T2细管径低气压汞放电正柱能量平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于低气压汞放电原理制成的荧光灯,是目前最主要的室内照明光源之一在照明领域有着举足轻重的地位。其中,一体化紧凑型荧光灯(俗称节能灯)凭借结构小巧、高效节能的特点更是在普通照明应用中发挥着重要的作用。近年来,外径7mm的T2紧凑型荧光灯占据了越来越大的市场,然而国内外对于荧光灯放电特性的研究都主要集中在管径较粗的T4-T12灯,而对于更细管径的研究报道却很少。由于T2荧光灯的电流密度远大于粗管径灯,双极性扩散增强易造成轴心汞耗尽的现象,会对放电的电学特性和光输出特性产生影响。我国已成为全球最大的紧凑型荧光灯生产国,产量占全球总产量的85%.而欧盟于2009年发布的生态指令对于投放欧盟市场的荧光灯产品提出了严格的能效标准。因此,有必要对更细管径的荧光灯进行实验和理论研究,从而优化紧凑型荧光灯的设计和制造。
     低气压汞放电正柱的能量损失分为三种:辐射损失、气体加热损失和管壁损失。其中辐射损失直接与荧光灯的应用息息相关。本文采用Koedam系数法测量了T2低气压Ar-Hg放电和Kr-Hg放电正柱的强谱线辐射功率和辐射效率,并探讨了冷端温度、放电电流、填充成分及充气压等参数对放电的影响。此外,利用一维流体模型分析了T2低气压汞放电正柱的能量平衡,并将模型结果与实际测量值进行了比较。
     第一章简要介绍了荧光灯的基本原理和管径细化发展过程,分析了当前我国荧光灯产业的现状和面临的挑战,提出了研究T2细管径汞放电的必要性和重要意义;同时,回顾了前人在模型和实验方面对于不同管径低气压汞放电的研究成果,并介绍了本文的主要研究工作和创新点。
     第二章介绍了Koedam系数的基本概念和物理意义。参考Koedam和Anderer等人测量较粗管径的Koedam系数的方法,设计并制造了一个小型分布辐射度计来进行测量。实验测量了T2低气压汞放电正柱254,365,436,546nm等辐射谱线在不同冷端温度(Ar-Hg测量的是20,50℃,Kr-Hg测量的是30,50℃),电流分别为40,100,160mA情况下的Koedam系数,并与Lawler等人的Monte-Carlo模拟的结果进行了比较。结果表明,Koedam系数随着管径缩小而减小,随电流上升而增大,而冷端温度对于Koedam系数的影响相对较小。对应不同波长,254nm的Koedam系数最大。
     第三章详细描述了Koedam系数法测量放电正柱区谱线辐射功率的实验流程和实验设备。制作了采用合成石英管材料、封接双浮动探针、不涂敷荧光粉、填充Ar-Hg或Kr-Hg气压2,3,5,710Torr的T2放电管。采用光谱辐照度相对定标和辐亮度绝对定标相结合的方式测量得到不同冷端温度和放电电流参数组合下,放电正柱中200~1000nm范围内Hg和Ar的强谱线的辐亮度,再计算出对应参数条件下谱线的辐射功率和辐射效率。由于185nm易被空气中的氧气吸收,采用真空单色仪来测量不同参数组合条件下185nm和254nm的辐亮度比值并采用了氘灯标准进行定标。对实验测量结果的不确定度进行了详细的误差分析。
     第四章计算得到了测量得到的T2细管径低气压汞放电正柱中11条汞线(185,254,297,313,365,405,408,436,546,577,579nm)的辐射功率和辐射效率,探讨了冷端温度、放电电流和稀有气体对输入功率和辐射效率的影响。电流100mA时254nm辐射功率对应的最佳冷端温度为50℃,而其辐射效率最大值对应的冷端温度更高。T2低气压Ar-Hg放电灯的最佳充气压为5Torr,Kr-Hg放电的最佳充气压在7torr左右。低气压汞放电灯内填充氪气,可以有效降低放电的输入功率,提高254nm辐射效率。汞原子的可见辐射相对254nm辐射很小,但对于研究放电正柱的能量平衡仍有着非常重要的意义。另外,在T2细管径灯中,轴心汞耗尽现象不可忽视。
     第五章分析了低气压汞放电正柱的能量平衡关系。输入放电正柱的能量以三种形式损耗:辐射损失、气体加热损失和管壁损失。本文采用Petrov等人的一维流体模型来分析放电的具体物理过程,该模型考虑了电子的径向不均匀分布,并利用放电空间内不同微元之间的辐射耦合系数来评估辐射过程。冷端温度40℃以上,模型预期与实验测量结果具有较好的一致性,但在冷端温度较低时,两者存在比较大的偏差。
Fluorescent lamps, which are based on low pressure mercury discharge, are among the major light sources for indoor lighting and play an important role in lighting. Compact fluorescent lamps (CFL), featuring compact structure and high efficiency; have played significant role in general lighting. In recent years, T2compact fluorescent lamps with outer diameter7mm have shared more portion of the market. However, researches on lamp discharge characteristics mainly focus on lamps with larger diameters (T4-T12), but seldom on lamps with small diameters. Since the current density inside the T2fluorescent lamps is much higher than that in lamps with larger diameters, ambipolar diffusion will lead to mercury depletion along the axis of the lamp tube, and subsequently influence electric and photometrical output properties of discharge. While China manufactures85%of the CFLs over the world, a series of regulations are implemented which propose requirements of greater performances to the products in EU market. Therefore, it is necessary to study fluorescent lamps with smaller diameters in order to optimize the designs of T2compact flourescent lamps. The energy losses in the positive column of low-pressure mercury discharge includes radiation, heating of gases and volumn losses. In this dissertation, the radiation power and radiant efficiency of strong spectral lines in the positive column of discharge are measured by Koedam factor method for T2Ar-Hg and Kr-Hg low pressure lamps. The dependence of discharge properties on the cold spot temperature, discharge current, filling composition and filling pressure is discussed. Furthermore, a1-D fluid model is applied to analyze energy balance in the positive column of the T2low pressure mercury discharge lamps, and results obtained from the model are compared with those from the experiments.
     In Chapter1, the basic principle of fluorescent lamps and the development trend of lamps with smaller diameters are introduced firstly. Then, the researches on T2mercury discharge lamps are proved necessary and important as a response to the current status and challenges for China's industry of fluorescent lamps. After the previous researches on modelling and experiments of low pressure mercury discharge lamps with different diameters are reviewed, main tasks and innovations of this dissertation are stated.
     In Chapter2, the concept and physical meaning of Koedam factor are explained. The methods to obtain Koedam factors for lamps with large diameters are reviewed. A small ganio-radiometer is designed and manufactured. In the experiments, the Koedam factors of strong spectral lines at254,365,436and546nm of the T2lamp discharge column are measured. The cold spot temperatures are20and50°C for Ag-Hg lamps, and30and50℃for Kr-Hg lamps. All the lamps are operated at the currents of40,100and160mA. The comparison of the experimental results with those derived from Monte-Carlo simulation by Lawler et al reveals that Koedam factors will decrease with the decreasing diameters and will increase with the increasing current, and that Koedam factors are less dependent on cold spot temperatures. Spectral lines at254nm are found to yield the maximum Koedam factors.
     In Chapter3, The procedure and experimental setup are described in detail for measurement of radiant powers inside the positive column by Koedam factor method. The radiance of the spectral lines within the range of200-1000nm at different cold spot temperatures and currents is obtained by means of irradiance relative calibration and radiance absolute calibration. Then radiant power and radiant efficiency can be calculated with the Koedam factors obtained in Chapter2. Since the radiation at185nm is easily absorbed by oxygen at atmosphere, the radiant powers at185nm can be indirectly derived from the ratio of radiance of185nm to radiance of254nm. A vacuum monochromator is applied to obtain the radiance of185nm and that of254nm on different conditions. A deuterium lamp radiance standard is applied for calibration. Besides, the uncertainty of the experimental results is analyzed in detail.
     In Chapter4, the radiation powers and radiant efficiencies of the eleven spectral lines (at185,254,297,313,365,405,408,436,546,577,579nm) for T2lamps are measured. The dependence of input powers and radiant efficiencies on cold spot temperatures, discharge currents, rare gases and their filling pressure is discussed. For the radiation at254nm with current100mA, the optimum cold spot temperature for radiant power is50℃, and the cold spot temperature for maximum radiant efficiency is higher. The optimum filling pressures for T2Ar-Hg discharge and Kr-Hg discharge are5Torr and7Torr respectively. Krypton is filled in the low pressure mercury discharge lamps to reduce input power and increase radiant efficiency at254nm. Though visible radiation from mercury atoms is very low compared with radiation at254nm, it is still very important for the research of energy balance in the discharge column. In addition, mercury depletion along the lamp axis cannot be neglected.
     In Chapter5, power balance in the discharge column of low pressure mercury discharge is analyzed. The energy input into the discharge column is consumed in the form of radiation loss, gas heating loss and loss at the wall. In this dissertation, a one dimensional fluid model developed by Petrov et al is applied to analyze the detailed discharge process. According to this model, radial distribution of the electrons is taken into consideration, and the radiation process is evaluated with coupling coefficients of different infinitesimal elements in the discharge space. When the cold spot temperatures are over40℃, the model prediction agrees well with the experimental results. But at lower cold spot temperatures, there is big deviation between experimental results and model.
引文
[1]叶欣,梁贞.2007年全国荧光灯市场调研报告[J].中国照明电器,2008,(11):1-5.
    [2]梁贞.中国电光源工业技术装备的发展历程[J].中国照明电器,2010,(3):1-6.
    [3]中国和联合国合作开展淘汰白炽灯推广节能灯项目.http://www.gov.cn/gzdt/2009-07/24/content_1373749.htm
    [4]朱永旗.节能灯三年累计推广3.6亿支[N].中国经济导报,2011-01-08(C01).
    [5]Waymouth J F. Electric Discharge Lamps[M]. Cambridge: MIT Press, 1971.
    [6]Lister G G, Lawler J E, Lapatovich W P, Godyak V A, The physics of discharge lamps [J], Rev. Mod. Phys. 2004, 76 (2): 541-598.
    [7]Lister G G 2007 Low Temperature Plasma Physics vol 1, 2nd edn ed R Hippler et al (New York: Wiley) p 599
    [8]章海骢.T5灯管提高了荧光灯效率[J].光源与照明,2000,(4):34-36.
    [9]Hilscher A. Determination of the cathode fall voltage in fluorescent lamps by measurement of the operating voltage [J]. J Phys D: Appl Phys 2002, 35: 1707-1715.
    [10]Nachtrieb R, Khan F, Waymouth J F. Cathode fall measurements in fluorescent lamps [J]. JPhys D: Appl Phys, 2005,38: 3226-3236.
    [11]Garner R. Interpretation of the external band technique for cathode fall measurements of fluorescent lamps [J]. J Phys D: Appl Phys, 2008, 41: 144009.
    [12]Jinno M, Okamoto M, Takeda M, et al. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode [J]. JPhys D: Appl Phys, 2007, 40: 3889-3895.
    [13]Hadrath S, Garner R. Fabry-Perot measurements of barium temperature in fluorescent lamps [J]. JPhys D: Appl Phys, 2010, 43: 165203.
    [14]Waymouth J F, Bitter F. Analysis of the plasma of fluorescent lamps [J]. J Appl Phys, 1956,27(2): 122-131.
    [15]Kenty C, Easley M A, Barnes B T. Gas temperatures and elastic losses in low pressure mercury-argon discharges [J]. J Appl Phys, 1951, 22 (8): 1006-1011.
    [16]Cayless M A. Theory of low pressure mercury rare-gas discharges [A]. Proceedings of 5th Conference on Phenomena of Ionized Gases [C]. Amsterdam: North Holland Publishing Co, 1961, 262-277.
    [17]Cayless M A. Theory of the positive column in mercury rare-gas discharges [J]. Brit JAppl Phys, 1963,14: 863-869.
    [18]Verweij W. Probe measurements and determination of electron mobility in the positive column of low-pressure mercury-argon discharges [J]. Philips Res Rep Suppl, 1961,16(2): 1-112.
    [19]Koedam M, Kruithof A A. Transmission of visible mercury triplet by low pressure mercury-argon discharge - concentration of 63P states [J]. Physica, 1962, 28: 80-100.
    [20]Koedam M, Kruithof A A, Riemens J. Energy balance of the low-pressure mercury-argon positive column [J]. Physica, 1963, 29: 565-584.
    [21]Denneman J W, de Groot J J, Jack A G, et ah Insights into the 26 mm diameter fluorescent lamp [J]. J Ilium EngSoc, 1980,10 (1):2-7.
    [22]朱绍龙,朱培元,蔡祖泉.内径10 mm低气压Ar-Ne-Hg放电正柱中的253.7nm辐射和能量平衡[J].光源与照明,1985,(2):1-6.
    [23]朱培元,朱绍龙,蔡祖泉.稀有气体对紧凑型荧光灯253.7 nm辐射效率的影响[J].电光源,1985,(3):1-4.
    [24]朱绍龙,高冀民,诸惠林.细管低气压Ar-Hg放电等离子体中Hg63P0,1,2激发态的浓度[J].复旦学报(自然科学版),1985,24(4):381-388.
    [25]Zhu S L, Zheng L, Cai Z Q. Hg 61P1 excited-state densities and 185.0 nm UV surface irradiances in a low-pressure mercury vapour discharge column [J]. J Phys D: Appl Phys, 1987,20(10): 1221-1223.
    [26]朱绍龙,郑莉,蔡祖泉.Ar-Hg放电正柱中Hg61P1态浓度及表面185.0 nm辐照度[J].应用科学学报,1989,7(1):35-39.
    [27]Anderer P. The radiation of low-perssure Hg-Ar discharges in tubes of small diameters [J]. J Appl Phys, 1991, 69 (3): 1224-1230.
    [28]Sansonetti C J, Reader J. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas [J]. J Phys D: Appl Phys, 2006, 39 (18): 4010-4026.
    [29]Maya J, Lagushenko R. Progress in low-pressure mercury rare-gas discharge research [J]. AdvAt Mol Opt Phys, 1989, 26: 321-373.
    [30]Dakin J T. A model of radial variations in the low-pressure mercury-argon positive-column [J]. J Appl Phys, 1986, 60 (2): 563-570.
    [31]Vriens L, Keijser RAJ, Ligthart FAS. Ionization processes in positive-column of Hg-Ar discharge [J]. J Appl Phys, 1978, 49 (7): 3807-3813.
    [32]Winkler R B, Wilhelm J, Winkler R. Kinetics of the Ar-Hg Plasma of-fluorescent lamp discharges. 1. Model basic equations Hg partial-pressure variation [J]. Ann Phys, 1983,40:90-118.
    [33]Winkler R B, Wilhelm J, Winkler R. Kinetics of the Ar-Hg Plasma of fluorescent lamp discharges. 2. Ar partial-pressure and discharge current variation [J]. Ann Phys, 1983,40: 119-139.
    [34]Wani K. Analysis of a low-pressure mercury rare-gas positive-column with a dynamic 2-temperature representation of electron-energy [J]. JAppl Phys, 1990, 68 (10): 5052-5058.
    [35]Kenty C. Production of 2537 radiation and the role of metastable atoms in an argon-mercury discharge [J]. JAppl Phys, 1950,21 (12): 1309-1318.
    [36]Lama W L, Gallo C F, Hammond T J, et al. Analytical model for low-pressure gas discharges: application to the Hg + Ar discharge [J]. JAppl Opt, 1982, 21 (10): 1801-1811.
    [37]Vriens L. Energy balance in low - pressure gas discharges [J]. JAppl Phys, 1973, 44 (9): 3980-3989.
    [38]Vriens L. Two- and three- electron group models for low-pressure gas discharges [J]. JAppl Phys, 1974,45(3): 1191-1195.
    [39]Hartgers A, van der Mullen JAM. Modelling an Ar-Hg fluorescent lamp plasma using a 3 electron-temperature approximation [J]. J. Phys. D. 2001, 34 (12): 1907-1913.
    [40]Winkler R B, Wilhelm J, Winkler R. Analysis of the kinetic properties and the energy budget of the electrons in the Ar-Hg glow discharge plasma at varying partial pressures and discharge currents [J]. Beitr Plasmaphys, 1983, 23 (1): 25-40.
    [41]Winkler R B, Wilhelm J, Winkler R. The Influence of admixtures of molecular gases on the efficiency of radiation production by Ar-Hg mixture plasmas used in fluorescent lamps [J]. Annalen der Physik, 1982,39 (1): 10-22.
    [42]Yousfi M, Zissis G, Alkaa A, et al. Boltzmann-equation analysis of electron kinetics in a positive column of low-pressure Hg-rare-gas discharges [J]. Phys Rev A,1990, 42 (2): 978-988.
    [43]Zissis G, Benetruy P, Bernat I. Modeling the Hg-Ar low-pressure-discharge positive-column - A comparative-study [J]. Phys Rev A, 1992, 45 (2): 1135-1148.
    [44]Milenin V M, Timofeev N A. Low pressure plasmas for light sources [M]. Leningrad: Leningrad University Press, 1991.
    [45]Lister G G, Coe S E. GLOMAC : A one dimensional numerical model for steady state low pressure mercury-noble gas discharges [J]. Comput Phys Commun, 1993, 75(1-2): 160-184.
    [46]Rajaraman K, Kushner M J. Proceedings of the 28th IEEE Conference on Plasma Science, Las Vegas, NV (2001).
    [47]Rajaraman K, Lister G G, Kushner M J. Proceedings of the 54th Gaseous Electronics Conference, State College, PA (2001).
    [48]Rajaraman K, Kushner M J. Proceedings of the 29th International Conference on Plasma Science, Banff, Alberta, Canada (2002).
    [49]Bernstein L B, Holstein T. Electron energy distributions in stationary discharges [J]. Phys Rev, 1954, 94 (6): 1475-1482.
    [50]Kortshagen U. Electron and ion distribution-functions in RF and microwave plasmas [J]. Plasma Sources Sci Technol, 1995, 4 (2): 172-182.
    [51]Kortshagen U, Busch C, Tsendin L D. On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas [J]. Plasma Sources Sci Technol, 1996, 5 (1): 1-17.
    [52]Schmidt M, Uhrlandt D, Winkler R. Self-consistent description of radial space-charge confinement in DC column plasmas [J]. J. Comput Phys, 2001, 168 (1): 26-46.
    [53]Golubovskii Y B, Porokhova I A, Behnke J, et al. A comparison of kinetic and fluid models of the positive column of discharges in inert gases [J]. J Phys D: Appl Phys, 1999, 32 (4): 456-470.
    [54]Irons F E. The escape factor in plasma spectroscopy - I. The escape factor defined and evaluated [J]. J Quant Spectrosc Radiat Transfer, 1979,22 (1): 1-20.
    [55]Osterbrock D E. Astrophysics of Gaseous Nebulae [M]. San Francisco, CA: Freeman, 1974.
    [56]Uhrlandt D, Winkler R. Radially inhomogeneous electron kinetics in the DC column plasma [J]. J Phys D: Appl Phys 1996, 29 (1): 115-120.
    [57]Uhrlandt D, Schmidt M, Behnke J F, et al. Self-consistent description of the DC column plasma including wall interaction [J]. J Phys D: Appl Phys, 2000, 33 (19): 2475-2482.
    [58]Uhrlandt D, Franke S. Study of a neon DC column plasma by a hybrid method [J]. JPhys D: Appl Phys, 2002, 35 (7): 680-688.
    [59]Rajaraman K, Kushner M J. A Monte Carlo simulation of radiation trapping in electrodeless gas discharge' lamps [J]. J Phys D: Appl Phys 2004, 37 (13): 1780-1791.
    [60]Petrov G M, Giuliani J L. Inhomogeneous model of an Ar-Hg direct current column discharge [J]. JAppl Phys, 2003, 94 (1): 62-75.
    [61]Holstein T. Imprisonment of resonance radiation in gaes [J]. Phys Rev, 1947, 72 (12): 1212-1233.
    [62]Holstein T. Transfer of excitation in atomic collisions [J]. Phys Rev, 1951, 83 (1): 201-201.
    [63]Uvarov F A, Fabrikant V A. Distribution of excited atoms across a low-pressure discharge in mercury and mercury-argon vapors [J]. Opt Spectrosc, 1965, 18 (6): 541-545
    [64]Dakin J T, Bigio L. Wall-induced inhomogeneities in the low-pressure Hg-Ar positive column [J]. JAppl Phys, 1988, 63 (11): 5270-5279.
    [65]Bigio L. Density measurements of Hg(63P0、1、2) in a discharge using saturated laser absorption and hook methods [J]. JAppl Phys, 1988, 63 (11): 5259-5269.
    [66]Golubovskii Yu B, Kagan Y M, Lyagushchenko R I. Population of resonant levels in a discharge of cylindrical configuration [J]. Opt Spectrosc, 1971, 31 (1): 10-13.
    [67]Golubovskii Yu B, Lyagushchenko R I. De-excitation of resonance levels in a discharge of cylindrical configuration [J]. Opt Spectrosc, 1975, 38 (6): 1086-1089.
    [68]Golubovskii Yu B, Lyagushchenko R I. Population of resonance levels in cylindrical volume [J]. Opt. Spectrosc. 1976, 40 (2): 215-222.
    [69]Golubovskii Yu B, Porokhova, Lange H, et al. Metastable and resonance atom densities in a positive column: Ⅰ. Distinctions in diffusion and radiation transport [J]. Plasma Sources Sci. Technol. 2005,14 (1): 36-44.
    [70]Golubovskii Yu B, Porokhova, Lange H, et al. Metastable and resonance atom densities in a positive column: Ⅱ. Application to light source modelling [J]. Plasma Sources Sci Technol, 2005,14 (1): 45-50.
    [71]Giuliani J L, Petrov G M, Apruzese J P, et al. Non-local radiation transport via coupling constants for the radially inhomogeneous Hg-Ar positive column [J]. Plasma Sources Sci Technol, 2005,14: 236-249.
    [72]周太明.光源原理与设计[M].上海:复旦大学出版社,1993.
    [73]Fang D Y, Huang C H, Modelling of low-pressure Ar+Hg discharge with high electric current densities [J]. J Phys D: Appl Phys, 1988, 21 (10): 1490-1495.
    [74]Han Q Y, Jiang H, Zhu S L, Zhang S D, Lister G G, Petrova T. Power balance in the positive column of narrow bore (T2) fluorescent lamps [J]. J Phys D: Appl Phys, 2008, 41 (14): 144008, 1-12.
    [1]周太明.光源原理与设计[M].上海:复旦大学出版社,1993.
    [2]Koedam M, Kruithof A A, Riemens J. Energy balance of the low-pressure mercury-argon positive column [J]. Physica, 1963, 29: 565-584.
    [3]Anderer P. The radiation of low-perssure Hg-Ar discharges in tubes of small diameters [J]. J Appl Phys, 1991, 69 (3): 1224-1230.
    [4]Doughty D A. Simulation of the angular distribution of resonance radiation from a positive column discharge [J]. J. Appl. Phys., 1995, 77 (4): 1393-1397.
    [5]Lawler J E, Doughty D A, Lister G G. Koedam factors revisited [J]. J Phys D: Appl Phys, 2002, 35 (14): 1613-1620.
    [6]江浩,韩秋漪,朱绍龙,张善端.T3低气压Ar-Hg放电正柱254nm辐射的Koedam β系数测量[J].照明工程学报,2007,18(2):13-16.
    [1]Waymouth J F. Electric Discharge Lamps [M]. Cambridge: MIT Press, 1971
    [2]Koedam M, Kruithof A A, Riemens J. Energy balance of the low-pressure mercury-argon positive column [J]. Physica, 1963, 29: 565-584.
    [3]Koedam M. and Kruithof A A. Transmission of visible mercury triplet by low pressure mercury-argon discharge - concentration of 63P states [J]. Physica, 1962, 28: 80-100.
    [4]朱绍龙,朱培元,蔡祖泉.内径10mm低气压Ar-Ne-Hg放电正柱中的253.7nm辐射和能量平衡[J].光源与照明,1985,(2):1--6.
    [5]朱培元,朱绍龙,蔡祖泉.稀有气体对紧凑型荧光灯253.7nm辐射效率的影响[J].电光源,1985,(3):1-4.
    [6]Anderer P. The radiation of low-pressure Hg-Ar discharges in tubes of small diameters [J]. JApplPhys, 1991, 69 (3): 1224-1230.
    [7]张善端,朱绍龙.计及化学电离和非Maxwell电子能量分布的低气压Ar-Hg放电正柱模型,复旦学报(自然科学版),2003,42(3):486-492.
    [8]Lister G G, Lawler J E, Lapatovich W P, Godyak V A, The physics of discharge lamps, Rev. Mod. Phys. 2004, 76 (2): 541-598.
    [9]Sansonetti C J, Reader J. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas [J]. J Phys D: Appl Phys, 2006, 39 (18): 4010-4026.
    [10]Lawler J E, Doughty D A, Lister G G. Koedam factors revisited [J]. J Phys D: Appl Phys, 2002, 35 (14): 1613-1620.
    [11]Wani K. Ladderlike ionization of the mercury atom in Hg-Ar low-pressure discharge and its modeling [J]. JApplPhys, 1994, 75 (10): 4917-4926.
    [12]Kreher J, Stern W. Increased power concentration and its effect on the discharge parameters on the low-pressure Hg-rare gas positive-column. 3. Effects of an axial rod [J]. Contrib Plasma Phys, 1989, 29 (6): 181-196.
    [13]Zhu S L, Zheng L, Cai Z Q. Hg 61P1 excited-state densities and 185.0 nm UV surface irradiances in a low-pressure mercury vapour discharge column [J]. J Phys D: Appl Phys. 1987, 20 (10):1221-1223.
    [14]冯祥芬,张善端,朱绍龙,等.低气压Ar-Hg放电中的185 nm辐射[J].复旦学报(自然科学版),2005,44(1):35-40.
    [1]Koedam M, Kruithof A A, Riemens J. Energy balance of the low-pressure mercury-argon positive column [J]. Physica, 1963,29: 565-584.
    [2]Denneman J W, de Groot J J, Jack A G, et al. Insights into the 26 mm diameter fluorescent lamp [J]. J Ilium EngSoc, 1980,10 (1):2-7.
    [3]朱绍龙,高冀民,诸惠林.细管低气压Ar-Hg放电等离子体中Hg63P0j,2激发态的浓度[J].复旦学报(自然科学版),1985,24(4):381-388.
    [4]朱培元,朱绍龙,蔡祖泉.稀有气体对紧凑型荧光灯253.7nm辐射效率的影响[J].电光源,1985,(3):1-4.
    [5]朱绍龙,朱培元,蔡祖泉.内径10mm低气压Ar-Ne-Hg放电正柱中的253.7nm辐射和能量平衡[J].光源与照明,1985,(2):1-6.
    [6]Anderer P. The radiation of low-pressure Hg-Ar discharges in tubes of small diameters [J].J Appl Phys, 1991, 69 (3): 1224-1230.
    [7]Sansonetti C J, Reader J. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas [J].J Phys D: Appl Phys, 2006, 39 (18): 4010-4026.
    [8]张善端,朱绍龙.计及化学电离和非Maxwell电子能量分布的低气压Ar-Hg放电正柱模型,复旦学报(自然科学版),2003,42(3):486-492.
    [9]Fang D Y, Huang C H. Modelling of low-pressure Ar+Hg discharge with high electric current densities [J]. J Phys D: Appl Phys, 1988,21 (10):1490-1495.
    [1]Waymouth J F, Bitter F. Analysis of the plasma of fluorescent lamps [J]. J Appl Phys, 1956,27(2): 122-131.
    [2]Cayless M A. Theory of low pressure mercury rare-gas discharges [A]. Proceedings of 5th Conference on Phenomena of Ionized Gases [C]. Amsterdam: North Holland Publishing Co, 1961, 262-277.
    [3]Maya J, Lagushenko R. Progress in low-pressure mercury rare-gas discharge research [J]. AdvAtMol Opt Phys, 1989, 26: 321-373.
    [4]Dakin J T. A model of radial variations in the low-pressure mercury-argon positive-column [J]. J Appl Phys, 1986, 60 (2): 563-570.
    [5]Vriens L, Keijser RAJ, Ligthart FAS. Ionization processes in positive-column of Hg-Ar discharge [J]. J Appl Phys, 1978, 49 (7): 3807-3813.
    [6]Winkler R B, Wilhelm J, Winkler R. Kinetics of the Ar-Hg Plasma of fluorescent lamp discharges. 1. Model basic equations Hg partial-pressure variation [J]. Ann Phys, 1983,40:90-118.
    [7]Winkler R B, Wilhelm J, Winkler R. Kinetics of the Ar-Hg Plasma of fluorescent lamp discharges. 2. Ar partial-pressure and discharge current variation [J]. Ann Phys, 1983,40:119-139.
    [8]Wani K. Analysis of a low-pressure mercury rare-gas positive-column with a dynamic 2-temperature representation of electron-energy [J]. J Appl Phys, 1990, 68 (10): 5052-5058.
    [9]Zissis G, Benetruy P, Bernat I. Modeling the Hg-Ar low-pressure-discharge positive-column-A comparative-study [J]. Phys Rev A, 1992 45 (2): 1135-1148
    [10]Verweij W. Probe measurements and determination of electron mobility in the positive column of low-pressure mercury-argon discharges [J]. Philips Res Rep Suppl, 1961,16(2): 1-112.
    [11]Kreher J, Stern W. Increased Power Concentration and its Effect on the DischargeParameters of the Low Pressure Hg-rare Gas Positive Column Ⅰ. Variation of Current [J]. Contrib Plasma Phys, 1988, 28 (2): 185-200.
    [12]Kreher J, Stern W. Increased Power Concentration and its Effects on the Discharge Parameters of the Low Pressure Hg-rare Gas Positive Column Ⅱ. Variation of Tube Radius [J]. Contrib Plasma Phys, 1989, 29 (2): 181-196.
    [13]Giuliani J L, Petrov G M, Apruzese J P, et al. Non-local radiation transport via coupling constants for the radially inhomogeneous Hg-Ar positive column [J]. Plasma Sources Sci Technol, 2005,14: 236-249.
    [14]Chanin L M. Gaseous Electronics [M]. New York: Academic Press, Vol. 1, 1978.
    [15]Petrov G M, Giuliani J L. Inhomogeneous model of an Ar-Hg direct current column discharge [J]. JApplPhys, 2003, 94 (1): 62-75.
    [16]Uhrlandt D, Winkler R. Radially inhomogeneous electron kinetics in the DC column plasma [J]. JPhys D: Appl Phys, 1996, 29 (1): 115-120.
    [17]Alves L L, Gousset G, Ferreira C M. Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a cylindrical plasma positive column [J]. Phys Rev E, 1997, 55 (1): 890-906.
    [18]Shay T, Kano H, Hattori S, et al. Time - resolved double - probe study in a He -Hg afterglow plasma [J]. J Appl Phys, 1997, 48 (11): 4449-4453.
    [19]Uhrlandt D, Winkler R. Radial structure of the kinetics and production of electrons in the dc column plasma [J]. Plasma Chem Plasma Process, 1996,16 (4): 517-545.
    [20]Uhrlandt D, Schmidt M, Behnke J F, et al. Self-consistent description of the dc column plasma including wall interaction [J]. J Phys D: Appl Phys, 2000, 33 (19): 2475-2482.
    [21]Schmidt M, Uhrlandt D, Winkler R. Self-consistent description of radial space-charge confinement in DC column plasmas [J]. J Comput Phys, 2001, 168 (1): 26-46.
    [22]Uhrlandt D. Power balance and space-charge confinement in a neon dc column plasma [J]. JPhys D: Appl Phys, 2002, 35 (20): 2159-2593.
    [23]Frost L S, Phelps A V. Momentum-Transfer Cross Sections for Slow Electrons in He Ar Kr + Xe from Transport Coefficients [J]. Phys Rev, 1964, 136 (6A): A1538-A1545.
    [24]Petrov G M, Giuliani J L, Dasgupta A. Electron energy deposition in an electron-beam pumped KrF amplifier: Impact of beam power and energy [J]. J Appl Phys, 2002, 91 (5): 2662-2677.
    [25]Hyman H A. Electron-impact-excitation Cross-sections for the Transition (n-1)p5ns-](n-1)p5np In The Rare-gases [J]. Phys Rev A, 1981, 24 (2): 1094-1095.
    [26]Hyman H A. Electron-impact Ionization Cross-sections for Excited-states of the Rare-gases (Ne, Ar, Kr, Xe), Cadmium, and Mercury [J]. Phys Rev A, 1979, 20 (3): 855-859.
    [27]Ferreira C M, Loureiro L. Populations in the Metastable and the Resonance Levels of Argon and Stepwise Ionization Effects in a Low-Pressure Argon Positive-Column [J]. JPhys D: Appl Phys, 1985, 57 (1): 82-90.
    [28]England J P, Elford M T. Aust. Momentum-transfer Cross-section for Electrons in Mercury-vapor derived from Drift Velocity-measurements in Mercury-vapor Gas-mixtures [J]. Aust J Phys, 1991, 44 (6): 647-675.
    [29]Rockwood S D. Elastic and Inelastic Cross-sections for Electron-Hg Scattering from Hg Transport Data [J]. Phys Rev A, 1973, 8 (5): 2348-2358.
    [30]Anderson R J, Lee E T P, Lin C C. Electron Excitation Functions of Mercury [J]. Phys Rev, 1967,157 (1): 31-40.
    [31]Penney W G. The theory of the excitation of atomic mercury by electron impact [J]. Phys Rev, 1932, 39 (3): 467-473.
    [32]Tripathi A N, Mathur K C, Joshi S K. Electron-impact ionization and excitation cross sections of atoms with 2 outer-shell electrons [J]. J Phys B: At Mol Phys, 1969, 2 (8): 878-884.
    [33]Savchenko V N. Calculation of effective cross sections for electron collision excitation of fine structure components P-1(1) and P-3(0,1,2) of mercury, cadmium, and zinc atoms [J]. Opt Spectrosc, 1971,30 (1): 6-&.
    [34]Penkin N P, Redko T P. [J]. Cross-sections for electron-impact excitation and mixing of 63P0,l,2 levels of a mercury atom [J] Opt Spectrosc, 1974, 36 (3): 446-452.
    [35]Drawin H W. Influence of atom-atom collisions on the collisional-radiative ionization and recombination coefficients of hydrogen plasmas [J]. Phys, 1969, 225 (5): 483-493.
    [36]Sobelman 11, Vainstein L A, Yukov E A. Excitation of Atoms and Broadening of Spectral Lines [M]. Berlin: Springer, 1981.
    [37]Wani K. Stepwise Excitation of the (Hg6pl)-P-1 Level in the Afterglow of a Low-Pressure Hg-Ar Discharge [J]. J Appl Phys, 1985, 58 (8): 2968-2974.
    [38]Kenty C. Production of 2537 Radiation and the Role of Metastable Atoms in an Argon - Mercury Discharge [J]. JAppl Phys, 1950, 21 (12): 1309-1318.
    [39]Vriens L, Smeets A H M. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms [J]. Phys Rev A, 1980, 22 (3): 940-951.
    [40]Reader J R, Corliss C H, Wiese W L, et al. 'Wavelengths and Transition Probabilities for Atom and Atomic Ions. Natl. Stand. Ref. Data System, U.S. Dept. of Commerce, Nat. Bur. Stand., Washington, DC, p. 385 (1980)
    [41]Benck E C, Lawler J E, Dakin J T. Lifetimes, Branching Ratios, And Absolute Transition-Probabilities In Hg-I [J]. J Opt Soc Am B, 1989, 6 (1): 11-22.
    [42]Stormberg H P, Schafer R. Time-Dependent Behavior of High-Pressure Mercury Discharges [J]. JAppl Phys, 1983, 54 (8): 4338-4347.
    [43]Karov M, Rusinov I, Blagoev A. Chemi-ionization of ground-state Hg atoms by excited Ar atoms [J]. J Phys B: At Mol Phys, 1997,30(5): 1361-1368.
    [44]Vriens L, Keijser R A, Ligthart FAS. Ionization Processes in Positive-Column of Low-Pressure Hg-Ar Discharge [J]. J Appl Phys, 1978, 49 (7): 3807-3813.
    [45]Cohen J S, Martin R L, Collins L A. Chemi-ionization of mercury atoms: Potential curves and estimates of the total ionization cross sections [J]. Phys Rev A, 2002, 66(1): 012717.
    [46]Olsen L O. Quenching and depolarization of mercury resonance radiation by the rare gases [J]. Phys Rev, 1941, 60 (10): 739-742.
    [47]Bras N, Afghani A E1, Butaux J, et al. Hg(71s0-]73s1) Spin Changing Transition and Hg(73s1) Deactivation upon Collisions with Hg, H-2, D-2, He, and Xe [J]. J ChemPhys, 1990, 92 (11): 6574-6580.
    [48]Waddel B V, Hurst G S. Collisional Destruction of 6 3pl State of Mercury [J]. J Chem Phys, 1970, 53(10): 3892-3895.
    [49]Menningen K L, Lawler J E. Radiation trapping of the Hg 185 nm resonance line [J]. J Appl Phys, 2000, 88 (6): 3190-3197.
    [50]Ellis H W, Pal R Y, E W Me Daniel, et al. Transport properties of gaseous ions over a wide energy range *1 [J]. At Data Nucl Data Tables, 1976,17(3): 177-210.
    [51]Kryukov N A, Penkin N P, Redko T P. Temperature-dependence of diffusion-coefficients of mercury metastable atoms in inert-gases .1. [J]. Opt Spectrosc, 1977, 42(1): 33-41.
    [52]Yousfi M, Zissis G, Alkaa A, et al. Boltzmann-equation analysis of electron kinetics in a positive column of low-pressure Hg-rare-gas discharges [J]. Phys Rev A, 1990, 42 (2): 978-988.
    [53]Sakai Y, Sawada S, Tagashira H. Boltzmann-Equation Analyses of Electron Swarm Parametersin Hg Vapor - Effect of Metastable Hg Atoms [J]. J Phys D: Appl Phys, 1989, 22 (2): 276-281.
    [54]Sakai Y, Sawada S, Tagashira H. Boltzmann-Equation Analyses of Electron Swarm Parameters in Ar/Ne, Kr/Ne, Xe/Ne, Hg/Ar and Hg/Kr Mixtures and Derived Effective Excitation Cross-Sections for Metastable States of Rare Atoms [J]. JPhys D: Appl Phys, 1991, 24 (3): 283-289.
    [55]Sawada S, Sakai Y, Tagashira H. Boltzmann-Equation Analyses of Electron Swarm Parameters in Hg/Ar Gas-Mixtures - Effect of Metastable Hg And Ar Atoms [J]. JPhys D: Appl Phys, 1989, 22 (2): 282-288.
    [56]Holstein T. Imprisonment of resonance radiation in gaes [J]. Phys Rev, 1947, 72 (12): 1212-1233.
    [57]Holstein T. Transfer of excitation in atomic collisions [J]. Phys Rev, 1951, 83 (1): 201-201.
    [58]Lister G G, Coe S E. GLOMAC : a one dimensional numerical model for steady state low pressure mercury-noble gas discharges [J]. Comput Phys Commun, 1993, 75(1-2): 160-184.
    [59]Winkler R B, Wilhelm J, Winkler R. Kinetics of the Ar-Hg plasma of fluorescent lamp discharges .1. Model basic equations Hg partial-pressure variation [J]. Ann Phys, 1983, 40 (2-3): 90-118.
    [60]Osterbrock D E. Astrophysics of Gaseous Nebulae [M]. San Francisco, CA: Freeman, 1974.
    [61]Golubovskii Yu B, Kagan Yu M, Lyagushchenko R I. Population of resonant levels in a discharge of cylindrical configuration [J]. Opt Spectrosc, 1971, 31 (1): 10-&.
    [62]Golubovskii Yu B, Lyagushchenko R I. Deexcitation of resonance levels in a discharge of cylindrical configuration [J]. Opt Spectrosc, 1975, 38 (6): 1086-1089.
    [63]Golubovskii Yu B, Lyagushchenko R I. Population of resonance levels in cylindrical volume [J]. Opt Spectrosc, 1976, 40 (2): 215-222.
    [64]Apruzese J P. Direct solution of the equation of transfer using frequency-averaged and angle-averaged photon-escape probabilities for spherical and cylinderical geometries [J]. J Quant Spectrosc Radiat Transfer, 1981, 25 (5): 419-425.
    [65]Kenty C, Easley M A, Barnes B T. Gas temperatures and elastic losses in low pressure mercury-argon discharges [J]. J Appl Phys, 1951, 22 (8): 1006-1011.
    [66]Lawler J E, Den Hartog E A, Hitchon W N G. Power balance of negative-glow electrons [J]. Phys Rev A, 1991, 43 (8): 4427-4437.
    [67]Aiura Y, Lawler J E. A study of radial cataphoresis and ion densities in high power density Hg-Ar discharges [J], JPhys D: Appl Phys, 2004, 37: 3093-3098.
    [68]Curry J J, Lister G G, Lawler J E. Experimental and numerical study of a low-pressure Hg-Ar discharge at high current densities [J]. J Phys D: Appl Phys, 2002, 35 (22): 2945-2953.
    [69]Wani K. Ladderlike ionization of the mercury atom in Hg - Ar low - pressure discharge and its modeling [J]. J Appl Phys, 1994, 75 (10): 4917-4926.
    [70]Fursa D V, Bray I, Lister G. Cross sections for electron scattering from the ground state of mercury [J]. J Phys B: At Mol Phys, 2003,36 (21): 4255-4271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700