壳聚糖酶的分离纯化及酶基因在解脂耶氏酵母中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳寡糖具有许多独特的生理活性及功能性质,如增强机体免疫力、抗肿瘤、抑菌等,在医药、农业、食品等领域有着广泛的应用。壳聚糖酶是专一性降解壳聚糖的水解酶,可用于功能性壳寡糖的制备。本研究的主要目的是构建高效表达壳聚糖酶的工程菌株,以解决目前壳聚糖酶产量低、成本高等问题,同时为壳寡糖的制备提供有效途径。
     Microbacterium sp.是本实验室已筛选得到的产壳聚糖酶菌株,在此基础上,本论文报道了Microbacterium sp.壳聚糖酶的分离纯化、壳聚糖酶基因在解脂耶氏
     酵母中的表达及重组酶的性质等研究。采用硫酸铵盐析、DEAE-Sepharose Fast Flow离子交换层析、Sephacryl S-100凝胶层析相结合的方法对Microbacterium sp.粗酶液进行了分离纯化,得到电泳纯壳聚糖酶B,纯化倍数为9.9,回收率为20.5%。SDS-PAGE凝胶电泳显示单一条带,其相对分子质量约为33.8 kDa。酶解产物质谱分析表明壳寡糖主要为四糖、五糖,部分二糖及三糖,无单糖,说明此酶为内切酶。酶N端氨基酸序列为ETAGTVDLDAPVQKDT。
     根据酶N端测序结果及已注册壳聚糖酶序列设计引物,以Microbacterium sp.基因组为模板扩增得到约1000 bp特异性片段,序列分析表明含有完整的壳聚糖酶编码基因,其开放阅读框为801 bp,编码266个氨基酸残基,属于糖苷水解酶46号家族。该基因前26个氨基酸为信号肽,其N端推导序列与测序结果一致。壳聚糖酶基因表达采用解脂耶氏酵母表达体系。目的基因与表达载体pINA1317经限制性内切酶SfiⅠ、KpnⅠ双酶切后,连接,构建重组载体。重组载体NotⅠ酶切线性化后转化Yarrowia lipolytica Polh。采用YNB平板筛选阳性转化子。菌落PCR表明目的基因整合入酵母基因组中。转化子接种于PPB培养基(蔗糖2 g,酵母粉0.132 g,氯化铵0.132 g,磷酸二氢钾0.032 g,无水硫酸镁0.0132 g,硫胺素0.0334 mg,溶于100 ml pH 7.0 100 mM柠檬酸盐缓冲液),28℃培养120 h,发酵上清液酶活力可达10.4 U/ml,是Microbacterium sp.上清液酶活力的3.15倍。
     转化子粗酶液经DEAE-Sepharose Fast Flow离子交换层析得到电泳纯重组壳聚糖酶。SDS-PAGE及Western blotting鉴定了重组蛋白的表达,重组酶相对分子量偏大,为41kDa,可能与酵母表达体系的糖基化有关。酶学性质研究表明重组酶最适反应温度45℃,最适反应pH为5.6,缓冲体系为0.2 M乙酸盐缓冲液。重组酶在pH 5.0-7.0、25℃以下具有较好的稳定性。Na~+对酶活力有一定的促进作用;Ag~+、Fe~(3+)具有较强的抑制作用,其中Fe~(3+)(5 mM、10 mM)、Ag+(10 mM)完全抑制酶活力。以壳聚糖为底物,重组酶的Km值为0.926 mg/ml,Vmax为6.15 U/ml。酶解产物主要为三糖、五糖,降解专一性较好。
     本研究通过构建相关表达载体及工程菌株,实现了壳聚糖酶在解脂耶氏酵母中的分泌表达,并对表达蛋白进行了相关的生物活性鉴定,为壳聚糖酶的工业化生产奠定了理论基础。
Chitooligosaccharides(COSs), with various functional properties such as immunity-enhancing, antitumor activity and antimicrobial activity, have become a remarkable resource for development of biomedicine, agriculture, and food industry. Chitosanase, which catalyze the hydrolytic degradation of chitosan, can be used for preparation of functional COSs. The purpose of this study is to investigate the expression of chitosanase gene in yeast to resolve the problem of chitosanase such as high cost and unavailability in bulk quantities. The study will provide a more efficient way for COSs production.
     Microbacterium sp. that can express chitosanase was isolated previously. Purification, expression in Yarrowia lipolytica and characterization of the recombinant chitosanase are reported in this work.
     The chitosanase from Microbacterium sp. is purified 9.9 folds by a procedure of ammonium sulfate precipitation, DEAE-sepharose Fast Flow ionexchange and Sephacryl S-100 gel filtration chromatography with a recovery of 20.5%. The molecular weight is estimated to be 33.8 kDa by SDS-PAGE. The reaction products analyzed by LC–MS/MS show that chitosan can be degraded into different lengths of oligosaccharides, chitotetraose and chitopentaose are detected as the major products with some levels of chitobiose and chitotriose. The product such as glucosamine cannot be detected indicating that the mode of chitosanase B is endo–type. The N-terminal amino acid sequence is determined to be ETAGTVDLDAPVQKDT.
     The primers are designed according to N-terminal amino acid sequence and chitosanase gene registered. A 1000-length fragment encoding the chitosanase gene is obtained using the genomic DNA of Microbacterium sp. as a template. The sequence contains one open reading frame of 801 bp encoding 266 animo acids with a signal peptide of 26 amino acids. The deduced N-terminal amino acid sequence of the chitosanase gene, which is classified into glycoside hydrolase family 46, is completely identical to the result sequenced previously.
     Yarrowia lipolytica is chosen as the host for chitosanase expression. The amplified fragments are inserted into Sfi I–Kpn I sites of the vector pINA1317, resulting the recombinant plasmid. The expression plasmid is transformed to Y.lipolytica Polh competent cell after linearized with restriction enzyme Not I. The transformants are selected on YNB–N5000 plates without uracil. The colony PCR shows that the chitosanase gene is integrated into the genomic DNA of Y.lipolytica. After positive transformant is grown in PPB medium at 28℃for 120 h, the chitosanase activity in the supernatant of the culture is determined to be 10.4 U/ml, which is about 3.15–fold compared to that of Microbacterium sp.
     Purification of the recombinant chitosanase is achieved by DEAE–Sepharose Fast Flow ionexchange chromatography. The recombinant protein is demonstrated by western blotting. The molecular mass analyzed by SDS-PAGE is 41 kDa, which is larger than native chitosanase. It’s probably that the protein modification is different in Y.lipolytica Polh, such as N-glycosylation, signal peptide cleavage and other modifications of the propreprotein. The optimal temperature for recombinant chitosanase is 45℃and the optimal pH is 5.6 (0.2 M acetate buffer). The chitosanase activity is stable in the pH range of 5.0-7.0 and under 25℃. Na+ has an activating effect on enzyme activity. Ag+(10 mM) and Fe3+ (5 mM, 10 mM) can completely inhibit activity. The apparent Km and Vmax values of the recombinant chitosanase with souble chitoan as substrate are 0.93 mg/ml and 6.15 U/ml, respectively. Chitotriose and chitopentaose are detected as the major products.
     The chitosanase gene is successfully expressed in Y.lipolytica through the construction of expression vector and engineering strains, making an important step towards the production of chitosanase on industrial scale.
引文
[1]蒋挺大.壳聚糖.北京:化学工业出版社, 2001. 83~90
    [2]竺国芳,赵鲁杭.几丁寡糖和壳寡糖的研究进展.中国海洋药物, 2001, 19(1): 43~46
    [3] Jeon YJ, Park PT, Kim SK. Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor. Carbohydr Polym, 2001, 44(1): 71~76
    [4]许青松,魏鹏.壳寡糖抑制肝癌细胞SMMC~7721的增值及其机制探讨.天然产物研究与开发, 2009, 21(1): 152~154
    [5] Qiao Y, Bai XF, Du YG. Research advances of chitosan oligosaccharides on keeping healthy. Chin J Biochem Pharm, 2008, 29(3): 210~213
    [6] Richardson SCW, Kolbe HVJ, Duncan R. Potential of low molecular mass chitosan as a DNA delivery System: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm, 1999, 178(2): 231~243
    [7] Khan W, Prithiviraj B, Smith DL. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol, 2003, 160(8): 859~865
    [8]蔡俊.壳低聚糖在酿造酱油中的抑菌效果研究.中国酿造, 2005, 6: 13~15
    [9]叶耀东,匡银近,徐东生,等.壳低聚糖对水蜜桃汁澄清作用的影响.湖北农业科学, 2004, 6: 79~92
    [10]王德源,楚杰,马耀宏,等.壳寡糖的酶法制备及应用研究进展.山东食品发酵, 2003, 3: 19~20
    [11] Qin CQ, Du YM, Xiao L. E?ect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stab, 2002, 76: 211~218
    [12] Hsiao YC, Lin YW, Su CK, Chiang BH. High degree polymerized chitooligosaccharides synthesis by chitosanase in the bulk aqueous system and reversed micellar microreactors. Process Biochem, 2008, 43(1): 76~82
    [13]钟建业,吴成业.几种壳聚糖降解方法探讨.福建水产, 2008, 3: 65~69
    [14] Cai QY, Gu ZM, Chen Y, Han WQ, Fu TM, et al. Degradation of chitosan by an electrochemical process. Carbohydr Polym, 2010, 79(3): 783~785
    [15] Xie Y, Hu JG, Wei Y, Hong XW. Preparation of chitooligosaccharides by the enzymatic hydrolysis of chitosan. Polym Degrad Stab, 2009, 94(10): 1895~1899
    [16] Mengíbar M, Ganan M, Miralles B, Carrascosa AV, Martínez-Rodriguez AJ, Peter MG, Heras A. Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni. Carbohydr Polym, 2010, 84(2): 844~848
    [17] Yalpani M, Pantaleone D. An examination of the unusual susceptibilities of animoglycans to enzymatic hydrolysis. Carbohydr Res, 1994, 256(1): 159~175
    [18]杜昱光,张铭俊,张虎,白雪芳.海洋寡糖工程药物-壳寡糖制备分离新工艺及其抗癌活性研究.中国微生态学杂志, 2001, 13(1): 5~7
    [19] Monaghan RL, Eveleigh DE, Tewari RP, Reese ET. Chitosanase, a novel enzyme. Nature New Biology, 1973, 245(142): 78~80
    [20] Rodríguez-Martín A, Acosta R, Liddell S, Nú?ez F, et al. Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum. Appl Microbiol Biotechnol, 2010, 88: 519~528
    [21] Omumasaba CA, Yoshida N, Sekiguchi Y, Kariya K, Ogawa K. Purification and some Properties of a Novel Chitosanase from Bacillus subtilis KH1. Appl Microbiol, 2000, 46(1):16~27
    [22] Nanjo F, Katsumi R, et al. Purification and characterization of an exo-β-D-glucosaminidase, a novel type of enzyme, from Nocardia orientalis. J Biol Chem. 1990, 265(15): 10088~10094
    [23] Ohno T, Armand S, Hata T, Nikaidou N, et al. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT6037. J Bacteriol, 1996, 178(17): 5065~5070
    [24] Sun L, Admas B, Gmuon JR, Ye Y, et al. Characterization of two chintiase genes and one chitosanase Gene encoded by Chlorella virus PBCV-1. Virology, 1999, 263(2): 376~387
    [25]孙金凤,吴薇,潘翔.产壳聚糖酶菌株的分离筛选及其诱变育种.工业微生物, 2008, 2: 56~59
    [26] Aktuganov GE, Shirokov AV, Melent'ev AI. Isolation and Characterization of Chitosanase from the Strain Bacillus sp.739. Appl Biochem Microbiol, 2003, 39(5): 469~474
    [27] Wang SL, Peng JH, Liang TW, Liu KC. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr Res, 2008, 343: 1316~1323
    [28] Izume M, Nagae S, Kawagishi H, et al. Action Pattern of Bacillus sp.no.7-M chitosanase on partially N-acetylated chitosan. Biosci Biotechnol Biochem, 1992, 6(3): 448~453
    [29] Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, et al. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin. J Biol Chem, 2002,277(17): 14695~14702
    [30] Adachi W, Sakihama Y, Shimizu S, Sunami T, et al. Crystal Structure of Family GH-8 Chitosanase with Subclass II Specificity from Bacillus sp.K17. J Mol Biol, 2004, 343(3): 785~795
    [31] Masson JY, Denis F, Brzezinski R. Primary sequence of the chitosanase gene from Streptomyces N174 and comparison with other endoglycosidases. Gene, 1994, 140(1): 103~107
    [32] Li H, Plattner H, Schimz KL, et al. Cloning, sequencing and heterologous expression of a new chitinase gene, chi92, from Streptomyces olivaceoviridis ATCC 11238. Biotechnol Lett, 2000, 22(15): 1203~1209
    [33] Zhang XY, Dai AL, Kuroiwa K, Kodaira R, et al. Cloning and characterization of a chitosanase gene from the koji mold Aspergillus oryzae strain IAM 2660. Biosci Biotechnol Biochem, 2001, 65(4): 977~981
    [34]方祥年,杜昱光,黄秀梨,等.球孢白僵菌胞外壳聚糖酶的纯化和性质.菌物系统, 2002, 21(1): 77~83
    [35]徐瑞,郭占云.壳聚糖酶的纯化、基因克隆及其酶学性质的鉴定.药物生物技术, 2008, 15(2): 94~99
    [36] Tominaga Y, Tsujisaka Y. Purification and some enzymatic properties of the chitosanase from Bacillus R-4 which lyses Rhizopus cell walls. Biochim Biophys Acta, Enzymol, 1975, 410(1): 145~155
    [37]隋斯光,方文建,郑连英.壳聚糖酶的分离纯化及其酶学性质研究.高校化学工程学报, 2007, 21(5): 814~819
    [38] Eom TK, Lee KM. Characteristics of Chitosanases from Aspergillus fumigatus KB-1. Arch Pharm Res, 2003, 12(26): 1036~1041
    [39] Kurakake M, Yo-u S, Nakagawa K, Sugihara M, Komaki T. Properties of Chitosanase from Bacillus cereus S1.Curr microbiol, 2000, 40(1): 6~9
    [40] Gao XA, Ju WT, Jung WJ, Park RD. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr Polym, 2008, 72(3): 513~520
    [41] Wang SL, Chen SJ, Lu WC. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp.TKU015 using shrimp shells as a substrate. Carbohydr Res, 2008, 343(7): 1171~1179
    [42] Wang J, Zhou W, Yuan H, Wang YJ. Characterization of a novel fungal chitosanase Csn2from Gongronella sp. JG. Carbohydr Res, 2008, 343(15): 2583~2588
    [43] Chen X, Xia WS, Yu XB. Purification and Characterization of two types of Chitosanase from Aspergillus sp.CJ22~326. Food Res Int, 2005, 38(3): 315~322
    [44] Chiang CL, Chang CT, Sung HY. Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme Microb Technol, 2003, 32(2): 260~267
    [45] Liu J, Xia WS. Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem Eng J, 2006, 30(1): 82~87
    [46]梁东春,左爱军,郭刚,张镜宇.烟曲霉菌壳聚糖酶基因的克隆及在大肠杆菌中的表达.微生物学报, 2005, 45(4): 539~542
    [47]孙玉英,张继泉,王淑军.芽孢杆菌Bacillus sp.S-1壳聚糖酶基因的克隆与序列分析.中国生物工程杂志, 2009, 29(5): 72~77
    [48]刘怀伟,鲍晓明.腐皮镰孢菌壳聚糖酶的酶学性质研究及其在酿酒酵母工业菌株中的表达.微生物学报, 2009, 49(12): 1607~1612
    [49] Liu HW, Bao XM. Over expression of the Chitosanase Gene in Fusarium solani via Agrobacterium tumefaciens-Mediated Transformation. Curr Microbiol, 2009, 58(3): 279~282
    [50] Yamada T, Hiramatsu S, Songsri P, FUJIE M. Alternative Expression of a Chitosanase Gene Produces Two Different Proteins in Cells Infected with Chlorella Virus CVK2. Virology, 1997, 230(2): 361~368
    [51] Ando A, Saito A, Arai S, Usuda S, et al. Molecular Characterization of a Novel Family-46 Chitosanase from Pseudomonas sp.A-01. Biosci Biotechnol Biochem, 2008, 72(8): 2074~2081
    [52] Rodríguez-Martín A, Acosta R, Liddell S, Nú?ez F, et al. Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum. Appl Microbiol Biotechnol, 2010, 88(2): 519~528
    [53] Fink D, Boucher I, Denis F, Brzezinski R. Cloning and expression inStreptomyces lividans of a chitosanase-encoding gene from the actinomyceteKitasatosporia N174 isolated from soil. Biotechnol Lett, 1991, 13(12): 845~850
    [54] Lee YS, Yoo JS, Chung SY, Lee YC, et al. Cloning, purification and characterization of chitosanase from Bacillus sp. DAU101. Appl Microbiol Biotechnol, 2006, 73(1): 113~121
    [55] Akiyama K, Fujita T, Kuroshima K, Sakane T, Yokota A, Takata R. Purification and Gene Cloning of a Chitosanase from Bacillus ehimensis EAG1. J biosci bioeng, 1999, 87(3): 383~385
    [56] Li SL, Chen L, Wang C, Xia WS. Expression, purification and characterization of endo-type chitosanase of Aspergillus sp.CJ22-326 from Escherichia coli. Carbohydr Res, 2008, 343(17): 3001~3004
    [57] Yoon HG, Kim HY, Kim HK, Kim KH, et al. Cloning and expression of thermostable chitosanase gene from Bacillus sp. KFB-C108. J Microbiol Biotechnol, 1999, 9(5): 631~636
    [58]邱乐泉,杨琳.假单胞菌H3壳聚糖酶的固定化研究.浙江工业大学学报, 2007, 35(2): 185~189
    [59] Tokoro A, Kobayashi M, Tatekawa N, et al. Protective effect of N-acetyl chitohexaose on listeria monocytogens infection in mice. Microbiol Immunol, 1989, 33(4): 357~367
    [60]戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展.药物生物技术, 2005, 12(6): 416~442
    [61] Madzak C, Gaillardin C, Beckerich JM. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol, 2004, 109(1-2): 63~81
    [62] Gaillardin C, Ribet AM, Heslot H. Integrative transformation of the yeast Yarrowia lipolytica. Curr Genet, 1985, 10(1): 49~58
    [63] Matoba S, Fukuyama J, Wing RA, Ogrydziak DM. Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol Cell Biol, 1988, 8(11): 4904~4916
    [64] Poritz MA, Siegel V, Hansen W, Walter P. Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc Natl Acad Sci USA, 1988, 85(12): 4315~4319
    [65] Müller S, Sandal T, Kamp-Hansen P, Dalb?ge H. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast, 1998, 14(14): 1267~1283
    [66] Buckholz RG, Gleeson MAG. Yeast systems for the commercial production of heterologous proteins. Nat Biotechnol, 1991, 9: 1067~1072
    [67] Fournier P, Guyaneux L, Chasles M, Gaillardin C. Scarcity of ARS sequences isolated in a morphogenesis mutant of the yeast Yarrowia lipolytica. Yeast, 1991, 7(1): 25~36
    [68] Matsuoka M, Matsubara M, Daidoh H, Imanaka T, Uchida K, Aiba S. Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Mol GenGenet, 1993, 237(3): 327~333
    [69] Madzak C, Treton B, Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol, 2000, 2(2): 207~216
    [70]赵鹤云,黄瑛,杨江科,徐莉,闫云君.解脂耶氏酵母菌表达系统研究进展.生物加工过程, 2008, 6(3): 10~16
    [71] Hamsa PV, Chattoo BB. Cloning and growth-regulated expression of the gene encoding the hepatitis B virus middle surface antigen in Yarrowia lipolytica. Gene, 1994, 143(2): 165~170
    [72] K. Wolf, Ed. Nonconventional Yeasts in Biotechnology:A Handbook. Springer-Verlag GmbH & Co. KG, 1996. 313~388
    [73] Dall MT, Nicaud JM, Gaillardin C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet, 1994, 26(1): 38~44
    [74] Nicaud JM, Madzak C, Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res, 2002, 2(3): 371~379
    [75] Pignède G, Wang H, Fudalej F, Seman M, Gaillardin C, Nicaud JM. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol, 2000, 66(8): 3283~3289
    [76] Ogrydziak DM, Demain AL, Tannenbaum SR. Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta, 1977, 497(2): 525~538
    [77] Juretzek T, Wang HJ, Nicaud JM, Mauersberger S, BarthG. Comparison of promoters suitable for regulated overexpression ofβ-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol Bioprocess Eng, 2000, 5(5): 320~326
    [78] Xuan JW, Fournier P, Gaillardin C. Cloning of the LYS5 gene encoding saccharopine dehydrogenase from the yeast Yarrowia lipolytica by target integration. Curr Genet, 1988, 14(1): 15~21
    [79] Laloi M, MacCarthy, Morandi JO, Gysler C, Bucheli P. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds. Planta, 2002, 215(5): 754~762
    [80] Minning S, Serrano A, Ferrer P, Sola C, Schmid RD, Valero F. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol, 2001, 86( 1): 59~70
    [81]侯爱华,鲍晓明,杨国梁.外源基因在酵母中稳定表达的策略及研究进展.微生物学杂志, 2002, 22(4):42~44
    [82]姜琼,谢妤,马立新.解脂耶氏酵母杂合启动子的构建.宜春学院学报, 2004, 26(6): 4~6
    [83]董清华,沈元月.酵母菌表达系统研究进展与展望.北京农学院学报, 2008, 23(2): 72~75
    [84] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 208~218
    [85] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248~254
    [86]汪家政.蛋白质技术手册.北京:科学出版社, 2000. 77~100
    [87] Xuan JM, Fournier P, Gaillardin C. Cloning of the LYS5 gene encoding saccharopine dehydrogenase from the yeast Yarrowia lipolytica by target integration. Curr Genet, 1988, 14: 15~21
    [88] Adams A, Gottschling DE, Kaiser CA, Stearms T. Methods in yeast genetics:a Cold Spring Harbor Laboratory course manual.Cold Spring Harbor Laboratory Press, 1998.
    [89] Li X, Chi ZM, Liu Z, Li J, Wang XH, Hirimuthugoda NY. Purification and characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar Biotechnol, 2008, 10: 190~197
    [90] Nicaud JM, Madzak C, vanden Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C. Protein expression and secretion in the yeast Yarrowia lipolytica. Fems Yeast Res, 2002, 2:371~379
    [91] Martin K, McDougall BM, Jayus SM, Chen J, Seviour RJ. Biochemistry and molecular biology of exocellular fungalβ-(1,3)-andβ-(1,6)-glucanases. Fems Microbiol Rev, 2007, 31: 168~192
    [92] Nicaud JM, Fabre E, Gaillardin C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet, 1989, 16: 253~260
    [93] Park CS, Chang CC, Ryu DDY. Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol, 2000, 87: 1~15
    [94] Sun YY, Liu WS, Han BQ, Zhang JQ, Liu B. Purification and characterization of two types of chitosanase from a Microbacterium sp. Biotechnol Lett , 2006, 28(17): 1393~1399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700