海洋灰绿曲霉发酵生产灰绿霉素及真菌聚酮合成酶基因Tspks1的异源表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰绿霉素A是中国海洋大学从海洋丝状真菌灰绿曲霉(Aspergillus glaucus HB1-19, CCTCC M 206022)代谢产物中分离出来的一种具有良好抗肿瘤活性、结构新颖的蒽醌内酯衍生物,由聚酮途径合成。本课题旨在通过代谢调控、发酵优化及放大来提高灰绿霉素A产量,促进后续的细胞和动物等药学实验、临床研究及其他构效关系研究,同时为较为缺乏的海洋微生物发酵研究提供参考。此外,鉴于近年来真菌聚酮合成酶基因克隆及功能鉴定的研究发展迅速,但有关真菌宿主异源表达真菌聚酮合成酶基因的研究较少,本文研究了米曲霉M-2-3表达系统异源表达Talaromyces stipitatus ATCC 10500聚酮合成酶基因Tspksl。
     本文首先研究了柠檬酸对灰绿曲霉发酵的代谢调控及对生长、发育的影响。在固体平板培养中,添加15 mmol/L柠檬酸使灰绿曲霉HB1-19生长降低31.5%,灰绿霉素A产量降低23.0%,无性生殖即分生孢子的数量降低84.8%,但有性生殖即子囊果的数量却提高了360%。在液体深层培养中,第3天和第4天两次等量添加终浓度40 mmol/L的柠檬酸时,灰绿霉素A产量提高了80%,且菌体量增加了16.7%,糖利用率增加了10%。通过pH对照及发酵液有机酸测定可知,柠檬酸和低pH可以显著促进丙酮酸积累并抑制琥珀酸和延胡索酸的积累。低pH条件下,柠檬酸有较高的利用率。丙酮酸的积累及柠檬酸的高效利用有利于乙酰辅酶A的积累及向胞质的转移,促进了灰绿霉素A的生产。
     培养基开发是发酵优化的重要组成部分。本文采用正交设计、Plackett-Burman设计和响应面设计成功设计了一种灰绿霉素A高产培养基,使产量达到71.2 mg/L,是原始培养基中产量的4.22倍。元素分析结果表明,培养基碳氮比由原始的20.1:1提高到86.6:1。高碳氮比有利于积累乙酰辅酶A,提高灰绿霉素A产量。尽管如此,5L双层六平叶涡轮桨反应器发酵中灰绿霉素A产量却不高于6.0 mg/L。摇瓶培养中剪切和溶解氧定性研究结果表明,灰绿曲霉生产灰绿霉素A对剪切环境非常敏感,且生长期相对较高而生产期相对较低的溶解氧环境有利于灰绿霉素A的生产。因此,本研究在5L生物反应器发酵中采用六平叶涡轮桨和改进的三扇形斜叶桨的不同组合,以优化剪切和供氧环境。不同桨叶组合方式下,菌体生长、代谢及形态呈现很大不同。上斜叶下平叶涡轮桨效果最好,菌体量达到13.8g/L,灰绿霉素A产量达到19.3 mg/L。灰绿曲霉发酵过程起泡问题较严重,通气量受限。本文通过添加氧载体解决氧供应问题,添加0.35%正十二烷使灰绿霉素A产量提高至25.3 mg/L,但菌体生长有所下降。过量氧载体添加对灰绿霉素A生产及菌体生长均不利。
     发酵条件优化的结果表明,接种量14%、磷酸盐浓度1%、消泡剂总添加浓度2%、初始pH 6.5、过程pH 6.0-6.5有利于灰绿霉素A的生产。等组分比例不同浓度的培养基及间歇性补加碳源实验证明分批发酵对灰绿霉素A生产较为合理。结合5L反应器剪切及溶解氧研究,采用桨叶末端线速度相似的发酵放大策略、控制生产期pH 6.0-7.0,并结合溶解氧强度及菌丝形态相似的原则,成功将灰绿曲霉发酵放大到30 L和500 L。在30 L和500 L发酵中,灰绿霉素A最高产量分别达到37 mg/L和30 mg/L以上。
     在柄篮状菌聚酮合成酶基因的异源表达研究中,首先通过D-TOPO克隆和酵母重组技术成功克隆了聚酮合成酶基因Tspks1(8060 bp),并通过LR重组实验构建了Tspksl真菌表达质粒。然后,利用该质粒转化米曲霉M-2-3原生质体并以精氨酸营养缺陷型培养基筛选转化子。以基因组DNA为模板的PCR结果表明,表达质粒成功整合入米曲霉基因组。RT-PCR结果表明Tspksl在米曲霉中成功转录,且部分转化子的内含子得以正确剪切修饰。在Tspksl末端连接增强型绿色荧光蛋白基因egfp,荧光结果表明90%转化子基因得以正确转录和翻译。然而,液质联用分析结果表明所得阳性转化子无目的化合物生产。通过成功移除表达质粒中Tspksl的内含子并转化米曲霉,使100%转化子产生绿色荧光,说明egfp基因得以正确转录和翻译。液质联用分析结果表明,一株阳性转化子生产两种新聚酮化合物,其中一种化合物保留时间、紫外吸收及分子量与目的产物3-methylorcinaldehyde基本相同,核磁共振氢谱结果进一步证明该化合物为3-methylorcinaldehyde。根据核磁共振氢谱、异核单量子相关谱和异核多量子相关谱分析结果推断,另一种化合物为3,6-二甲基-4-羟基-2-吡喃酮,是中间释放的三酮链产物。该结果表明Tspksl的确负责聚酮化合物3-methylorcinaldehyde的合成,且可释放短碳链中间产物。本研究表明,即使在真菌表达宿主中,内含子也会对真菌聚酮合成酶基因的异源表达产生较大影响,不同表达宿主对真菌聚酮合成酶基因的内含子识别机制可能不同。
Aspergiolide A, a structurally novel anthraquinone derivative isolated from cultures of a marine-derived fungus Aspergillus glaucus HB1-19 by Ocean University of China, was proven to hold striking anti-tumor activities and be synthesized via polyketide pathway. However, aspergiolide A production from the original cultures was quite low (< 4 mg/L). In present work, we aim to enhance aspergiolide A production using metabolic regulation, process optimization and fermentation scale-up to provide sufficient quantity of compound for further pharmacy studies of animal experiments, clinic research and structure activity relationship. We are also dedicated to introduce some useful information to marine microorganism fermentations owing to the lack of systematic culture techniques of marine microbes. In addition, cloning and function analysis of fungal polyketide synthase (PKS) gene have developed rapidly in recent years. By contrast, heterologous expression of fungal PKS gene is still in its infancy. Here we attempted to heterologously express Tspks1 from Talaromyces stipitatus ATCC 10500.
     Aspergiolide A production enhancement by citrate and its effects on growth and sexual development of marine-derived fungus Aspergillus glaucus HB1-19 were first investigated. In agar plate culture,15 mmol/L citric acid decreased colony radial growth and aspergiolide A production by 31.5% and 23.0%, respectively. It also improved sexual cleistothecium formation by 360% but depressed asexual conidiospore generation by 84.8%. In submerged culture, adding 40 mmol/L citric acid finally promoted aspergiolide A production by 80.0%, which accompanied with 16.7% increase of biomass and 10.0% enhancement of sugar utilization. Citrate and low pH could significantly improve pyruvate accumulation but inhibit succinate and fumarate production. Moreover, low pH was favorable to citrate utilization.
     Medium development is important for the whole fermentation optimization. Statistical methodologies including orthogonal design, Plackett-Burman design and response surface methodology were used to develop new medium to facilitate aspergiolide A production. Under the proposed optimized conditions, the experimental aspergiolide A production reached 71.2 mg/L, which increased 4.22 times compared to that in original medium. Elemental analysis was finally conducted, and carbon-nitrogen ratio in the medium increased from 20.1:1 to 86.6:1. High carbon-nitrogen ratio facilitates acetyl-CoA accumulation and further improves aspergiolide A production.
     Even with metabolic regulation and high yield medium, aspergiolide A production in 5 L stirred-tank bioreactor is still too low (<6.0 mg/L). Study about shear stress and dissolved oxygen tension in shaking flask cultures revealed that the marine-derived fungus Aspergillus glaucus HB1-19 is typically shear sensitive and mechanical shear stress severely damaged mycelia and diminished aspergiolide A production. Moreover, aspergiolide A biosynthesis favored high dissolved oxygen tension in the growth phase but low one in the production period. Afterwards, cultures with different impeller combinations were conducted. Growth, production and morphology differed greatly among these batches. The combination of upper three-sector-blade pitched blade turbine impeller and lower six-flat-blade disc turbine impeller led to the maximum dry biomass (13.8 g/L) and aspergiolide A production (19.3 mg/L). On another hand, feeding 0.35% (v/v) n-dodecane further improved the production by 31.0%, i.e.,25.3 mg/L in the bioreactor despite the overall cell growth was decreased.
     Results of further optimization of fermentation conditions showed that inoculation ratio of 14%, phosphate concentration of 1%, total antifoam addition of 2%, original pH of 6.5 and process pH between 6.0 and 6.5 are preferable to aspergiolide A production. Cultures with media of different nutrition concentration but same composition or intermittent carbon source feeding strategy showed no production improvement. Therefore, batch culture is suitable for aspergiolide A production by Aspergillus glaucus HB1-19. By combined use of the scale-up strategy, i.e., similar impeller linear velocity together with similar dissolved oxygen tension and fungus morphology, the fermentation was successfully scaled up to 30 L and 500 L finally. Aspergiolide A production in 30 L and 500 L cultures reached up to more than 37 mg/L and 30 mg/L, respectively.
     As for heterologous expression of Tspksl from T. stipitatus, gateway technics were adopted to construct the expression vector. D-TOPO cloning and yeast recombination were first applied to clone the intact Tspksl gene. After that, the Tspksl gene was transferred into the expression vector by LR recombination. Afterwards, the expression vectors were transformed into protoplasts of Aspergillus orazye M-2-3, and arginine defective medium was used for transformant screening. PCR experiments towards genomic DNA of the transformants indicated the vectors were effectively integrated into their genomic DNA. From the RT-PCR assays, Tspksl transcription worked well. The sequencing results showed that the intron was correctly removed in some cases. However, none of the cultivated transformants produced any positive desired compound. To investigate whether or not the translation processed correctly, the egfp gene was linked to the end of Tspksl by removing the stop coden of Tspksl. About 90% of the new transformants showed green fluorescence, which indicated the translation frame was mostly correct. Although dozens of the strongly fluorescent colonies were analyzed, none of these transformants produced desired compounds. The intron was then removed from Tspksl in the expression vector, by which means 100% of the new intron deleted transformants presented green fluorescence. LC-MS results showed positive transformants produced two new compounds 3-methylorcinaldehyde and 3,6-dimethyl-4-hydroxy-2-pyrone, which was a triketide early released from TSPKS1. These results showed that intron made great effects on heterologous expression of fungal polyketide synthase genes even in fungi host strain. Moreover, different host strains might own different intron identification mechanisms of the fungal polyketide synthase genes.
引文
[1]Pomponi SA. The bioprocess-technological potential of the sea. J Biotechnol 1999.70: 5-13
    [2]Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2005,22:15-61
    [3]Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2006,23:26-78
    [4]Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR, Prinsep MR. Marine natural products. Nat Prod Rep 2007,23:31-86
    [5]Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR, Prinsep MR. Marine natural products. Nat Prod Rep 2009,26:170-244
    [6]Haefner B. Drugs from the deep:marine natural products as drug candidates. Drug Discov Today 2003,8:536-544
    [7]Colwell RR,1997. Microbial biodiversity and biotechnology. In:Reaka-Kudla, M.E., Wilson, E. (Eds.), Biodiversity Ⅱ:Understanding and Protecting Our Biological Resources. Joseph Henry Press, Washington, DC, pp.279-287
    [8]Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J. Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 2005,8:276-281
    [9]Newman D J, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 2004,11:1693-1713
    [10]Bergmann W, Feeney, RJ. The isolation of a new thymine pentoside from sponges. J Am Chem Soc 1950,72:2809-2810
    [11]Bergmann W, Feeney RJ. Contributions to the study of marine products. ⅩⅩⅩⅡ. The nucleosides of sponges. J Org Chem 1951,16:981-987
    [12]Bergmann W, Feeney RJ. Contributions to the study of marine products. XXIX. The nucleosides of sponges.Ⅲ. Spongothymidine and spongouridine. J Org Chem 1955,20: 1501-1507
    [13]Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 2004,67:1216-1238
    [14]Kelecom A. Secondary metabolites from marine microorganisms. An Acad Bras Cienc 2002,74:151-170
    [15]Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J. Exploring novel bioactive compounds from marine microbes Curr Opin Microbiol.2005,8:276-281
    [16]Lam KS. Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 2006,9:245-251
    [17]Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W. Salinosporamide A:a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Edit 2003,42: 355-357
    [18]Riedlinger J, Reicke A, Zahner H, Krismer B, Bull AT, Maldonado LA, Ward AC, GoodfellowM, Bister B, Bischoff D. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 2004,57:271-279
    [19]Bister B, Bischoff D, Strobele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zahner H, Fiedler H-P, Sussmuth RD:Abyssomicin C-apolycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 2004,43:2574-2576 [20] Rath J-P, Kinast S, Maier ME. Synthesis of the full functionalized core structure of the antibiotic abyssomicin C. Org Lett 2005,7:3089-3092
    [21]Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT. Diazepinomicin, a new antimicrobial alkaloid from marine Micromonospora sp. J Nat Prod 2004,67: 1431-1433
    [22]Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR, Fenical W. Sporolides A and B:structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org Lett 2005,7:2731-2734
    [2.3]Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS. Marine natural products of fungal origin. Nat Prod Rep 2007,24:1142-1152
    [24]Bugni TS, Ireland CM. Marine-derived fungi:a chemically and biologically diverse group of microorganisms. J Nat Prod 2004,21:143-163
    [25]Bhadury P, Mohammad BT, Wright PC. The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 2006, 33:325-337
    [26]Fenical W. http://www.cancer.ucsd.edu/summaries/wfenical.asp
    [27]Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F. Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 1999,55:1049-1053
    [28]Minagawa K, Kouzuki S, Yoshimoto J, Kawamura Y, Tani H, Iwata T, Terui Y, Nakai H, Yagi S, Hattori N, Fujiwara T, Kamigauchi T. Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. J Antibiot (Tokyo) 2002,55:155-164
    [29]Osterhage C, Konig GM, Holler U, Wright AD. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod 2002,65:306-313
    [30]Nagai K, Kamigiri K, Matsumoto H, Kawano Y, Yamaoka M, Shimoi H, Watanabe M, Suzuki K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J Antibiot (Tokyo) 2002,55:1036-1041
    [31]Shibazaki M, Taniguchi M, Yokoi T, Nagai K, Watanabe M, Suzuki K, Yamamoto T. YM-215343, a novel antifungal compound from Phoma sp. QN04621. J Antibiot (Tokyo) 2004,57:379-382
    [32]Liu Z, Jensen PR, Fenical W. A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma. Phytochemistry 2003b,64:571-574
    [33]Wagner-Dobler I, Beil W, Lang S, Meiners M, Laatsch H. Integrated approach to explore the potential of marine microorganisms. Adv Biochem Eng Biot 2002,74: 207-238
    [34]Lang S, Huners M, Lurtz V. Bioprocess engineering data on the cultivation of marine prokaryotes and fungi. Adv Biochem Eng Biot 2005,97:29-62
    [35]陶可敬.13C NMR法研究海洋灰绿曲霉次级代谢产物灰绿霉素A的生物合成途径.华东理工大学硕士论文.2009
    [36]孙学谦.海洋真菌灰绿曲霉次级代谢产物灰绿霉素A的合成分析与代谢调控.华东理工大学博士论文.2010
    [37]Masuma R, Yamaguchi Y, Noumi M, Omura S, Michio N. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience 2001,42:455-459
    [38]Miller JD, Savard ME. Antibiotic activity of the marine fungus Leptosphaeria oraemaris. Proc N S Inst Sc 1989,39:51-58
    [39]Bernan VS, Montenegro DA, Korshalla JD, Maiese WM, Steinberg DA, Greenstein M. Bioxalomycins new antibiotics produced by the marine Streptomyces sp. LL-31F508: taxonomy and fermentation. J Antibiot 1994,47:1417-1424
    [40]Osterhage C, Schwibbe M, Konig GM, Wright AD. Differences between marine and terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem Anal 2000,11:288-294
    [41]Mann J. Secondary metabolism Oxford [Oxfordshire]:Clarendon Press; New York: Oxford University Press,1987. Second edition.
    [42]储炬,李友荣.现代工业发酵调控学(第二版).北京:化学工业出版社.2006
    [43]陈坚,李寅.发酵过程优化原理与实践.北京:化学工业出版社.2002
    [44]Schugerl K. Bioreaction Engineering. Vol.1, Fundamentals, thermodynamics formal kinetics, idealized reactor types and operation modes. John Wiley & Sons 1990, Chichester, New York.
    [45]Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep 2007,24:1262-1287
    [46]俞俊棠,唐孝宣,邬行彦,李友荣,金青萍.新编生物工艺学(上).北京:化学工业出版社.2003
    [47]曹福祥.次生代谢及其产物生产技术.长沙:国防科技大学出版社.2003
    [48]Cox R. Polyketides, proteins and genes in fungi:programmed nano-machines begin to reveal their secrets. J Org Biomol Chem 2007,5:2010-2026
    [49]Shen B. Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms. Curr Opin Chem Biol 2003,7:285-295
    [50]Zhongshu Song. Biosynthesis of natural products in microorganisms:Griseusin, Fusarin C and Trichothecenes. Ph.D. thesis. University of Bristol.2004.
    [51]Weissman KJ, Leadlay PF. Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 2005,3:925-936
    [52]Cortes J, Liras P, Castro JM, Martin JF. Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of a-aminoadipyl-cysteinyl-valine and desacetoxycephalosporin synthase. J Gen Microbiol 1986,132:1805-1814
    [53]Kim ES, Hong HJ, Choi CY, Cohen SN. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J Bacteriol 2001, 183:2198-2203
    [54]Sanchez S, Demain AL. Metabolic regulation of fermentation processes. Enzyme Microb Technol 2002,31:895-906
    [55]Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev 1980,44: 232-251
    [56]Lopez JLC, Perez JAS, Sevilla JMF, Fernandez FGA, Grima EM, Chisti Y. Production of lovastatin by Aspergillus terreus:effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Technol 2003,33:270-277
    [57]Masurekar PS. Nutritional and engineering aspects of microbial process development. Prog Drug Res 2008,65:292-328
    [58]Martin JF. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system:an unfinished story. J Bacteriol 2004, 186:5197-5201
    [591 Petersen LA, Hughes DL, Hughes R, DiMichele L, Salmon P, Connors N. Effects of amino acids and trace element supplementation on pneumocandin production by Glarea lozoyensis:Impact on titer, analogue levels and the identification of new analogues of pneumocandin B0. J Ind Microbiol Biotechnol 2001,26:216-221
    [60]Chang MY, Tsai GJ, Houng JY. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme Microb Tech 2006,38:407-414
    [61]Escamilla EM, Dendooven L, Magana IP, Parra SP, De la Torre M. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J. Biotechnol 2000,76:147-155
    [62]Li X, Xu T, Ma X, Guo K, Kai L, Zhao Y, Jia X, Ma Y. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresour Technol 2008,99:5391-5396
    [63]Li XY, Liu ZQ, Chi ZM. Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium:Optimization by response surface methodology. Bioresour Technol 2008,99:6386-6390
    [64]Yuan LL, Li YQ, Wang Y, Zhang XH, Xu YQ. Optimization of critical medium components using response surface methodology for phenazine-1- carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng 2008,105:232-237
    [65]Freyer S, Weuster-Botz D, Wandrey C. Medium optimization using genetic algorithms. Bioeng 1992,8:16-25
    [66]方柏山,陈宏文,谢晓兰,万宁,梅余霞,胡宗定.基于神经网络和遗传算法的木糖醇发酵培养基优化研究.生物工程学报2000,5:648-650
    [67]罗建平,罗凯,陈晓燕,姜绍通.用神经网络和遗传算法优化怀槐悬浮细胞合成异黄酮.生物工程学报2004,20:759-763
    [68]Cooper CM, Fernstrom A, Miller SA. Performance of agitated gas-liquid contactors. Ind Eng Chem 1944,36:504-509
    [69]Richards JW. Studies in aeration and agitation. Progress Ind Microbiol 1961,3:143-172
    [70]Blanch HW, Bhavaraju SM. Non-Newtonian fermentation broths:rheology and mass transfer. Biotechnol Bioeng 1976,8:745-790
    [71]Dick O, Onken U, Sattler I, Zeeck A. Influence of increased dissolved oxygen concentration on productivity and selectivity in cultures of a colabomycin-producing strain of Streptomyces griseoflavus. Appl Microbiol Biotechnol 1994,41:373-377
    [72]Kreiner M, McNeil B, Harvey LM. "Oxidative stress" response in submerged cultures of a recombinant Aspergillus niger (Bl-D). Biotechnol Bioeng 2000,70:662-669
    [73]Buckland BC, Lilly MD. Fermentation:an overview. In:Stephanopoulos G (ed): Biotechnology. VCH, Weinheim,1993, p7-22
    [74]Oldshue JY. Fermentation mixing scale-up techniques. Biotechnol Bioeng 1966,8:3-24
    [75]Smith JJ, Lilly MD, Fox RI. The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol Bioeng 1990,35:1011-1023
    [76]Justen P, Paul GC, Nienow AW, Thomas CR. Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 1996,52:634-648
    [77]Justen P, Paul GC, Nienow AW, Thomas CR. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol Bioeng 1998,59:762-775
    [78]Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC. Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst Eng 2004,26:315-323
    [79]Steel R, Lentz CP, Martin SM. A standard inoculum for citric acid production in submerged culture. Can J Microbiol 1954,1:150-157
    [80]Kristiansen B, Bullock JD. Developments in industrial fungal biotechnology. In:Smith JE, Berry DR, Kristiansen B (edis):Fungal Biotechnology. London:Academic Press; 1988,p203-223
    [81]Konig B, Schugerl K, Seewald S. Strategies for penicillin fermentation in tower-loop reactors. Biotechnol Bioeng 1982,24:259-80
    [82]Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 2004,22:189-259
    [83]Bull AT, Bushell ME. Environmental control of fungal growth. In:Smith JE, Berry DR (eds):The Filamentous Fungi. Vol.2. London:Edward Arnold; 1976, p1-31
    [84]Rowley BI, Pirt SJ. Melanin production by Aspergillus nidulans in batch and chemostat cultures. J Gen Microbiol 1972,72:553-63
    [85]Whitaker A, Long PA. Fungal pelleting. Process Biochem 1973,8:27-31
    [86]Gerlach SR, Siedenberg D, Gerlach D, Schugerl K, Giuseppin MLF, Hunik J. Influence of reactor systems on the morphology of Aspergillus awamori. Application of neural network and cluster analysis for characterization of fungal morphology. Process Biochem 1998,33:601-15
    [87]Carlsen M, Spohr AB, Nielsen J, Villadsen J. Morphology and physiology of an a-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 1995,49:266-76
    [88]Mattey M. The production of organic acids. CRC Crit Rev Biotechnol.1992,12:87-132
    [89]Ghildyal NP, Lonsane BK, Karanth NG. Foam control in submerged fermentation. Adv Appl Microbiol 1988,33:173-222
    [90]Schmidt FR. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 2005,68:425-435
    [91]Larsson G, Tornkvist M, Wernersson ES, Tragard C, Noorman H, Enfors SO. Substrate gradients in bioreactors:origin and consequences. Bioprocess Eng 1996,14:281-289
    [92]Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger B, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HJ, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A. Physiological responses to mixing in large scale bioreactors. J Biotechnol 2001,85:175-185
    [93]Rocha-Valade JA, Estrada M, Galindo E, Serrano-Carreon L. From shake flasks to stirred fermentors:Scale-up of an extractive fermentation process for 6-pentylalpha-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochem 2006,41:1347-1352
    [94]Pollard DJ, Kirschner TF, Hunt GR, Tong IT, Stieber R, Salmons PM. Scale up of a viscous fungal fermentation:Application of scale-up criteria with regime analysis and operating boundary conditions. Biotechnol Bioeng 2007,96:307-317
    [95]范代娣,尚龙安,俞俊棠.以摄氧率为基准的放大技术.化学工程1996,24:26-29
    [96]Yang H, Allen D G. Model-based scale-up strategy for mycelial fermentation processes. Can J Chem Eng 1999,77:844-854
    [97]Pollard D J, Kirschner T F, Hunt G R, Tong I T, Stieber R, Salmon PM. Scale up of a viscous fungal fermentation:Application of scale-up criteria with regime analysis and operating boundary conditions. Biotechnol Bioeng 2007,96:307-317
    [98]Schmidt F R. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 2005,68:425-435
    [99]储炬,杭海峰,庄英萍.工业微生物发酵过程放大策略.生物产业技术2009,4:68-72
    [100]Dimroth P, Walter H, Lynen F. Biosynthesis of 6-methylsalicylic acid. Eur J Biochem 1970,13:98-110
    [101]Beck, J, Ripka S, Siegner A, Schiltz A, Schweizer E. The multifunctional 60methylsalicylic acid synthase gene of Penicilium patulum-its gene structures relative to that of other polyketide synthases. Eur J Biochem 1990,192:487-498
    [102]Bingle LEH, Simpson TJ, Lazarus CM. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 1999,26:209-223
    [103]Schumann J, Hertweck C. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 2006,124:690-703
    [104]Nicholson TP, Rudd BAM, Dawson M, Lazarus CM, Simpson TJ, Cox RJ. Design
    and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 2001,8:157-178
    [105]Cox RJ, Glod F, Hurley D, Lazarus CM, Nicholson TP, Rudd BAM, Simpson TJ, Wilkinson B, Zhang Y. Rapid cloning and expression of a fungal polyketide synthase geneinvolved in squalestatin biosynthesis. Chem Commun (Camb.) 2004,2260-2261
    [106]Pel HJ, Winde JHD, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007,25:221-231
    [107]Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci 2003,100:15670-15675
    [108]Song Z, Cox RJ, Lazarus CM, Simpson TJ. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 2004,5:1196-1203.
    [109]Brakhage AA, Langfelder K. Menacing mold:the molecular biology of Aspergillus fumigatus. Ann Rev Microbiol 2002,56:433-455
    [110]De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat Biotechnol 1998,16: 839-842
    [111]Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 2005,48: 1-17
    [112]Chakraborty BN, Kapoor M. Transformation of filamentous fungi by electroporation. Nucleic Acids Res 1990,18:6737
    [1.13]Weidner G, d'Enfert C, Koch A, Mol PC, Brakhage AA. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5-monophosphate decarboxylase. Curr Genet 1998,33:378-385
    [114]Talbot N. Molecular and Cellular Biology of Filamentous Fungi. Oxford University Press.2001
    [115]Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci 2004, 101:12248-12253
    [116]Krappmann S, Sasse C, Braus GH. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 2006,5:212-215
    [117]Brown JS, Aufauvre-Brown A, Holden DW. Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet 1998,259:327-335
    [118]Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Brakhage AA. .Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 1997,65:5110-5117.
    [119]Kempken F, Kuck U. Tagging of a nitrogen pathway-specific regulator gene in Tolypocladium inflatum by the transposon restless. Mol Gen Genet 2000,263:302-308
    [120]Brakhage AA, Langfelder K. Menacing mold:the molecular biology of Aspergillus fumigatus. Ann Rev Microbiol 2002,56:433-455
    [121]Eaton DL, Groopman JD. The Toxicology of Aflatoxins:Human Health, Veterinary, and Agricultural Significance. Academic Press, San Diego.1994.
    [122]Chang PK, Cary JW, Yu JJ, Bhatnagar D, Cleveland TE. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol Gen Genet 1995,248:270-277
    [123]Feng GH, Leonard TJ. Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol 1995,177: 6246-6254
    [124]Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 1999,284:1368-1372
    [125]Almeida R, Allshire RC. RNA silencing and genome regulation. Trends Cell Biol 2005,15:251-258
    [126]Nakayashiki H, Hanada S, Quoc NB, Kanotani N, Tosa Y, Mayama S. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol. 2005,42:275-283
    [127]Bedford DJ, Schweizer E, Hopwood DA, Khosla C. Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3 (2). J Bacteriol 1995,177:4544-4548
    [128]Fujii I, Ono Y, Gomi K, Ebizuka Y, Sankawa U. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet 1996,253:1-10
    [129]Cox RJ, Glod F, Hurley D, Lazarus CM, Nicholson TP, Rudd BAM, Simpson TJ, Wilkinson B, Zhang Y. Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chem Commun 2004,20:2260-2261
    [130]Gagunashvili AN, Davidsson SP, Jonsson ZO, Andresson OS. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res 2009,113:354-363
    [131]Kealer JT, Liu L, Santi DV, Betlach MC, Barr PJ. Production of a poyketide natural product in nonpolyketide-producing procaryotic and eukaryotic hosts. Proc. Natl Acad Sci 1998,95:505-509
    [132]Crawford JM, Thomas PM, Scheerer JR, Vagstad AL, Kelleher NL, Townsend CA. Deconstruction of iterative multidomain polyketide synthase function. Science 2008,320: 243-246
    [133]Crawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, Tsai SC, Townsend CA. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 2009,461:1139-1143
    [134]Moorthie VA, Xie X, Kealey JT, Silva NAD, Vederas JC, Tang Y. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 2009,326: 589-592
    [135]Ma SM, Zhan J, Xie X, Watanabe K, Tang Y, Zhang W. Redirecting the cyclization steps of fungal polyketide synthase. J Am Chem Soc 2008,130:38-39
    [136]Ma SM, Zhan J, Watanabe K, Xie X, Zhang W, Wang CC, Yi Tang. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc 2007,129:10642-10643
    [137]Du L, Zhu TJ, Fang YC, Liu HB, Gu QQ, Zhu WM. Aspergiolide A, a novel anthraquinone derivative with naphtho [1,2,3-de] chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 2007,63:1085-1088
    [138]Sun X, Zhou X, Cai M, Tao K, Zhang Y. Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresour Technol 2009,100:4244-4251
    [139]Tao K, Du L, Sun X, Cai M, Zhu T, Zhou X. Gu Q, Zhang Y. Biosynthesis of aspergiolide A, a novel antitumor compound by a marine-derived fungus Aspergillus glaucus via the polyketide pathway. Tetrahedron Lett 2009,50:1082-1085
    [140]Nelson DL, Cox MM. Lehningers Principles of Biochemistry.4th ed. Worth Publishers, New York 2003.
    [141]Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 2002,66:447-459
    [142]Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact 1999,12:59-63
    [143]Hicks J, Yu JH, Keller N, Adams TH. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Galpha protein-dependent signaling pathway. EMBO J 1997,16:4916-4923
    [144]Buchanan RL, Golden MH. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH. J Appl Bacteriol 1993, 74:515-520
    [145]Graham AF, Lund BM. The effect of citric acid on growth of proteolytic strains of Clostridium botulinum. J Appl Bacteriol 1986,61:39-49
    [146]Hang YD. Toxic action of citric acid on Geotrichum candidum. World J Microb Biotechnol 1989,6:73-75
    [147]Pombeiro SRC, Martinez-Rossi NM, Rossi A. Effect of citrate on radial growth and conidiation of the mould Aspergillus nidulans. World J Microb Biot.1991,7:609-612
    [148]Raunkjaer K, Nielsen PH, Hvitved-Jacobsen T. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Wat Res 1994,28:251-262
    [149]Hulya AK, Leman T. Vancomycin antibiotic production and TCA-glyoxalate pathways depending on the glucose concentration in Amycolatopsis orientalis. Enzyme Microb Technol 2006,38:727-734
    [150]Lambert RJ, Stratford M. Weak-acid preservatives:modelling microbial inhibition and response. J Appl Microbiol 1999,86:157-164
    [151]Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR. Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 2002,77:815-826
    [152]Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 2004,22:189-259
    [153]Mattey M. Citrate regulation of citric acid production in Aspergillus Niger. FEMS Microbiol Lett 1977,2:71-74
    [154]Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 2001,70:33-75
    [155]Roche TE, Hiromasa Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer.Cell Mol Life Sci 2007,64: 830-849
    [156]Snoep JL, Teixeira de Mattos MJ, Postma PW, Neijssel OM. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch Microbiol 1990,154:50-55
    [157]Starrenbugr MJC, Hugenholtz J. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 1991,57:3535-3542
    [158]Chang YN, Huang JC, Lee CC, Shih IL, Tzeng YM. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb Technol 2002,30:889-894
    [159]Rao YK, Tsay KJ, Wu WS, Tzeng YM. Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochem 2007,42:535-541
    [160]Leman J. Oleaginous microorganisms:an assessment of the potential. Adv Appl Microbiol 1997,43:195-243
    [161]Cui YQ, Van der Lans R, Luyben K. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng 1997,57:409-419
    [162]Wang L, Ridgway D, Gu T, Moo-Young M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 2005,23:115-129
    [163]Rols JL, Condoret JS, Fonade C, Goma G. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 1990,35,427-435
    [164]Kumaresan T, Joshi JB. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J 2006,115:173-193
    [165]Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease:An overview. Meth Enzymol 1990,186:1-85
    [166]Higashiyama K, Murakami K, Tsujimura H, Matsumoto N, Fujikawa S. Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. Biotechnol Bioeng 1998,63:442-448
    [167]Bentley R. A fresh look at natural tropolonoids. Nat Prod Rep.2008,115:118-138
    [168]Bentley R. Biosynthesis of tropolones in Penicillum stipitatum. J Biol Chem 1963, 238:1895-1902
    [169]Osullivan MC, Schwab JM. Verification of the mechanism of oxidative ring expansion in the biosynthesis of stipitatic acid by Talaromyces stipitatus. Bioorg Chem 1995,23:131-143
    [170]Yuan JS, Stewart Jr. CN. Real-time PCR statistics. PCR Encyclopedia 2005,1: 101127-101149.
    [171]Bailey AM, Cox RJ, Harley K, Lazarus CM, Simpson TG, Skellam E. Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum:first observation of a reductive release mechanism during polyketide biosynthesis. Chem Commun 2007,4053-4055
    [172]Acker TE, Brenneisen PE, Tanenbaum SW. Isolation, structure, and radiochemical synthesis of 3,6-dimet hyl-4-hydroxy-2-pyrone. J Am Chem Soc 1966,88:834-837
    [173]Abe L, Takahashi Y, Lou W, Noguchi H. Enzymatic formation of unnatural novel polyketides from alternate starter and nonphysiological extension substrate by chalcone synthase. Org Lett 2003,5:1277-1280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700