普鲁兰短梗霉HN2-3菌株碱性蛋白酶的纯化、基因克隆、表达、表面展示及生产活性肽的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从分离自海水、海泥及海洋生物内脏及海生植物表面的400余株酵母菌中分离到5株产蛋白酶的海洋酵母,能在酪蛋白双层平板上形成明显的透明圈,它们分别是HN2-3、N13d、N13C、Mb5和HN3-2。通过酵母鉴定的常规方法并结合分子生物学方法,鉴定出HN2-3、N13d、N13C与HN3-24株菌属于普鲁兰短梗霉(Aureobasidiumpullulans),Mb5菌株属于解脂亚罗酵母(Yarrowia lipolytica)。来自菌株HN2-3所产蛋白酶酶活性及酶解活性肽产物的ACE(AngiotensinI-converting enzyme)抑制活性最高。来自菌株HN2-3的蛋白酶命名为ALP2。
     利用层析柱Sephadex G-75与阴离子交换柱DEAE Sepharose Fast Flow纯化了菌株HN2-3的胞外碱性蛋白酶ALP2,纯化2.34倍。通过SDS-PAGE凝胶电泳,得到的ALP2蛋白条带分子量为33.0 kDa,最适作用温度为52℃。Mn~(2+)、Mg~(2+)和Na~+离子浓度在5 mM时对纯化蛋白酶酶活有激活作用,Zn~(2+)、Ca~(2+)、K~+和Li~+对酶活的影响不大;而当存在Fe~(2+)、Fe~(3+)、Cu~(2+)、Co~(2+)、Ag~+、和Hg~(2+)离子时,蛋白酶活明显降低。苯甲基磺酰氟(PMSF)强烈抑制蛋白ALP2的活性,乙二胺四乙酸(EDTA)与碘乙酸微弱抑制蛋白酶的活性。利用纯化的酶酶解砺虾蛋白,螺旋藻蛋白(Arthospiraplatensis),酵母N3C(Yarrowia,lipolytica)和YA03a(Hansenia sporauvarum)蛋白,来自蛎虾蛋白的水解物ACE抑制活性与抗氧化活性最高,分别达到88.3%与47.3%。这说明纯化的ALP2蛋白酶在食品和医药方面具有良好的前景。
     利用简并PCR、反向PCR与RT-PCR获得了蛋白酶ALP2基因的DNA序列与cDNA序列。基因ALP2的DNA序列为1354 bp,在NCBI(http://www.ncbi.nlm.nih.gov/)的登陆号为EU331441。ALP2基因的开放阅读框(ORF)1248 bp,在NCBI上的登陆号为EU224431,编码415个氨基酸,推导分子量为42.9 kDa。基因ALP2具有两个内含子,分别为54bp和52 bp。通过分子生物学软件分析,基因ALP2前18个氨基酸为信号肽序列,此基因编码的蛋白具有丝氨酸活性位点与组氨酸活性位点,等电点为6.44。利用质粒pINA1317对基因进行表达验证,发现转化子能在牛奶-PPB双层平板上形成明显的透明圈。转化子的发酵上清液的蛋白酶活性也进行了检测,结果说明克隆到的基因ALP2确实为蛋白酶基因,而且能在Y.lipolytica中进行表达,并分泌到细胞外。
     利用本实验室构建的表面展示质粒pINA1317-YICPW110对蛋白酶基因ALP2进行了表面展示,转化子能在牛奶双层平板上形成明显的透明圈。表面展示的蛋白酶酶解不同的蛋白源能够产生活性肽,发现酶解金黄色隐球酵母G7a(Cryptococcus aureus)的细胞蛋白所产活性肽的ACE抑制活性最高,酶解螺旋藻蛋白所产活性肽的抗氧化活性最高。这是首次关于利用表面展示蛋白酶进行活性肽的生产的报道。
     将表面展示的蛋白酶进行了酶学特性研究,发现与菌株HN2-3所产的野生型蛋白酶相比,最适作用温度有所降低,温度稳定性增强;另外发现表面展示的蛋白酶对金属离子的亲和力降低。
Over 400 yeast strains were isolated from seawater, sediments, bowels of marine organisms and surface of thalassophyte, we found 5 strains( HN2-3, N13d, N13C, Mb5 and HN3-2) among them could form clear zone around the colonies on the double plates with 2.0 % casein. Strains HN2-3, N13d, N13C and HN3-2 were identified as Aureobasidium pullulans and strain Mb5 was identified as Yarrowia lipolytica using morphology, physiology and molecular methods. Strain HN2-3 had highest protease activity. Peptides in the hydrolysate produced by the proteases from strain HN2-3 had the highest angiotensin I-converting-enzyme (ACE)-inhibitory activity and the protease from HN2-3 was named as ALP2.
     The extracellular alkaline protease ALP2 in the supernatant of cell culture of the marine yeast A. pullulans HN2-3 was purified to homogeneity with a 2.34-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography(Sephadex G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamidegel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 33.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 52℃, respectively. The enzyme was activated by Mg~(2+)、Na~+and Mn~(2+) (at a concentration of 5.0 mM) and inhibited by Fe~(2+)、Fe~(3+)、Cu~(2+)、Co~(2+)、Ag~+ and Hg~(2+). Zn~(2+)、Ca~(2+)、K~+ and Li~+ has no effect on the protease activity. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, and weakly inhibited by EDTA and iodoacetic acid. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strainsN3C (Y. lipolytica) and YA03a (Hansenia sporauvarum) was digested by the purified alkaline protease, the highest values of ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were 88.3% and 47.3 %, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceuticalindustries.
     The alkaline protease structural gene (ALP2 gene) was obtained from both the genomic DNA and cDNA of A. pullulans HN2-3 by degenerate PCR, inverse PCR and RT-PCR. DNA sequence of the ALP2 gene ( accession number: EU331441) was 1354bp. An open reading frame of 1248 bp (accession number: EU224431 ) encoding a 415 amino-acid protein with calculated molecular weight of 42.9 kDa was characterized. Eighteen amino acid at the beginning of the gene was signal peptide. The protein was found to have the conserved serine active site and histidine active site of serine proteases in the subtilisin family. The protease ALP2 gene was expressed by the plasmid pINA1317.The recombinant A. pullulans alkaline protease produced in Y. lipolytica formed clear zones on the double plates with 2.0 % milk and alkaline protease activity in the supernatant of the recombinant Y. lipolytica culture was detected, suggesting that the cloned ALP2 gene was protease gene which was expressed in Y. lipolytica and the expressed alkaline protease was secreted into the medium.
     When the cDNAALP2 gene was cloned into multiple cloning sites of the surface display vector pINA1317-YlCWP110 and expressed in cells of Y. lipolytica. the protease displaying cells could form the clear zone on the double plate containing milk protein. The alkaline protease displaying cells were also found to be able to produce bioactive peptides from different sources of proteins. The produced peptide from single cell protein of marine yeast strain G7a had the highest ACE inhibitory activity while the produced peptide from spirulina protein had the highest antioxidant activity. This is the first report that the yeast cells displaying alkaline protease were used to produce bioactive peptides.
     The properties of the surface displayed protease were examined. It was found that the optimal temperature of the displayed alkaline protease was lower than that of the free alkaline protease. However, the thermal stability of the displayed protease was enhanced compared to that of the free protease. The pH stability of the displayed protease was different from that of the free protease. The results reveal that the displayed alkaline protease exhibited a lower affinity to azocasein than the free one.
引文
陈超然等,鱼用疫苗的研究现状。[J]水利渔业,2001,21:44-45.
    
    陈芳,阚健全等。生物活性肽的酶法制备。[J]四川食品与发酵,2001,36(3):27-31。
    
    董文宾等。植物来源生物活性肽的研究进展。[J]食品研究与开发,2005,26(1):53-55。
    
    董闻琦。光合细菌在水产动物苗种培育中的应用。[J]水产养殖,2003,(2):40-44。
    
    杜林,李亚娜。生物活性肽的功能与制备研究进展。[J]中国食物与营养,2005,8:18-21
    
    管华诗。[M]海洋生物基因与生物工程技术。 北京海洋出版社,2001,17-21。
    
    郭尧君。[M]蛋白质电泳技术.北京:科学出版社,2001。
    
    贾帅争等。酵母表面展示技术及应用。军事医学科学院刊,2001,25:140-142。
    
    靖德兵,李培军,台培东,刘宛,巩宗强。彩绒革盖菌固体发酵生产木质素酶工艺优化研究。[J] 微生物学通报,2004,31:19-23。
    
    雷霁霖。海水养殖新品种介绍:大菱鲆。[J]中国水产,2000,4:38-39。
    
    雷萍,金宗濂。几种食源性生物活性肽。[J]食品工业技术,2004,25(6):132-134。
    
    李爱华。水产养殖中使用的抗菌药物及细菌耐药性。中国水产科学,2002,9(1):87-90。
    
    刘深基,陈松森。菌体表面表达与活菌疫苗。[J]微生物学免疫学进展,1998,26(3):65-67。
    
    刘志国,屈伸。[M]基因克隆的分子基础与工程原理。2003,化学出版社。
    
    吕军仪等。有益微生物在大海马健康养殖中的应用研究。[J]中国水产科学,2003,10(1):46-49。
    
    毛学英等。乳及乳制品中生物活性肽的种类及功能多样性。[J]中国乳品工业,2004,32(1):41-43。
    
    庞光昌等。生物活性肽的研究进展理论基础与展望。[J]食品科学,2001,22(2):80-84。
    
    蒲首承,王金水。生物活性肽的制备与应用。[J]粮食加工,2005,5:49-51。
    
    屈军梅,陈平浩等。抗菌肽的研究进展。[J]中国畜牧兽医,2005,32(6):5-7。
    
    萨姆布鲁克著,黄培堂译。[M]分子克隆实验指南(第三版,2002,北京科学出版社。
    
    申吉泓,杨宇如等。抗菌肽的作用机制研究现状。[J]国外医学肿瘤分册,2003,30(5):347-350。
    
    沈倍奋主编。[M]分子文库,2001,北京科学出版社。
    
    史兆兴。简并PCR及其应用,[J]生物技术通讯,2004,15:172-175。
    
    腾勇,腾尚辉,杭柏林。乳源性生物活性肽及其应用前景。[J]中国饲料,2004,3:9-12。
    
    王国良,金珊等。 海水养殖鱼类病害防治技术。[J]渔业现代化,2002,(4):24-25。
    
    王海燕,张佳程。食品降血压肽的比较与评价方法。[J]食品与发酵工业,2001,27(10):67-70。
    
    王洪振,周晓馥等。简并PCR技术及其在基因克隆中的应用。[J]遗传,2003,25(2):201-204。
    
    王立平,张柏林。乳源活性肽的细胞生长调节作用。[J]中国乳品工业,2007,35(5):48-52。
    
    魏述众主编。[M]生物化学,1996,中国轻工业出版社。
    
    辛忠涛,薛沿宁,高亚萍。利用细菌鞭毛展示的随机肽库筛选HBV-PreS2蛋白表位。[J]中国医学科 学院学报,2003.2:56-59。
    
    玄国东。米糟蛋白提取及酶法制备抗氧化活性肽及降血压活性肽的研究。[M]博士论文,2005 浙江大学。
    
    杨建军。生物活性肽的研究及生产。[J]广东饲料,2003,12(1):28-30。
    
    杨严俊,李进伟。兔肺血管紧张素转换酶的分离提取及特性研究.[J]食品与发酵工业,2003,29 (8):53-56。
    
    杨云,刘福勤,冯卫生等。碱法提取大枣渣多糖及活性炭脱色的工艺研究。[J]食品与发酵工业, 2004,30(6):30-32。
    
    张亮,池振明。1株产纤维素酶海洋酵母的筛选、鉴定及发酵条件优化。[J]中国海洋大学学报, 2007,37:101-108
    
    张龙翔,涨停芳,李令媛。[M]生化实验方法和技术(第二版),1997,高等教育出版社。
    
    钟明超,林浩然。硬骨鱼类胚胎后发育机制。[J]中国水产科学,1996,3(3):96-102。
    
    周雪松。水解蛋白来源的抗氧化肽的研究进展。[J]中国食品添加剂,2005,(6):84-87。
    
    Adams, A., Gottschling, D. E., Kaiser, C. A., Stearms. T.. Yeast Immunofluorescence. In: Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, 1998, p. 100 (Chinese translated ed.)
    
    Adil Anwar , Mohammed Saleemuddin, Alkaline proteases: a review. Bioresource Technology, 1998,64: 175-183
    
    Aikat K., Maiti T.K., Bhattacharyya B.C., Decolourization andpurification of crude protease from Rhizopus oryzae by activated charcoal and its electrophoretic analysis. Biotechnol.,Lett., 2001, 23:295-301
    
    Andersen LP., Method for dehairing of hides or skins by means of enzymes. US Patent, 1998, 5: 834, 299
    
    Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol,69 : 5297-5305
    
    Anwar A, Saleemuddin M., Alkaline protease: a review. Bioresour Technol, 1998,64: 175-183
    
    Banerjee R. Agnihotri R.,Bhattacharyya B.C., Purification fo alkaline protease of Rhizopus oryzae by foam fractionation. Bioprocess Eng., 1993, 9: 245-248
    
    Banerjee U.C., Sani R.K., Azmi W., Soni R ., Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem., 1999, 35:213-219
    
    Barett A. J., Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol, 1994,244:1-15
    Barros R.J., Wehtje E.. Adlercreutz P. , Enhancement of immobilized protease catalyzed dipeptide synthesis by the presence of insoluble protonated nucleophile. Enzyme Microb Technol, 1999, 24:480-488.
    
    Barth G., Gaillardin C. ,Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev ,1997,19: 219-237
    Bayoudh A., Gharsallah N., Chamkha M. Dhouib A., Ammar S., Nasri M., Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MN1. J Ind Microbiol .Biotechnol., 2000, 24: 291-295
    
    Becker, S., Schmoldt, H. U., Adams, T. M., Wilhelm, S., Kolmar, H., Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr. Opin. Biotechnol., 2004,15:323-329
    
    Blundell T. L., Cooper J. B., Sali A., Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases. Adv. Exp. Med. Biol., 1991, 306:443-453.
    
    Boyer P. D. The enzymes, 3rded. Academic Press, Inc. New York. 1971.
    
    Bradford M M., A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the princible of protein-dye binding. Anal Biochem, 1976,72: 248-253
    
    Brantl V.,Teschemacher H., Henschen A., Novel opioid peptides derived from casein and isolation from bovine casein peptone. Hoppeseyler's Z.Physiol.Chem., 1979,360:1211-1216
    
    Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature, 1988, 334:528-530
    
    Chakarobarti S.K., Matsumura N. Ranu R.S., Purification and characterization of an extracellular alkaline serine protease from Aspergillus terreus (IJIRA 6.2). Curr Micorobiol., 2000, 40: 239-244
    
    Cheng S.W., Hu M.N., Shen S.W., Takagi H., Asano M., Tsai Y.C.. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotech Biochem . 1995,59:2239-2243
    
    Chi Z., Ma C, Wang P. Li H. F., Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol, 2007, 98: 534-538
    
    Chi Z., Zhao S., Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzy Microb Technol, 2003, 33: 206-211
    
    Chi Z.M., Liu Z.Q., Gong F., Li H.F., Marine yeasts and their applications in mariculture. J Ocean Univer China, 2006, 3: 243-247
    
    Chi Zhenming, Liu Zhiqiang, Gao Lingmei, Gong Fang, Ma Chunling, Wang Xianghong, and LI Haifeng , Marine Yeast and Their Application in Mariculture. Journal of Ocean university of China, 2006, 5: 251-256
    
    Christiansen T, Nielsen J., Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state transient continuous cultures. J BiotechnoL 2002, 97:265-273
    
    Chunling Ma, Xiumei Ni. Zhenming Chi. Liyan Ma, Lingmei Gao. Purification and Characterization of an Alkaline Protease from the Marine Yeast Aureobasidium pullulans for Bioactive Peptide Production from Different Sources. Marine biotechnology, 2007, 343-351
    
    Clapes P., Pera E., Torres J.L., Peptide bond formation by the industrial protease, neutrase, in organic media. Biotechnol Lett. 1997,19:1023-1026
    
    Cooper J.B., Foundling S.I.. Blundell T.L., et al., X-ray studies of aspartic proteinase-statinein hibitor complexes . Biochemistry, 1989, 28:8596-8603
    
    Corvol P.,Ewilliams T.A., Soubrier F.. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol.,1995, 48:283-305
    
    Cowan D.A., Dainiel R. M., The properties of immobilized caldolysin, the thermostable proteinase from an extreme thermophilile. Biotechnol.Bioeng., 1982, 24: 2053-2061
    
    Cowan D.A., Daniel R.M ., Rapid purification of two thermophilic proteinases using dye-ligand chromatography. J Biochem Biophys Methods, 1996, 31:31-37
    
    Dalev P.G. Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol, 1994, 48:265-267
    
    Dinesh Kumar. Tek Chand Bhalla, Microbial proteases in peptide synthesis: approaches and applications.Appl Microbiol Biotechnol., 2005, 68: 726-736
    
    Donaghy J.A., McKay A. M., Production and properties of an alkaline protease by Aureobasidium pullulans. J Appl. Bacteriol. , 1993 ,74:662-666
    Echeverria V., Dueatenzeiler A., Chen C.H., Endogenous β -amyloid Peptide synthesis modulates cAMP response element-regulated gene expression in PC12 cells. Neuroscience, 2005, 135: 1193-1202
    
    Ellis A. E., Immunity to bacteria in fish.[J] Fish & Shellfish Immunology. 1999, 9: 291-308
    
    El-Shanshoury A.R.; El-Sayeed M.A.. Sammour R.H., El-Shouny W.A..Purification and partial characterization of two extracellular alkaline proteases from Streptomyces corchorusii ST36. Can J Microbiol., 1995 41:99-104
    
    Fiat A.M., Migliore S.D., Jolles P., Niologically active peptides from milk proteins with enphasis on two samples concerning antitrombotic and immunomodulating activities. Journal Dairy Science. 1993,76:301-310
    Fujimaki M., Yamashita M., Okazawa Y., Arai S. , Applying proteolytic enzymes on soybean. 3. Diffusable bitter peptides and free amino acids in peptic hydrolyzate of soybean protein. J Food Sci, 1970,35:215-218
    
    Ganesh Kumar C, Hiroshi Takagi,Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 1999, 17: 561-594
    George V., Diwan A .M. Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal Biochem, 1983, 132: 481-483
    Gibbs B. F., Zougman A., Masse R., Mulligan C, Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 2004, 37: 123-131.
    Gobbetti M., Ferranti P.. Smacchi E., Goffredi .F, Addeo F., Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp.bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl Environ Microbiol, 2000, 66:3898-3904
    Godfrey T.and West S. Industrial enzymology. Macmillan Publishers Inc.. New York, N.Y. 1996,2:3
    
    Govind N. S., Mehta B., Sharma M., et al., Protease and carotenogenesis in lakeslea trispora. Phytochemistry, 1981,20:2483-2485
    
    Gupta R., Beg Q.K., Lorenz P., Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol., 2002, 59:15-32
    
    Gupta R., Gupta K., Saxena R.K., Khan S.. Bleach-stable, Alkaline protease from Bacillus sp. Biotechnol. Lett., 1999,21:135-138
    
    Haifeng Li, Zhenming Chi *, Xiaohong Wang, et al, Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme and Microbial Technology, 2007, 40:1006-1012
    Han J., Park C.H., Ruan R.. Concentrating alkaline serine protease, subtilisin, using a temperature-sensitive hydrogel. Biotechnol. Lett., 1995, 17:851-852
    Hans M.,Eckhard S., Milk proteins :precursors of bioactive peptides.Trends in Food Science and Technology, 1990,1:41-43
    
    Han-Seung Joo and Chung-Soon Chang, Production of protease from a new alkalophilic Bacillus sp. 1-312 grown on soybean meal: optimization and some properties. Process Biochemistry, 2005, 40:1263-1270
    
    He H., Chen X., Sun C, Zhang Y., Gao P., Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresour Technol, 2006, 97, 385-390
    Hoffman T., Food related enzymes. Adv. Chem. Ser. ,1974. 136:146-185
    
    Hooper N.M., In "Zinc Metalloproteasesin Health and Disease" Taylor and Francis Ltd., 1996, 1-21.
    
    Hooper N.M..Turner A.J., Isolation of two differentially glycosylated forms of peptedyll-dipeptidase A(angiotensin-converting enzyme) from pig brain. Biochem., 1987, 241(3):625-633
    
    Hutadilok-Towatana N., Painupong A., Suntinanalert P.,Purification and characterization of an extracellular protease from thermophilic and alkaliphilic Bacillus sp. PS719. J Biosci. Bioeng.,1999, 87:581-587
    
    Inamura H., Nakai T., Muroga K., An extracellular protease produced by Vibrio anguillarum. Bull Jpn Soc Sci Fish, 1985, 51:1915-1920
    
    Isono Y., Nakajima M., Enzymic peptide synthesis using a microaqueous highly concentrated amino acid mixture. Process Biochem., 2000. 36:275-278
    
    Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai. T., and Tatematsu, M., Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol., 1986, 24:1099-1102
    
    Jacobs M.F.. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene, 1995, 152:67-74
    
    Jiang Y. J. Li Q Z Yan H. B.et al., Expression and Bioactivity Analysis of Recombinant Beta-CPP Dimer . Journal of Dairy Science, 2004. 87: 3198-3208
    
    Jolivalt C, Madzak C, Brault A., Caminade E,. Malosse C,. Mougin C. , Expression of laccase (?)b from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Microbiol Biotechnol., 2005. 66: 450-456
    
    Joo H.S.. Kumar C.G., Park G.C., Paik S.R., Chang C.S., Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem., 2002, 38:155-159
    
    Joo H.S.. Kumar C.G., Park G.C., Paik S.R.. Chang C.S., Oxidant and SDS stable alkaline protease from Bacillus clausii I-52: Production and some properties. J Appl Microbiol., 2003, 5: 267-72
    
    Joo H.S.. Kumar C.G., Park G.C., Palik S.R.. Chang C.S., Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem., 2004. 3 :1441-1447
    
    Jun Sheng, Zhenming Chi *, Jing Li, Lingmei Gao, Fang Gong, Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochemistry, 2007,42: 805-811
    Kang B.S., Jeon S.J., Kim Y.M., Purification and characterization of two extracellular proteases from Oligotropha carboxydovorans DSM 1227. J Microbiol., 1999, 37:14-20
    Karrer K.M., Peifer S .L.and DiTomas ME., Two distinct gene subfamilies with in the family of cysteine protease genes. Proc. Natl. Acad. Sci. U.S.A., 1993, 90: 3063 -3067
    
    Kristinsson H. G., Rasco B. A., Biochemical and functional various alkaline proteases. J Agric Food Chem. 2000.48:657-666
    
    Kumar C.G., Malik R.K., Tiwari M.P., Novel enzyme-based detergents: an Indian perspective. Curr Sci., 1998, 75:1312-1318
    
    Kumar C.G., Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus.Lett Appl Microbiol.. 2002. 34:13-17
    Kumar C.G., Takagi H., Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv., 1999,17:561-594
    Kuo L. C. and Shafer J. A., Retroviral proteases. Methods Enzymol.,1994, 241:3-178
    
    Kurtzmam C. P., Fell J. W., In: Second edn. The yeast: a taxonomic study, The Netherlands, Elsevier, 1998,1-100
    Labbe J. P., Rebegrotte P. and Turpine M.. Demonstrating extracellular leucine aminopeptidase (EC 3.4.1.1) of Aspergillus oryzae (IP 410):leucine aminopeptidase 2 fraction. C. R. Acad. Sci. (Paris), 1974,278:2699
    
    Laemmli U. K., Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature, 1970, 227: 680-685
    
    Lahcen Jaafar et al., Charcetrization of glycosylphosphatidylinositol -bound cell-wall protein (GPI-CWP) in Yarrowa lipolytica. Micriobiology, 2004, 150: 53-60
    
    Larcher G., Cimon B., Symoens F., Tronchin G., Chabasse D.,Bouchara J.P., A 33 kDa serine proteinase from Scedosporium apiospermum. J. Biochem., 1996, 315:119-126
    Layman P.L., Industrial enzymes: battling to remain specialties.Chem Eng News, 1986, 64:11-14
    
    Li G.H., Liu H., Shi Y.H., Le G.W., Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharmaceu Biomed Anal., 2005, 37,219-224
    Liiv L., Parn P., Alamae T. , Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha. Gene, 2001, 265:77-85
    Lin WANG, Zhenming CHI*, Xianghong WANG, Zhiqiang LIU, Jing LI, Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes .Annals of Microbiology, 2007,57 (4) :495-501
    Lingmei Gao, Zhenming Chi, Jun Sheng , Xiumei Ni, Lin Wang, Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Appl Microbiol Biotechnol., 2007, 77: 825-832
    Lixi Yue, Zhenming Chi, et al., Construction of a new plasmid for surface display on cells of Yarrowia lipolytica.Journal of Microbiological Method, 2008, 72:116-123
    Lowry O. H., Rosebrough N., Farr A., Randall R., Protein measurement, 1951
    Ma C.L., Ni X.M., Chi Z.M., Ma L.Y,. Gao L.M., Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar Biotechnol., 2007, 9:343-351
    Maarten P. Schreuder et al., Immobilizing proteins on the surface of yeast cells. Trends in Biotechnology, 1996,14: 115-120
    Madzak C, Gaillardin C, Beckerich J.M., Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 2004,109: 63-81
    Manonmani H.K., Joseph R., Purification and properties of an extracellular proteinase of Trichoderma koningii. Enzyme Microb Technol., 1993,15:624-628
    Maria, M.,Yust, Justo Prdroche, Julio Giron-Calle, Manuel A,, Francisco M,, Javier V., Production of ace inhibitory peptides by digestion of chichpea legumin with alcalase. Food Chemistry, 2003. 81:363-369
    Matoba S.. Fukuyama J., Wing R.A., Ogrydziak D.M., Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mole Cell Biol., 1988, 8: 4904-4916
    Matsui T., Matsufuji H., Seki E., Osajima K., Nakashima M., Osajima Y., Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscles. Biosci Biotechnol Biochem., 1993, 57: 922-925
    
    Mcrkler D.J., C-tenninal amidated peptides: Production by the in vitro wnzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb.Technol., 1994, 16:450-456
    
    Meisel H.. Bioactive peptides from milk proteins, a perspective for consumers and producers. Austr. J. Dairy Technol., 2001,56:83-91
    Meisel H., Biochemical of bioactive peptides derived form milk proteins: potential nutraceuticals for food and pharmaceutical applications. Livest Prod Sci, 1997, 50:125-138
    Mitsuyoshi Ueda and Atsuo Tanaka, Genetic immobilization of proteins on the yeast cell surface, Biotechnology Advances. 2000, 18: 121-140
    Navia M.A., Fitzgerald P.M., McKeever B.M., et al.. Three-dimensional structure aspartyl protease from human immunodeficiency virus HIV-1. Nature, 1989, 337: 615-620
    
    Neklyudov A.D., Ivankin A.N., Berdutina A.V., Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol., 2000, 36:452-459
    
    Newton S.M., Jaeob CO., Stoeker B.A., Immune response to cholera toxin epitope inserted in Salmonella flagellin. Seience,1989, 244:70-72
    NI Xiumei, CHI Zhenming*, LIU Zhiqiang, YUE Lixi Screening of protease-producing marine yeasts for production of the bioactive peptides. Acta Oceanologica Sinica. 2008a, online
    Nicaud, J. M., Madzak, C, van den Broek, P., Gysler, C, Duboc, P., Niederberger, P., Gaillardin, C. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Research , 2002, 2: 371-379
    Ogino H., Watanabe F. Yamada M., et al., Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Paeudomonas aeruginosa PST-01. J Biosci. Bioeng., 1999, 87:61-68
    
    Ogrydziak D.M., Yeast extracellular proteases. Crit. Rev. Biotechnol., 1993, 13:1-55
    
    Okada Y., Nagase H. and Harris E. D., A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem., 1986, 261:14245-14255
    
    Okamoto H., Fujiwara T., Nakamura E., Katoh T., Iwamoto H., Tsuzuki H., Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051;
    application to the recovery of bioactive peptides from fusion proteins by sequence-specific digestion. Appl Microbiol Biotechnol 1997. 48: 27-33
    
    Patrik S. I., Elin G., Per-A ke Nygren, Display of proteins on bacteria. Journal of Biotechnology, 2002, 96 : 129-154
    
    Perea A., Ugalde U., Rodriguez 1,. Serra J.L . Preparation and characterization of whey protein hydrolysates: application in industrial whey bioconversion processes. Enzyme Microb Technol., 1993, 15:418-423
    
    Rahman RNZA., Razak C.N, Ampon K, Basri M., Yunus WMZW.,Salleh A.B., Purification and characterization of a heatstablealkaline protease from Bacillus stearothermophilus F1.Appl Microbiol Biotechnol., 1994, 40:822-827
    
    Rajamani S., Hilda A., Plate assay to screen fungi for proteolytic activity. Curr Sci.,1987, 56: 1179-1181
    
    Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol Mole Biol Rev, 1998 62 : 597-635
    
    Rawlings N. D. and Barrett A. J., Evolutionary families of peptidases. J.Biochem., 1993. 290 : 205-218
    Re R., Pellergini N., Proteggente A., PannAala A., Yang M., Rice-Evans C, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 1999, 26: 1231-1237
    
    Rebeca B.D.. Pena-Vera M.T., Diaz-Castaneda M., Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. J Food Sci ., 1991, 56 : 309-314
    
    Riva S.. Chopineau J., Kieboom A.P.G., Klibanov A.M., Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J Am Chem Soc, 1988,110:584-589
    
    Romero F.J., Garcia L.A., Salas J.A., Diaz M.. Quiros L.M., Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown on whey. Process Biochem., 2001. 36:507-515
    Rubinstein I., Houmsse M.,Dacvis R.G.. Tissue angiotensin I-converting enzyme activity in spontaneously hypertensive hamsters. Biochemical and Biophysical Reasearch Communications, 1992, 183(3) :1117-1123
    
    Sambrook J., Fritsch E. F., Maniatis T., In: Molecular cloning: a laboratory manual. 2nd Edition. Cold Spring Harbor Laboratory Press, Beijing, 1989, 367-370 (Chinese translating ed.)
    Sarkis K., Mazmanian, H., Ton-That and olaf Schneewind, Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus anreus. Molecular Microbiology, 2001, 40(5) : 1049-1057
    
    Schechler I. and Berger A., On the size of the active site in proteases I papain. Biochem.Biophys. Res. Commun., 1967, 27:157-162
    
    Schreuder M. P. et al., Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine, 1996, 14: 383-388
    
    Shannon J. D.. Baramova E. N., Bjarnason J. B., et al., Amino acid sequence of a Crotalus atrox venom metalloprotease which cleaves type IV collagen and gelatin. J. Biol. Chem., 1989. 264:11575-11583
    
    Sielecki A. R., Fujinaga M., Read R. J., et al., Refined structure of porcine pepsinogen at 1.8A resolution. J. Mol. Biol., 1991,219:671-692
    
    Silva S. V., Malcata F .X., Caseins as source of bioactive peptides. Intern Dairy J, 2005, 15: 1-15.
    Singh J., Batra N., Sobti R.C., Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem., 2001, 36:781-785
    Sinha R., Singh S.P., Ahmed S., Garg S.K., Partitioning of a Bacillus alkaline protease aqueous two-phase systems. Bioresour Technol., 1996. 55:163-166
    So J.E., Shin J.S., Kim B.G. Protease-catalyzed tripeptide (RGD) synthesis. Enzyme Microfa Technol., 2000,26: 108-114.
    
    Strauss, A. and Gotz. F., In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 1996, 21: 491-500
    Suetsuna K., Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Mari Biotechnol., 2000, 2:5-10
    Thangam E.B., Rajkumar G.S., Purification and characterization of an alkaline protease from Alcaligenes faecalis. Biotechnol. Appl. Biochem., 2002, 35:149-154
    Thanh. V.N., Van Dyk, M.S., WingWeld, M.J., Debaryomyces mycophilus sp. nov., a siderophore-dependent yeast isolated from woodlice.FEMS Yeast Res., 2002, 2: 415-427
    Thomas schafer et al., Industrial enzymes. Advances in Biochemical Engineering/ Biotechnology ,2007, 105 : 59-131
    
    Thompson J.D.. Higgins D.D., Gibson J.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994.22:4673-4688
    
    Tirelli A., De Noni I. Resmini P. Bioactive Peptides in milk Products. Ital J. Food Sci., 1997. 2 : 91-98
    
    Tobe S.. Takami T., Ikeda S., Horikoshi K., Production of some enzymatic properties of alkaline protease of Candida lipolytica. Agric Biol Chem., 1976, 40: 1087-1092
    
    Tsuda T.. Fujii M.,Watanabe M., Antioxidative activity of red bean extract and its application to food. Nippon shokuhin kogyo gakkaishi, 1994, 41(7):475-480
    
    Tsuge N., Eikawa Y., Nomura Y., Antioxidative activity of peptides by enzymatic hydrolysis of egg-white albumin. Nippon nogeikagaku kaishi, 1991, 65(11): 1635-1641
    
    Uccelletti, D., Jaco, A. D., Farina, F., Mancini, P., Augusti-Tocco, G., Biagioni, S., Palleschi. C, Cell surface expression of a GPI-anchored form of mouse acetylcholinesterase in KlpmrlD cells of Klvyveromyces lactis, Biochem. Biophy. Res. CommunL, 2002, 298 : 559-565
    
    Ueda, M., Tanaka, A., Genetic immobilization of proteins on the yeast cell surface, Biotechnol. Adv., 2000. 18: 121-140
    
    Valletri P. A., Billingsley M.L., Lovenberg W., Thermal denaturation of rat pulmonary and testicular angiotensin-converting enzyme isozymes. Biochim. Biophys. Acta., 1985, 839(1):71-82
    
    Vedder A. Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems.Antonie van Leeuwenhoek J Microbiol Serol, 1934, 1:143-47
    Venegas M.G ., In: Showell M.S. (ed) Powdered Detergents, Surfactant Science, 1998
    Vioque J., Sanchez-Vioque R., Clemente A., Pedroche J.. Yust M. M., Millan F., Bioactive peptides in storage proteins .Grasas y Aceites, 2000. 51:361-365
    
    Weaver L. H., Kester W. R. and Matthews B. W., A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of structures. J. Mol.BioL, 1977, 114 : 119-132
    
    Won. H.. Lee, S. H., Lee, K. J., Park, J., Kim, S., Kwon, M. H., Kim, Y. S., Construction and characterization of a pseudo-immune human antibody library using yeast surface display, Biochem. Biophy. Res. Communi., 2006, 346: 896-903
    
    Xianghong Wang, Zhenming Chi_, Lixi Yue, Jing Li, Meiju Li, Longfei Wu, A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiological Research, 2007, 162: 77-85
    
    Xiaoyu Li. Zhenming Chi. Zhiqiang Liu. Jing Li. Xianghong Wang, Nalini Yasoda Hirimuthugoda,Purification and Characterization of Extracellular Phytase from a Marine Yeast Kodamaea ohmeri BG3.Marine biotechnology,2008, online.
    
    Xiumei Ni, Zhenming Chi*, Chunling Ma, Catherine Madzak., Cloning, characterization and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10. Marine Biotechnology. 2008b.online
    Xuan J.M., Fournier P.. Gaillardin C. Cloning of the LYS5 gene encoding saccharopine dehydrogenase. Curr Genet., 1988, 14 : 15-21
    
    Yamaguchi N.,Yokoo Y., Fujimaki M., Antioxidative activities of protein hydrolysates. Nippon shokuhin kogyo gakkaishi, 1979, 26(2): 65-70
    
    Yang J.K., Shih I.L., Tzeng Y.M.,Wang S.L., Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbial Technol., 2000, 26 : 406-413
    
    Yang Y. Li J.. Isolation and Properties of Angiotensin Converting Enzyme from Rabbit Lung. Food and Fermentation Industries, 2003, 8:53-56
    Zhu, K. L., Chi, Z. M., Li, J., Zhang, F. L., Li, M. J., Yasoda, H. N., L. F. Wu, L. F., The surface display of haemolysin from Vibrio harveyi on yeast cells and their potential applications as live vaccine in marine fish. Vaccine. 2006, 24. 6046-6052

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700