001).
    [4]S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature,392 151(1998).
    [5]M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules, Phys. Rev. Lett.,94 103201(2005).
    [6]J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances, Phys. Rev. Lett.,82 2422-2425(1999).
    [7]C. D'Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni, Feshbach resonances in ultracold 39K, New J. Phys.,9223(2007).
    [8]N. R. Claussen, S. J. J. M. F. Kokkelmans, S. T. Thompson, E. A. Donley, E. Hodby, and C. E. Wieman, Very-highprecision bound-state spectroscopy near a 85Rb Feshbach resonance, Phys. Rev. A,67 060701(2003).
    [9]A. Marte, T. Volz, J. Schuster, S. Durr, G. Rempe, E. G. M. van Kempen, and B. J. Verhaar, Feshbach resonances in rubidium 87:Precision measurement and analysis, Phys. Rev. Lett.,89,283202(2002).
    [10]C. Chin, V. Vuletic, A. J. Kerman, S. Chu, E. Tiesinga, P. J. Leo, and C. J. Williams, Precision Feshbach spectroscopy of ultracold Cs2, Phys. Rev. A,70 032701(2004).
    [11]J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, Observation of Feshbach resonances in an ultracold gas of 52Cr, Phys. Rev. Lett.,94 183201(2005).
    [12]J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, p-wave Feshbach resonances of ultracold 6Li, Phys. Rev. A,70 030702(2004).
    [13]C. A. Regal, and D. S. Jin, Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett.,90 230404(2003).
    [14]K.. Goyal, I. Reichenbach and I. Deutsch, p-Wave Optical Feshbach Resonances in 171 Yb, Phys. Rev. A,82 062704 (2010).
    [15]B. Deh, C. Marzok, C. Zimmermann, and P. W. Courteille, Feshbach resonances in mixtures of ultracold 6Li and 87Rb gases, Phys. Rev. A,77 010701(2008).
    [16]Z. Li, S. Singh, T. V. Tscherbul, and K. W. Madison, Feshbach resonances in ultracold 85Rb-87Rb and 6Li-87Rb mixtures," Phys. Rev. A,78 022710(2008).
    [17]A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Knockel, and E. Tiemann, Coupling of the X 1∑+ and a 3∑+ states of KRb," Phys. Rev. A 76,022511(2007).
    [18]A. Simoni, M. Zaccanti, C. D'Errico, M. Fattori, G. Roati, M. Inguscio, and G. Modugno, Near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy, Phys. Rev. A,77 052705(2008).
    [19]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett.,75 1687(1995). C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett.,78985 (1997).
    [20]E. A. Donley, N. R. Clausen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature,412 295(2001).
    [21]S. L. Cornish, S. T. Thompson, and C. E. Wieman, Formation of bright matter-wave solitions during the collapse of attractive Bose-Einstein condensates, Phys. Rev. Lett.96, 170401(2006).
    [22]C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys.,82 1225 (2010)
    [23]T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, Bose-Einstein condensation of cesium, Science,299 232 (2003).
    [24]C. A. Regal,, C. Ticknor, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a Fermi gas of atoms, Nature,424 47 (2003). [40K2]
    [25]E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C. Wilson, D. S. Jin, and E. A. Cornell, Production efficiency of ultra-cold Feshbach molecules in bosonic and fermionic systems, Phys. Rev. Lett.,94,120402(2005). [85Rb40K]
    [26]S. T. Thompson, E. Hodby, and C. E. Wieman, Ultracold molecule production via a resonant oscillating magnetic field, Phys. Rev. Lett.,95 190404(2005). [85Rb]
    [27]J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, p-wave Feshbach molecules, Phys. Rev. Lett.,98 200403(2007). [40K2]
    [28]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, Bose-Einstein condensation of molecules, Science,302 2101(2003). [Li2]
    [29]M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of Bose-Einstein condensation of molecules Phys. Rev. Lett.,91 250401(2003). [6Li2]
    [30]A. Altmeyer, S. Riedl, C. Kohstall, M. Wright, R. Geursen, M. Bartenstein, C. Chin, J. Hecker Denschlag, and R. Grimm, Precision measurements of collective modes in the BEC-BCS crossover, Phys. Rev. Lett.,98 040401(2007).
    [31]S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold Fermi gases, Rev. Mod. Phys.,80 1215(2008).
    [32]M. Inguscio, W. Ketterle, and C. Salomon,2008, Eds., Ultracold Fermi Gases, Proceedings of the International School of Physics "Enrico Fermi," Course CLXIV, Varenna,2006 (ISO,Amsterdam).
    [33]P.O. Fedichev, Yu. Kagan, G.V. Shlyapnikov, and J.T.M. Walraven, Influence of Nearly Resonant Light on the Scattering Length in Low-Temperature Atomic Gases, PRL 77,2913(1996).
    [34]R. A. Duine, and H. T. C. Stoof, Atom-molecule coherence in Bose gases, Phys. Rep., 396 115(2004).
    [35]H. Feshbach, Theoretical nuclear physics, Wiley, New york(1992).
    [36]T. Kohler, K. Goral, and P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys.,78 1311(2006).
    [37]D. Naik, A. Trenkwalder, C. Kohstall, F. M. Spiegelhalder, M. Zaccanti, G. Hendl, F. Schreck, R. Grimm, T. M. Hanna, and P. S. Julienne, Feshbach resonances in the 6Li-40K Fermi-Fermi mixture:Elastic versus inelastic interactions, arXiv:1010.3662(2010)
    [38]熊德智,87Rb和40K玻色费米量子简并混合气体在磁阱和光阱中的操控,博士论文,山西大学,(2010).
    [39]V.V. Ivanov, Cold atoms:modified radiative properties and evaporative cooling from optical traps, Phd thesis, Universiteit of Amsterdam, (2007).
    [40]M. succo, Degenerate Quantum Gases in Optical Lattice Potentials, Diplomarbeit, University of Hamburg(2006).
    [41]H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Spin-exchange and dipole relaxation rates in atomic hydrogen:Rigorous and simplified calculations, Phys. Rev. B, 384688(1988).
    [42]E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Threshold and resonance phenomena in ultracold ground-state collisions, Phys. Rev. A,474114 (1993).
    [43]B. DeMarco, Quantum Behavior of an Atomic Fermi Gas, Phd thesis, Universiteit of Colorado(2001).
    [44]C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Multiplet structure of Feshbach resonances in nonzero partial wave, Phys. Rev. A,69 042712 (2004).
    [45]K. Gunter, T. Stoferle, H. Moritz, M. Kohl, and T. Esslinger, p-Wave Interactions in Low-Dimensional Fermionic Gases, Phys. Rev. Lett.,95 230401 (2005).
    [46]K. J. Gunter, Interacting Fermi gases and Bose-Fermi mixtures in optical lattices, Phd thesis, Universiteit of Zurich (2007).
    [47]A. Pashov, O. Docenko, M. Tamanis, R. Ferber H. Knockel and E. Tiemann, Coupling of the X'∑+ and a3∑+ states of KRb, Phys. Rev. A,76 022511 (2007).
    [48]A. Simoni, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Magnetic Control of the Interaction in Ultracold K-Rb Mixtures, Phys. Rev. Lett.,90 163202 (2003).
    [49]S. Ospelkaus, C. Ospelkaus, L. Humbert, K. Sengstock, and K. Bongs, Tuning of Heteronuclear Interactions in a Degenerate Fermi-Bose Mixture, Phys. Rev. Lett.,97 120403(2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700