葡萄糖酸氧化杆菌产木糖醇发酵条件优化及关键酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对Gluconobacter oxydans CGMCC 1.637 (G.oxydans CGMCC 1.637)转化D-阿拉伯醇产木糖醇的发酵条件进行优化并从G. oxydans CGMCC1.637中克隆得D-阿拉伯醇脱氢酶(D-arabitol dehydrogenase,ArDH)基因及木糖醇脱氢酶(xylitol dehydrogenase, XDH)基因,并对木糖醇脱氢酶的酶学性质进行研究。优化获得较适合的D-木酮糖发酵条件为:pH5.5, CaCO3 10g/L,装液量10%,接种量5%,30℃。在该发酵条件下,D-木酮糖的产率D-木酮糖的产量达到465mmol/L,得率(mmol/mmol)达到97%,转化效率为15.1 mmol/L h.研究表明,发酵液中D-木糖、柠檬酸、甘油、酒精、葡萄糖酸钠、葡萄糖等碳源的加入,会影响D-阿拉伯醇转化为D-木酮糖的效率。葡糖糖、D-果糖,D-甘露糖、D-木糖、甘油、D-山梨醇、乳糖、D-阿拉伯醇和木糖醇碳源对木糖醇脱氢酶活力和G. oxydans转化能力的影响的研究表明:D-山梨醇对G. oxydans CGMCC 1.637木糖醇脱氢酶的活性有明显的促进作用,而葡萄糖、果糖、木糖、木糖醇、D-阿拉伯醇对木糖醇脱氢酶活性有明显的抑制作用。在转化实验中,用D-甘露糖培养的Goxydans CGMCC 1.637的转化能力明显高于其他碳源培养的G. oxydans CGMCC1.637的转化能力,其中,用D-阿拉伯醇培养的G. oxydans CGMCC 1.637将D-木酮糖转化为木糖醇的能力最低,仅为对照(未加如上所述碳源的培养基)的35%,因此D-阿拉伯醇对G.oxydans CGMCC 1.637中木糖醇脱氢酶的D-木酮糖还原活性具有抑制作用。这一发现为克服一直以来G.oxydans发酵中D-木酮糖到木糖醇转化率低这一难题提供了线索。克隆自G.oxydans CGMCC 1.637的木糖醇脱氢酶与已报道的序列相似性仅为77%,是一个新的木糖醇脱氢酶基因。酶学性质研究表明,该酶在催化还原反应时,以D-木酮糖为底物,以NADH为辅酶,最适反应温度为30℃,最适反应pH为6.0;在催化氧化反应时,以木糖醇为底物,以NAD+为辅酶,最适反应温度为35℃,最适反应pH为10.0。在最适反应条件下,该酶氧化反应最高酶活为23.27 U/mg,而还原反应最高酶活约为氧化反应酶活的10倍(255.52U/mg)。
A highest yield of D-xylulose was achieved in the optimized fermentation conditions, including pH 5.5,30℃of culture temperature,100 mL fermentation medium in a 1000-mL flask of broth content and 5%(v/v) of inoculums size after 24 h fermentation. The investigation of various carbon sources on the bioconversion of D-xylulose to xylitol in G. oxydans CGMCC 1.637 after grown on them revealed that D-xylulose reductive activities of xylitol dehydrogenase was remarkably induced when G. oxydans CGMCC 1.637was cultivated on D-sorbitol. D-arabitol, which supported a high cell growth, remarkly inhibited the oxidative activity of xylitol dehydrogenase and the bioconversion ability of G. oxydans CGMCC 1.637. Oxidative activity of xylitol dehydrogenase in G. oxydans CGMCC 1.637 and the bioconversion ability of G. oxydans CGMCC 1.637 after grown on D-arabitol were inhibited, which provided a valuable clue for further study to increase xylitol yield from D-arabitol. Touch-down PCR was applied to clone the xylitol dehydrogenase gene from chromosomal DNA of G. oxydans CGMCC 1.637. The 798-bp open reading frame of xylitol dehydrogenase encoded a protein of 265 amino acids, with the molecular mass of 27.95 kDa. Sequence analysis of the putative protein revealed it to be a member of short-chain dehydrogenase/reductase family. Xylitol dehydrogenase showed oxidative activity with xylitol and sorbitol and no activity with other polyols, such as D-arabitol. Km and Vmax with xylitol was 78.97mmol/L and 40.17 U/mg, respectively. The highest oxidative activity of xylitol dehydrogenase for xylitol was only 23.27 U/mg at optimum conditions (pH 10.0,35℃). However, the activity of its reverse reaction, D-xylulose reduction, reached 255.55 U/mg at optimum conditions (pH 6.0,30℃), 10-times higher than that of xylitol oxidation.
引文
[1]尤新.我国甜味剂生产发展和研发方针[J].食品工业科技,2004(01).
    [2]Massoth D; Massoth G, Massoth IR, et al. The effect of xylitol on Streptococcus mutans in children[J]. Journal of the California Dental Association,2006, 34:231-234.
    [3]Knuuttila M, Scanberg M, Hamalainen M. Alterations in rat bone composition related to polyol supplementation of the diet[J]. Bone Miner,1989,6:25-31.
    [4]尤新.功能性甜味剂—木糖醇[J].中国食品添加剂,1996,2:15-18.
    [5]Dominguez JM, Cao N, Gongh CS, et al. Dilute acid hemicellulose hydrolysates from tom cobs for xylitol production by yeast[J]. Bioresources Technology,1997, 61(1):85-90.
    [6]Dahiya JS. Xylitol production by Petromyces albertensis grown on medium containing D-xylose[J]. Canadian Journal of Microbiology,1991,37:(1) 14-18.
    [7]Freer SN, Skory CD and Bothast RJ. D-Xylose metabolism in Rhodospori toruloides[J]. Biotechnology Letters,1997,19:1119-1122.
    [8]Byoung SK, Heung CJ, Jung HK. Molecular cloning and characterization of NAD+-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913. Biotechnology Progress,2006,22 (6):1708-1714.
    [9]Meyrial V, Delgenes JP, Moletta R, et al. Xylitol production from D-xylose by Candida guilliermondii[J]. Biotech Lett,1991,11:281-286.
    [10]Sampaio FC, Moraes CAD, Faveri DD. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochemistry,2006,41:675-681.
    [11]张金明,耿安利,姚传义,等.高产木糖醇酵母菌的筛选鉴定及两级法发酵特性[J].厦门大学学报,2011,50(3):624-630.
    [12]Mussatto SI, Roberto IC. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii[J].Process Biochemistry,2008, 43(5):540-546.
    [13]Parajo JC, Dominguez H, Dominguez JM. Biotechnological production of xylitol. part I:interest of xylitol and fundamentals of its biosynthesis[J]. Bioresources Technology,1998,65(3):191-201.
    [14]Onishi H, Suzuki T. Microbial production of xylitol from glucose[J]. Applied Microbiology,1969,18(6):1031-1035.
    [15]Ruijter GJG, Visser J, Rinzema A. Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation[J]. Microbiology,2004,150: 1095-1101.
    [16]Bernard EM, Christiansen KJ, Tsang Sf, et al. Rate of Arabinitol production by pathogenic yeast species[J]. Journal of Clinical Microbiology,1981,14:189-194.
    [17]Convertil A, Dominguez MJ. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii[J].2001, Biotechnology Bioengneering 75:39-45.
    [18]Hajny GJ. D-arabitol production by Endomycopsis chodati[J]. Applied Microbiology,1964,12:87-92.
    [19]Escalante J, Caminal G, Figueredo M, et al. Production of arabitol from glucose by Hansenula polymorpha[J]. Journal of Fermentation and Bioengineering,1990, 70:228-231.
    [20]Fujiwara A, Masuda S. Process for producing D-arabitol[P]. US4271268.1981.
    [21]Ueda K. Process for the production of D-arabitol[P]. US3607652.1971.
    [22]Saha BC, Sakakibara Y. Production of D-arabitol by a newly isolated Zygosaccharomyces rouxii[J]. Journal of Industrial Microbiology & Biotechnology,2007,34:519-523.
    [23]宋卫斌,林燕清,胡海燕等.产D-阿拉伯醇菌株的筛选,鉴定及其产D-阿拉伯醇条件的优化[J].微生物学报,2011,3:332-339.
    [24]Zhu HY, Xu H, Dai XY, et al. Production of D-arabitol by a newly isolated Kodamaea ohmeri[J], Bioprocess and Biosystems Engineering,2010,33: 565-571
    [25]Suzuki S-I, Sugiyama M, Mihara Y, et al. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans[J]. Bioscience Biotechnology Biochemistry,2002,66:2614-2620.
    [26]Sugiyama M, Suzuki S-I, Tonouchi N, et al. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol[J]. Bioscience Biotechnology Biochemistry,2003,67:584-591.
    [27]Muynck CD, Pereira CSS, Naessens Myriam, et al.The genus Gluconobacter oxydans:comprehensive overview of biochemistry and biotechnological applications [J]. Biotechnology,2007,27(3):147-171.
    [1]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans[J]. Nature Biotechnology,2005, 23:195-200.
    [2]Sugiyama M, Suzuki S-I, Tonouchi N, et al. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol[J]. Bioscience Biotechnology Biochemistry,2003,67:584-591.
    [3]Cheng HR, Jiang N, Shen A, et al. Molecular cloning and functional expression of D-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli[J]. FEMS Microbiology Letters,2005,252:35-42.
    [4]Kulhanek M. Microbial dehydrogenations of monosaccharides[J]. Advance in Appl Microbiology,1989,34:141-182.
    [5]尤蓉,余晓斌,李正华.控制pH值对云芝发酵罐液态培养的影响[J].食品与发酵工业,2001,27(12):20-23.
    [6]王翠华,李友元,陈长华,李啸.温度对丙酮酸生物合成动力学、能荷和氧化-还原度的影响[J].生物工程学报,2006,22(2):316-321.
    [7]徐庆阳,冯志斌,孙玉华,王东阳,陈宁.溶氧对L-苏氨酸发酵的影响[J].微生物学通报,2007,34(2):312-314.
    [8]卫功元,李寅,堵国成,陈坚.溶氧及pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响[J].生物工程学报,2003,19(6):734-739.
    [9]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans[J]. Nature Biotechnology,2005, 23:195-200.
    [10]Wang YY, Peng YZ,Wang SY, et al. Effect of carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process[J].Water science technology,2004,16:548-552.
    [11]Byoung SK, Heung CJ, Jung HK. Molecular cloning and characterization of NAD+-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913. Biotechnology Progress,2006,22 (6):1708-1714.
    [1]Sugiyama M, Suzuki S-I, Tonouchi N, et al. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol[J]. Bioscience Biotechnology Biochemistry,2003,67:584-591.
    [2]Wong B, Murray JS, Castellanos M, Croen KD. D-arabitol metabolism in Candida albicans:studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase[J]. Journal of Bacteriology,1993,175 (19):6314-6320.
    [3]Hallborn J, Walfridsson M, Penttila M, et al. A short-chain dehydrogenase gene from Pichia stipitis having D-arabitol dehydrogenase activity[J]. Yeast,1995,11: 839-847.
    [4]Quong MW, Miyada CG, Switchenko AC, et al. Identification, purification, and characterization of a D-arabinitol-specific dehydrogenase from Candida tropicalis[J]. Biochemical and biophysical research communications,1993,196: 1323-1329.
    [5]Murray JS, Wong ML, Miyada CG, et al. Isolation, characterization and expression of the gene that encodes D-arabitol dehydrogenase in Candida tropicalis[J]. Gene, 1995,155:123-128.
    [6]Hartley, B.S. The structure and control of the pentitol operons:In microorganisms as model systems for studying evolution[M]. Edited by Mortlock RP. New York: Plenum Press,1984,55-107.
    [7]Heuel H, Shakeri-Garakani A, Turgut S and Lengeler W. Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae[J].Microbiology,1998,144, 1631-1639.
    [8]Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257-A versatile enzyme for the oxidative fermentation of various ketoses[J]. Bioscience Biotechnol Biochemstry,2001,65:2755-2762.
    [9]Cheng HR, Li ZL, Jiang N, et al. Cloning, purification and characterization of an NAD-dependent D-arabitol dehydrogenase from Acetic Acid Bacterium, Acetobacter suboxydans[J]. The protein journal,2009,28:263-272.
    [10]Cheng HR, Jiang N, Shen A, et al. Molecular cloning and functional expression of D-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli[J]. FEMS Microbiology Letters,2005,252:35-42.
    [11]Suzuki S-I, Sugiyama M, Mihara Y, et al. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans[J]. Bioscience Biotechnology Biochemistry,2002,66:2614-2620.
    [12]Byoung SK, Heung CJ, Jung HK. Molecular cloning and characterization of NAD+-dependent xylitol dehydrogenase from Candida tropical is ATCC 20913 [J]. Biotechnology Progress,2006,22 (6):1708-1714.
    [13]Richard P, Toivari MH, Penttila M. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase [J]. FEBS Letters, 1999,457 (1):135-138.
    [14]Witteveen CFB, Weber F, Busink R, et al. Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger[J]. Microbiology,1994, 140:1679-1685.
    [15]Panagiotou G, Kekos D, Macris BJ, et al. Purification and characterization of NAD+-dependent xylitol dehydrogenase from Fusarium oxysporum[J]. Biotechnology Letters,2002,24:2089-2092.
    [16]Chung CT, Niemela SL, Miller RH, One-step preparation of competent Escherichia coli:transformation and storage of bacterial cells in the same solution[J]. Proc Natl Acad Sci USA,1989,86:2172-2175.
    [17]Cohen SN, Chang AC, Boyer HW, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proc Natl Acad Sci,1973,70:3240-3244.
    [18]Kulhanek M. Microbial dehydrogenations of monosaccharides[J]. Advance in Appl Microbiology,1989,34:141-182.
    [19]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans[J]. Nature Biotechnology,2005, 23:195-200.
    [20]Richard P, Toivari MH, Penttila M. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase[J]. FEBS Letters, 1999,457 (1):135-138.
    [21]Witteveen CFB, Weber F, Busink R, et al. Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger[J]. Microbiology,1994, 140:1679-1685.
    [22]Panagiotou G, Kekos D, Macris BJ, et al. Purification and characterization of NAD+-dependent xylitol dehydrogenase from Fusarium oxysporum[J]. Biotechnology Letters,2002,24:2089-2092.
    [23]Oppermann U, Filling C, Hult M., et al. Short-chain dehydrogenases/reductases (SDR):the 2002 update[J]. Chemico-Biological Interactions,2003, 143-144:247-253.
    [24]Duax WL, Pletnev V, Addlagatta A, et al. Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family[J]. Proteins,2003,53:931-943.
    [25]Jomvall H, Persson B, Krook M, et al. Short-chain dehydrogenase/reductase (SDR) [J]. Biochemistry,1995,34:6003-6013.
    [26]Syed SE-H, Engel PC. A pH-dependent activation-inactivation equilibrium in glutamate dehydrogenase of Clostridium symbiosum[J]. The Biochemical journal, 1990,271:351-355.
    [27]Syed SE-H, Engel PC, Martin SR. A circular dichroism study of the pH-dependent activation/inactivation equilibrium in the glutamate dehydrogenase of Clostridium symbiosum[J]. FEBS Letters,1990,262:176-178.
    [28]Hamza MA, Martin SR, Engel PC. The contribution of tryptophan residues to conformational changes in clostridial glutamate dehyderogenase-W64 and W449 as mediateors of the cooperative response to glutamate[J]. The FEBS journal, 2007,274:4126-4134.
    [29]Hamza MA, Engel PC. Homotropic allosteric control in clostridial glutamate dehydrogenase:Different mechanisms for glutamate and NAD+[J]. FEBS Letters, 2008,582:1816-1820.
    [30]Ehrensberger AH, Elling AR, Wilson DK, et al. Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity[J]. Structure,2006,14:567-575.
    [31]Tran LH, Kitamoto N, Kawai K, et al. Cloning and expression of a NAD+-dependent xylitol dehydrogenase gene (xylA) of Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering,2004,97:419-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700