非抗心律失常药物诱发LQT及室性心律失常电生理学机制的系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景及目的 QT间期延长综合征(LQT)患者可因严重的室性心律失常,如尖端扭转型室速(torsade de pointes)、室颤而出现晕厥、抽搐,甚至心源性猝死。LQT根据发病机制可分为遗传性和继发性两种。继发性LQT主要是由药物的副作用引发,特别是抗心律失常药,如奎尼丁,但也有非抗心律失常药,如抗精神病药、大环内酯类抗生素或其它药物诱发LQT、甚至猝死的报道。
     本实验通过酚噻嗪(抗精神病药)、bepridil(抗心绞痛药)和红霉素(大环内酯类抗生素)对豚鼠单心室肌细胞动作电位时程(APD)及动作电位形成过程中主要离子通道作用的研究,探讨此三类非抗心律失常药物诱发LQT及多形性室性心动过速的电生理学机制。
     方法与结果 本实验采用斑片钳(patch-clamp)技术中的Nystatin-破膜法研究了上述三种药物对豚鼠单心室肌细胞APD的作用。我们发现,在5Hz频率刺激的情况下,100μmol/L酚噻嗪使10个实验细胞的APD均明显延长,APD_(90)平均延长25.8%(P<0.01),这一延长作用为可逆性的。100μmol/L红霉素不能使APD延长,但300μmol/L的红霉素却使APD_(90)平均延长11.89%(P<0.05)。0.1μmol/L bepridil使APD明显延长(APD_(90)平均延长18.01%,P<0.05),当bepridil在
Background Long QT syndrome (LQT) is a cardiovascular disease that
    causes syncope, seizure, and sudden death from cardiac arrhythmias, such
    as torsade de pointes, and ventricular fibrillation. LQT can be inherited or
    acquired.
    Acquired LQT most frequently results from medications, often
    antiarrhythmic drugs, such as quinidine. There were also reports of LQT,
    even unexpected sudden cardiac death after the administrations of
    psychoactive drugs, macrolide antibiotics, or other no-antiarrhythmic
    agents.
    In order to understand the mechanisms of LQT induced by these no-
    antiarrhythmics drugs, we studied the effects of phenothiazine
    (psychoactive drug), bepridil (antianginal drug), erythromycin (antibiotics)
    on action potential duration (APD) and main currents involved in the
    depolarization and repolarization of isolated guinea pig ventricular
    myocytes.
    Methods and results Effects of the three drugs on APD of single guinea pig ventricular myocytes were studied by using Nystatin-perfortated configuration of the patch-clamp techniques. At a stimulation frequency of 5 Hz, phenothiazine (100 μmol/L) prolonged APD_(90) by % (p<0.01), and the effect was reversible. Erythromycin also prolonged APD, but only at concentration of 300 μmol/L (APD_(90) prolonged 11.89%, p<0.05), 100 μmol/L of erythromycin did not prolong the APD. 0.1 μmol/L bepridil prolonged APD_(90) by 18.01% (p<0.05), but 1 μmol/L and 3 μmol/L bepridil did not change APD compared with that of control, while 10 μmol/L and 30 μmol/L
引文
1. Kannel WB, Cupples A, D'Agostino RB. Sudden death risk in overt coronary heart diseases: The Framingham Study. Am Heart J. 113: 799-804; 1987.
    
    2. Willich SN, Levy D, Rocco MB, Tofler GH, Stone PH, Muller JOE. Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study Population. Am J Cardiol. 60: 801-806; 1987.
    
    3. Gura T. Eestrogen: Key player in heart disease among women. Science. 269: 771-773; 1995.
    
    4. Schwartz PJ. Idiopathic long QT syndrome: Progress and questions. Am Heart J. 109: 399-411; 1985.
    
    5. Schwartz PJ, Locati EH, Napolitano C, Priori SG. The long QT syndrome: In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology From Cell to Bedside. 2nd ed. Philadephia, Pa: WB Saunders Co; 788-811; 1995.
    
    6. Schwartz PJ, Periti M, Malliani A. The long QT syndrome. Am Heart J. 109: 378-390; 1975.
    
    7. Moss AJ, Schwartz PJ, Gampton RS, Tzivoni D, Locati EH, Maccluer J, Hall WJ, Weitkamp L, Vincent GM, Garson A, Robinson JL, Benhorin J, Choi S. The long QT syndrome: Prospective longitudinal study of 328 families. Circulation. 84: 1136-1144; 1991.
    
    8. Fozzard HA. Cardiac electrogenesis and sodium channel. In: Ion channels in the Cardiovascular System: Function and dysfunction. edited by P.M. Spooner and A.M. Brown. Mount Kisco, NY: Futura. P81-99, 1994.
    
    9. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol (London). 405: 123-145; 1988.
    
    10. Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea pig heart. J Physiol (London). 347: 641-657; 1984.
    
    11. Martin BcL, Chinn K. Contribution of delayed rectifier and inward rectifier to repolarization of the action potential: pharmacologic separation. J Cardiovase Pharmacol. 19: 830-837; 1992.
    
    12. Carmeliet E. Mechanisms and control of repolarization. Eur Heart J. 14(Suppl H): 3-13; 1993.
    
    13. Noble D, Tsien RW. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibers. J Physiol (London). 200: 205-231; 1969.
    
    14. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K~+ current: differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol. 96: 195-215; 1990.
    
    15. Horie M, Hayashi S, Kawai C. Two types of delayed rectifying K~+ channels in atrial cells of guinea pig heart. Jpn J Physiol. 40: 479-490; 1990.
    
    16. Chinn K. Two delayed rectifiers in guinea pig ventricular myocytes distinguished by tail current kinetics. J Pharmacol Exp Ther. 264: 555-560; 1993.
    
    17. Sanguinetti MC, Jurkiewicz NK. Delayed rectifier outward K~+ current is composed of two currents in guinea pig atrial cells. Am J Physiol. 260: H393-H399; 1991.
    
    18. Carmeliet E. Voltage and time-dependent block of the delayed K~+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther. 262: 809-817; 1991.
    
    19. Balser JR, Bennett PB, Roden DM. Time-dependent outward currents in guinea pig ventricular myocytes: gating kinetics of the delayed rectifier. J Gen Physiol. 96: 835-863; 1990.
    
    20. Shibasaki T. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol. 387: 227-250; 1987.
    
    21. Veldkamp MW, van Ginneken ACG, Bouman LN. Single delayed rectifer channels in the membrane of rabbit ventricular myocytes. Circ Res. 72: 865-878; 1993.
    
    22. Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, I_k, by flecainide and E-4031 in oat ventricular myocytes. Circulation. 82:289-293; 1990.
    
    23. Nerbonne JM, Apkon J. Characterization of two distinct depolarization-activated K~+ currents in isolated adult rat ventricular myocytes. J Gen Physiol. 97: 973-1011; 1991.
    
    24. Chadwick CC, Ezrin AM, O'Connor B, Volberg WA, Smith DI, Wedge KJ, Hill RJ, Briggs GM, Pagani ED, Silver PJ, Krafte DS. Identification of a specific radioligand for the cardiac rapidly activating delayed rectifier K~+ channel. Circ Res. 72: 707-714; 1993.
    
    25. Tande PM, Bjornstad H, Yang T, Refsum H. Rate-dependent class III antiarrhythmic action, negative chronotropy and positive inotropy of a novel Ik blocking drug, UK-68,798: potent in guinea pig but no effect in rat myocardium. J Cardiovasc Pharmacol. 16: 401-410; 1990.
    
    26. Liu DW, Antzelevitch CA. Characteristics of the delayed rectifier current (I_(kr) and I_(ks)) in canine ventricular epicardial, midmyocardial, and endocardial myocytes; a weaker I_(ks) contributes to the longer action potential of the M cell. Circ Res. 76: 351-365; 1995.
    
    27. Gintant GA. Two components of delayed rectifier current in canine atrium and ventricle. Circ Res. 78: 26-37; 1996.
    
    28. Matsuure H, Ehara T, Tmoto Y. An analysis of the delayed outward current in single ventricular cells of the guinea pig. Pflugers Arch. 410: 596-603; 1987.
    
    29. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations in K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res. 73: 379-385; 1993.
    
    30. Veldkamp MW, van Ginneken ACG, Opthof T, Bouman LN. Delayed rectifier channels in human ventricular myocytes. Circulation (In press).
    
    31. Liu GR, Feng JL, Yue LX, Carrier M, Nattel S. Evidence for two components of delayed rectifier K~+ current in human ventricular myocytes. Circ Res. 78: 689-696; 1996.
    
    32. Roden DM. Arrhythogenic potential of class III antiarrhythmic agents: comparison with class I agents: In: Singh BN, ed. Control of cardiac arrhythmias by lengthening repolarization. Mt. Kisco, NY: Futura, pp, 559-576: 1988.
    
    33. Jervell A, Lange-Nielsen F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J. 54: 59-78; 1957.
    
    34. Romano C. Congenital cardiac arrhythmia. Lancet. 1: 658-659; 1965.
    
    35. Ward OC. A new familial cardiac symdrome in children. J Ir Med Assoc. 54: 106-107; 1964.
    
    36. Keating MT, Dunn C, Atkinson D, Timothy K, Vincent GM, Leppert M. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science. 252: 704-706; 1991.
    
    37. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nature genet. 12: 17-23; 1996.
    
    38. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. KvLQTl and IsK (minK) proteins associate to form the I_(ks) cardiac potassium current. Nature. 384: 78-80; 1996.
    
    39. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. Coassembly of KvLQTl and minK (IsK) proteins to form cardiac I_(ks) potassium channel. Nature. 384: 80-83; 1996.
    
    40. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 80: 795-803; 1995.
    
    41. Keating MT. Genetic approaches to cardiovascular disease: supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome. Circulation. 92: 142-147; 1995.
    
    42. Warmker J, Ganetzky B. A family of potassium channel genes related to EAG in Drosopfila and mammals. Proc Natl Acad Sci USA. 91: 3438-3442; 1994.
    
    43. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I_(kr) potassium channel. Cell. 81: 1-8; 1995.
    
    44. Kiehn J, Lacerda AE, Wible B, Brown AM. Molecular physiology and pharmacology of HERG single-channel currents and block by dofetilide. Circulation. 94: 2572-2579; 1996.
    
    45. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Proc Natl Acad Sci. USA. 93: 2208;1996.
    
    46. Wang Q, Shen JX, Splawski I, Atkinson D, Li ZZ, Robinson JL, Moss AJ, Towbin JA, Keating MT. SCN5A mutations associated with an inherited cardiac arrhythmia: long QT syndrome. Cell. 80: 805-811; 1995.
    
    47. Bennett PB, Yazawa K, Makita N, George AL. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 376: 683-685; 1995.
    
    48. Wang Q, Shen J, Li ZZ, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet. 4: 1603-1607; 1995.
    
    49. Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, Kirsch GE. Multiple mechanisms of Na~+ channel-linked long QT syndrome. Circ Res. 78: 916-924; 1996.
    
    50. Schott JJ, Charpentier F, Peltier S. Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am J Hum Genet. 57; 114-117: 1995.
    
    51. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, Keating MT, Hammoude H, Brown AM, Chen LS, Colatsky TJ. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na~+ channel blockade and to increases in heart rate. Circulation. 92: 3381-3386; 1995.
    
    52. Priori SG, Napolitano C, Cautu F, Brown AM, Schwartz PJ. Differential response to Na~+ channel blockade, β-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long QT syndrome. Circ Res. 78: 1009-1015; 1996.
    
    53. Compton SJ, ibit in press. (联机检索).
    
    54. Hohnloser SH, Arendts W, Quart B. Incidence, type and dosedependence of proarrhythmic events during sotalol therapy in patients treated for sustained VT/VF [Abstract]. PACE Pacing Clin Electrophysiol. 15: 551-559; 1992.
    
    55. Jackman WM, Friday KJ, Anderson JL, Aliot EM, Clark M, Lazzara R. The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Progre Cardiovasc Dis. 31: 115-172; 1988.
    
    56. Nguyen PT, Scheinman MM, Seger J. Polymorphous ventricular tachycardia: clinical characterization, therapy, and the QT interval. Circulation. 74: 340-349; 1986.
    
    57. Selzer A, Wray HW. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation. 30: 17- 26; 1964.
    
    58. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers: Relationship to potassium and cycle length. Circ Res. 56: 857-867; 1985.
    
    59. Thompson KA, Murray JJ, Blair IA, Woosley RL, Roden DM. Plasma concentrations of quinidine, its major metabolites, and dihydroquinidine in patients with torsade de pointes. Clin Pharmacol Ther. 43: 636-642; 1988.
    
    60. Luo C, Rudy Y. A dynamic model of the cardiac ventricular action potential, I: simulations of ionic currents and concentration changes. Circ Res. 74: 1071-1096; 1994.
    
    61. Moore MT, Book MH. Sudden death in phenothiazine therapy. A clinicopathologic study of 12 cases. Psychiatric Quarterly. 44: 384-402; 1970.
    62. Powell T. Methods for the isolation and preparation of single adult myocytes. In: Clarkw A, Decker RS, Bog TK, eds. Biology of Isolated Adult Canine Myocytes. new York, NY: Elsevier Science Publishing Co.; 9-12; 1988.
    63.王海昌,贾国良。一种实用的豚鼠心室肌细胞分离方法。第四军医大学学报。待发表。
    64. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archly. 391: 85-100; 1981.
    65. Noble S, Aomine M. Arita M. Bepridil prolong the action potential duration of guinea pig ventricular muscle only at rapid rates of stimulation. Gen Pharmacol. 24: 1187-1196; 1993.
    66. Valenzuela C, Sanchez-Chapula J, Delpon E, Elizalde A, Perez O, Tamargo J. Imipramine blocks rapidly activating and delays slowly activating K+ current activation in guinea pig ventricular myocytes. Circ Res. 74: 687-699; 1994.
    67. Noble S, Aomine M, Arita M. Bepridil prolong the action potential duration of guinea pig ventricular muscle only at rapid rates of stimulation. Gen Pharmacol. 24:1187-1196; 1993.
    68. Hume JR. Comparations of organic Ca~(++) channel antagonists with myocardial Ca~(+-) and K~+ channel. J Pharmacol Exp Ther. 234: 134-140; 1985.
    69. Kass RS. Nesoldipine: a new, more selective calcium current blocker in cardiac Purkinje fiber. J Pharmacol Exp Ther. 223: 446-456; 1982.
    70. Schouten VT, Morad M. Regulation of Ca~(++) current in frog ventricular myocytes by holding potentials, c-AMP, and frequency. Pflugers Arch. 415: 1-11; 1989.
    71. Mcdonald TF, Pelzer S, Trutwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 74: 365-507; 1994.
    72. Smith PL, barkrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 379: 833-836; 1996.
    73. Liu SG, Ramsusson RL, Campbell DL: Activation and inactivation kinetics of an E-4031-sensitive current from single atrial myocytes. Biophysiol. 70: 2704-2715; 1996.
    74. Spector PS, Curran ME, Zou A. Fast inactivation causes rectification of the I_(Kr) channel. J Gen Physiol. 107: 611-619; 1996.
    75.王海昌,贾国良。豚鼠心室肌细胞I_(Kr)快速失活过程的直接测定及意义,第四军医大学学报 18:116-119;1997
    76. Cosnier D, Duchere-Marullaz P, Rispat G, Sterichenberger G. Cardiovascular pharmacology of bepridil, a new potential anti-anginal compound. Arch Int Pharmacodyn Ther. 225: 131-151; 1977.
    77. Piris P, Beaughard M, Cosnier D, Labrid C. Activity of bepridil and other anti-anginals on cardiovascular modifications engendered by conditioned anxiety in the dog. Arch Int Pharmacodyn Ther. 235: 147-164; 1978.
    78. Sperelakis N, Caufield JB. Calcium antagionoists-mechanisms of action on cardiac and vascular smooth muscle. Martinus Nijhoff Publishing. Boston, 1984.
    79. Cohn JN. Symposium on bepridil: A new antianginal agent. Am J Cardiol 55(Suppl 7): 1C-62C; 1985.
    80. Dibianco R, Alpert J, Katz RJ, Spann J, Chesler E, Ferri DP, Larca LJ, Costello RB, Gore JM, Eisenman MJ. Bepridil for chronic angina pectoris: results of a prospective multicenter, placebo-controlled, doseranging study in 77 patients. Am J Cardiol 53: 35-41; 1980.
    81. Hill JA, O'Brien JT, Scott E, Conti CR, Pepine CJ. Effects of bepridil on exercise torlance in chronic stable angina: a double-blind, randomized, placebo-controlled, crossover trial. Am J Cardiol. 53: 679- 683; 1984.
    82. Narahara KA, Shapiro W, Weliky I, Park J. Evaluation of bepridil, a new antianginal agent: clinical and hemodynamic alterations during the treatment of stable angina pectoris. Am J Cardiol. 53: 29-34; 1984.
    83. Shapiro W, DiBiano R, Thadani U, and other members of the Bepridil Collaborative Study Group. Comparative efficacy of 200, 300 and 400 mg of bepridil for chronic stable angina pectoris. Am J Cardiol. 55 (Suppl): 36C-42C; 1985.
    
    84. Dibianco R, Katz RJ, Chesler E, Alpert JS, Spann JF. Long-term efficiency of bepridil in patients with chronic stable angina pectoris; results of a multicenter, placebo-controlled study of extended bepridil use. Am J Cardiol. 55 (Suppl): 50C-54C; 1985.
    
    85. Frishman WH, Charlap S, Farnham DJ, Sawin HS, Michelson EL, Crawford MH, DiBianco R, Kostis JB, Zellner SR, Michie DD, Katz RJ, Mohiuddin SM, Thadani U. Combination propranolol and bepridil therapy in stable angina pectoris. Am J Cardiol 55 (Suppl): 43C-49C; 1985.
    
    86. Vogel S, Crampton R, Sperelakis N. Blockade of myocardial slow channels by bepridil (CERM 1978). J Pharmac Exp Ther. 210: 378-385; 1979.
    
    87. Kane KA, Winslow E. Antidysrythmic and electrophysiological effects of a new antianginal agent, bepridil. J Cardiovasc Pharmac. 2: 193-203; 1980.
    
    88. Winslow E, Kane A. Supraventricular antidysrythmic and electrophysiological effects of bepridil, a new antianginal agent. J Cardiovasc Pharmac. 3: 655-667; 1981.
    
    89. Singh BN, Nademanee K, Feld G, piontee M, Schwab M. Comparative electrophysiologic proflies of calcium antagonists with particular reference to bepridil. Am J Cardiol. 55: 9C-14C; 1985.
    
    90. Kato R, Singh BN. Effects of bepridil on the electrophysiological properties of isolated canine and rabbit myocardial fibers. Am Heart J. 111: 271-279; 1986.
    
    91. Yatani A, Brown AM, Schwartz A. Bepridil block of cardiac calcium and sodium channels. J Pharmac Exp Ther. 273: 9-17; 1986.
    
    92. Labrid C, Grosset A, Dureng G, Mironnean J, Duchene-Marullaz P. Some-membrane interactions with bepridil, a new antianginal agent. J Pharmac Exp Ther. 211: 546-554; 1979.
    93. Marshall RJ, Muir AW. The beneficial actions of bepridil in acute myocardial infarction in anaesthetized dogs. Br J Pharmac. 73: 471- 479; 1981.
    
    94. Labrid C, Leinot M, Beaughard M, Basiez M, Duchene-Marullaz P. Comparative antidysrhythmic profiles of bepridil, amiodarome and disopyramide in guinea pig and dog. Archs Int Pharmacodyn Ther. 249: 87-89; 1981.
    
    95. Singh BN. Safety profile of bepridil determined from clinical trials in chronic stable angina in the united states. Am J Cardiol. 69 (Suppl): 68D-74D; 1992.
    
    96. Marouvrier J, Sagot M, Caron C, Vaskmann G, Leroy R, Reade R, Duclous G. Nine cases of torsade de points with bepridil administration. Am Heart J. 111: 1005-1007; 1986.
    
    97. Singh BN, Bepridil therapy: guidelines for patient selection and monitoring of therapy. Am J Cardiol. 69: 79D-85D; 1992.
    
    98. Kane KA, Berdeja-Garcia GY, Sanchez-Pere ZS, Pastelin G. Electrophysiological effects of lidocardine, 1-chlorpheniramine, and bepridil on rabbit sinus node pacemaker cells. J Cardiovasc Pharmacol. 5: 102-108; 1983.
    
    99. Dangman KH. Effects of bepridil on transmembrane action potentials recorded from isolated canine cardiac tissues: studies on normal and infarct-zone Purkinje fibers and ventricular muscle cells. Naunyn-Schmid Arch Pharmacol. 329: 326-332; 1985.
    
    100. Berger F, Borchard V, Hafner D. Effects of the calcium entry blocker bepridil on repolarizing and pacemaker current in sheep Purkinje fibers. Naunyn Schmiedebergs Arch Pharmacol. 339: 638-646; 1989.
    
    101. Yatani A, Brown AM, Schwarz A. Bepridil block of cardiac calcium and sodium channels. J Pharmac Exp Ther. 237: 9-17; 1986.
    
    102. Anno T, Furuta T, Itoh M, Kodama I, Toyama J, Yamada K. Effects of bepridil on the electrophysiological properities of guinea-pig ventricular muscle. Br J Pharmac. 81: 589-597; 1984.
    
    103. Surawicz B. Relationship between electrocardiogram and electrodes. Am Heart J. 73: 814-834; 1967.
    
    104. Hara Y, Nakaya H. SD-3212, a new class I and IV antiarrhythmic drug: a potent inhibitor of the muscarinic acetylcholine-receptoroperated potassium current in guinea-pig atrial cells. Br J pharmacol. 116: 2750-2756; 1995.
    
    105. Carlsson L, Almgren O, Duker G. QTU-prolongation and torsade de pointes induced by putative class III antiarrhythmic agents in the rabbit: Etiology and interventions. J Cardiovasc pharmacol. 16: 276- 285; 1990.
    
    106. Lynch JJ, Heaney LA, Wallace AA, Gehret JR, Selnick HG, Stein RB: Suppression of lethal ischemic ventricular arrhythmias by the class III agent E-4031 in a caine model of previous myocardial infarction. J Cardiovasc pharmacol. 15: 764-775; 1990.
    
    107. Black SC, Chi L, Mu DX, Lucchesi BR. The antifibrillatory actions of UK-68,798, a class antiarrhythmic agent. J Pharmacol Exp Ther. 258: 416-423; 1991.
    
    108. Carmeliet E. Use-dependent block of the delayed K~+ current in rabbit ventricular myocytes. Cardiovasc Drugs Ther. 7: 599-604; 1993.
    
    109. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K~+ current by almokalant in rabbit ventricular myocytes. Circ Res. 73: 857-868; 1993.
    
    110. Miwa S, Inoue T, Ogawa H, Fulimoto T, Ohmshi Y. Monophasic action potential in patients with torsade de pointes (abstract). Circulation. 80(suppl II): II-660; 1989.
    
    111. Schwartz PJ, vanoli L, Zaza A, Zuanetti G. The effects of antiarrhythmic drugs on life-threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J. 109: 937-948; 1985.
    
    112. Kopia GA, Eller BT, Patterson E, Shea MJ, Lucchesi BR. Antiarrhythmic and electrophysiologic action of clofilium in experimemtal canine model. Eur J Pharmacol. 116: 49-61; 1985.
    
    113. McComb JM, Campbell NPS, Cleland J. Recurrent ventricular tachycardia associated with QT prolongation after mitral value replacement and its association with intravenous administration of erythromycin. Am J Cardiol. 54: 922-923; 1984.
    
    114. Brandriss MW, Richardson WS, Barold SS. Erythromycin-induced QT prolongation and polymorphic ventricular tachycardia (torsade de pointes): Case report and review. Clin Infect Dis. 18: 995-998; 1994.
    
    115. Freeman RA, Anderson KP, Green LS, Mason JW. Effect of erythromycin on ventricular arrhythmias and its association with intravenous administration of erythromycin. Am J Cardiol. 59: 168- 169; 1987.
    
    116. Farrar HC, Walsh-Sukys MC, Kyllonen K, Blumer JL. Cardiac toxicity associated with intravenous erythromycin lactobionate: two case reports and review of the literature. Pediatr Infect Dis J. 12: 688- 691; 1993.
    
    117. Nattle S, Ranger S, Talajic M, Lemery R, Roy D. Erythromycininduced long QT syndrome: Concordance with quinidine and underlying cellular electrophysiologic mechanism. Am J Med. 89: 235- 238; 1990.
    
    118. Guelon D, Bedock B, Chartier C, Haberer JP. QT prolongation and recurrent torsade de pointes during erythromycin lactobionate infusion. Am J Cardiol 58: 666-672; 1986.
    
    119. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther. 52: 231-238; 1992.
    
    120. Rubart M, Pressler ML, Pride HP, Zipes DP. Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Circulation. 88: 1832-1844; 1993.
    
    121. Zhang ZQ, Antzelevitch C. Erythromycin produces prominent action potential prolongation and early afterdepolarization (EAD)-induced triggered activity in M but not epicardial or endocardial regions of the canine ventricle (abstract). Circulation. 88(suppl H): I-327; 1993.
    122. Daleau P, BscPharm EL, BScPharm MF, Turgeon J. Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. Circulation. 91:3010-3016; 1995.
    123. Austin KL, Mather LE, Philpot G??, McDonald PJ. Intersubject and dose related variability after intravenous administration of erythromycin. Br J Clin Pharmacol. 10: 273-279; 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700