用户名: 密码: 验证码:
强化采油用表面活性剂在固/液界面吸附行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了阴离子型表面活性剂SDBS(十二烷基苯磺酸钠)、非离子型表面活性剂TX-100(辛基酚基聚氧乙烯醚)和阳离子表面活性剂CTAB在石英表面的吸附规律,考察了在较大的表面活性剂浓度范围内,多价无机阳离子对不同类型表面活性剂吸附规律的影响。运用QCM(石英晶体微天平)、MD(分子动力学模拟)、FAAS(原子吸收光谱法)、AFM(原子力显微镜)等手段分析了其吸附机制及作用原理。
     (1)利用石英晶体微天平QCM研究阴离子表面活性剂SDBS在模拟矿化水条件下在石英表面的吸附行为,并用原子吸收光谱法验证了矿化水条件下SDBS的吸附机制。实验结果表明:①在纯水介质中阴离子表面活性剂SDBS在固体表面因晶格缺陷或氢键缺损产生的正电位以电性作用发生吸附是主要的吸附机制。②在矿化水中,金属阳离子在固体表面吸附作为“结构离子”促进了胶团排斥作用,胶团排斥作用是表面活性剂随浓度增大解吸附的主要原因。③Na~+与表面的相互作用强于阴离子表面活性剂,在阴离子表面活性剂存在时可成为结构离子。
     (2)采用石英晶体微天平法研究了TX-100在石英表面的吸附动力学和热力学特性,并用分子动力学模拟以及原子吸收光谱法验证了所得结果。同时考察了多种因素(多价无机阳离子、电解质类型和pH值的变化)对吸附的影响。实验结果表明:①在矿化水介质中TX-100在石英表面的吸附量较大,在表面活性剂浓度到达一定程度后出现脱附现象;②采用分子动力学模拟和原子吸收光谱法验证了脱附现象的发生;③Ca~(2+)、Mg~(2+)与相同浓度Na~+比较,更能促进TX-100的吸附。采用AFM(原子力显微镜)验证了当TX-100溶液中含有多价无机阳离子时,所形成的吸附层是一个非常松散的结构,附着力不是很强,因此多价无机阳离子在固体表面吸附是导致表面活性剂与固体之间的氢键相互作用减弱,使表面活性剂在较高浓度后发生脱附现象。
     (3)采用石英晶体微天平(QCM)法和分子模拟技术研究了阳表面活性剂CTAB在石英表面的吸附等温线,并考察矿化度、pH等条件对吸附等温线的影响,分析吸附机制。研究表明:多价无机阳离子存在时,CTAB在石英表面的吸附量减小。
     (4)运用QCM法研究了不同类型表面活性剂在地层水测量介质中的吸附动力学,并与非地层水情况作了对比,同时对吸附动力学参数进行了估算,与实验值有着很好的对应。实验结果表明,电解质对于不同类型表面活性剂吸附速率的大小具有一定的影响,在地层水的情况下会使得阴离子表面活性剂比阳离子表面活性剂反而更易在石英砂上发生吸附。
     本论文主要创新点:
     (1)在矿化水介质中,金属阳离子在固体表面吸附作为“结构离子”促进了胶团排斥作用,胶团排斥作用是阴离子表面活性剂随浓度增大解吸附的主要原因。且Na~+与表面的相互作用强于阴离子表面活性剂,在阴离子表面活性剂存在时可成为结构离子。
     (2)利用分子动力学模拟以及原子吸收光谱法验证了在较大浓度时TX-100在石英表面脱附现象的发生,进一步分析其脱附机制。
     (3)多价无机阳离子存在时,由于金属阳离子在固体表面吸附,从而使CTAB在石英表面的吸附量较小。
The adsorption laws of ionic surfactant SDBS,nonionic surfactant TX-100 and cation surfactant CTAB on silica are systematically studied in the paper.In a large scale of surfactant concentration,the effect of Ca~(2+),Mg~(2+)and Na~+ on the adsorption isotherm and kinetics of surfactants on silica are investigated.The adsorption mechanism and principle are studied by quartz crystal microbalance(QCM), molecular dynamics simulations(MD),flame atomic absorption spectrometry(FAAS) and atomic force microscopy(AFM)methods.The experimental results are analysed synthetically and the corresponding isothermal adsorption equation and adsorption kinetics parameters have been got.
     (1)The electrode-separated piezoelectric sensor(ESPS),an improved setup of quartz crystal microbalance(QCM),has been employed to investigate the adsorption behavior of SDBS at the hydrophilic quartz-solution interface in mineralized water medium in situ.The adsorption of positive ions on the silica surface has been verified by FAAS measurement.The experimental results show that in pure water medium. absorption of anionic surfactants SDBS on the solid surface because of lattice defects or defects of the hydrogen bond is the main absorption mechanism.Metal cations adsorbed onto the quartz surface as "structure ions" not only promote the adsorption of surfactants onto the silica surface at low concentration but also promote micelle rejection interaction,which is the main reason for desorption of surfactants with the increasing of surfactant concentration.Interaction between Na~+ and silica surface is stronger than that between the head group of anionic surfactants SDBS and silica,and Na~+ can be "structure ion" in the presence of anionic surfactants.
     (2)The electrode-separated piezoelectric sensor(ESPS),an improved setup of quartz crystal microbalance(QCM),has been employed to investigate the adsorption behavior of nonionic surfactant Triton X-100 at the hydrophilic quartz-solution interface in mineralized water medium in situ,in which the total salinity equal to 23171mg/L,containing CaCl_2 1.3819g/L,MgCl_2 1.0544g/L,NaCl 20.7347g/L.In a large scale of surfactant concentration,the effect of Ca~(2+),Mg~(2+)and Na~+ on the adsorption isotherm and kinetics are obviously different and a peculiar desorption of Triton X-100 at high concentration is investigated which might be important in practical process.The results get by solution depletion method are in good agreement with that obtained by ESPS.The effect of inorganic positive ions on the adsorption and desorption mechanism of Triton X-100 at the quartz-solution interface is discussed by molecular dynamics simulations(MD),flame atomic absorption spectrometry(FAAS)and atomic force microscopy(AFM)methods.
     (3)Quartz crystal microbalance and molecular dynamics simulation method are used in the paper to discuss the mechanism of the effect of inorganic positive ions on the adsorption of CTAB at the hydrophilic silica-solution interface.Effect of salinity,pH on adsorption mechanism of CTAB on quartz surface has been investigated.The experimental results show that in the presence of inorganic positive ions,the adsorption densities of CTAB on the silica surface decrese.
     (4)The adsorption kinetic of different types of surfactants in mineralized water medium has been studied in situ by QCM,both in non-mineralized and mineralized water medium,the adsorption kinetic parameters have been obtained.The results are in good agreement with the experimental value.Experimental results show that ionic surfactant SDBS adsorb onto the quartz surface more easily than cation surfactant CTAB in mineralized water medium.
     The innovations in the thesis are as follows:
     (1)Metal cations adsorbed onto the quartz surface as "structure ions" not only promote the adsorption of surfactants onto the silica surface at low concentration but also promote micelle rejection interaction,which is the main reason for desorption of surfactants with the increasing of surfactant concentration.Interaction between Na~+ and silica surface is stronger than that between the head group of anionic surfactants SDBS and silica,and Na~+ can be "structure ion" in the presence of anionic surfactants.
     (2)The effect of inorganic positive ions on the adsorption and desorption mechanism of Triton X-100 at the quartz-solution interface is discussed by molecular dynamics simulations(MD),flame atomic absorption spectrometry(FAAS).And we discuss the effect of inorganic positive ions on the adsorption mechanism.
     (3)In the presence of inorganic positive ions,the adsorption densities of CTAB on the silica surface decrese.
引文
[1]宋祥飞.表面化学与活性剂[M].北京:化学工业出版社(重订版),1996:108-126;
    [2]顾惕人.表面过剩和表面自由能[M].北京:冶金工业出版社,1984:2-36;
    [3]朱步瑶.表面和表面自由能[M].北京:冶金工业出版社,1987:112-147;
    [4]J.C.Melrose,C.F.Brandner,J.Canadian Petr.Tech.[J],1974,58(17);
    [5]G.Sauerbrey,The use of quartz oscillators for weighting thin layers and for microweighting,Z.Physik,155(1959)206-222.
    [6]Daniel A.Buttry,Michael D.Ward,Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance,Chem.Rev.,92(1992)1355-1379.
    [7]M.Thompson,A.L.Kipling,W.C.Duncan-Hewitt,L.Rajakovic,B.A.Cavic-Vlasak,Thickness-shear-mode Acoustic Wave sensors in the liquid phase,A Rev.Analyst,116(1991)881-890.
    [8]D.S.Ballantine,Jr.R.M.White,S.J.Martin,E.T.Zeilers H.Wohltjen,Acoustic:Wave Sensors Theory,Design and Physico-Chemical Applications 1997 Academic Press.
    [9]陈令新,关亚风,杨丙成,申大忠,压电晶体传感器的研究进展,化学进展,14(2002)69-76.
    [10]Marx K.A.,Quartz Crystal Microbalance:A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface,Biomacromolecules,4(2003)1099-1120.
    [11]Randolph D.Williams,Anant K.Upadhyayula,Venkat R.Bhethanabotla High frequency thickness shear mode devices for organic vapor sensing Sens Actuators B 122(2007)635-643
    [12]Scott M.Knudsen,Joonhyung Lee,Andrew D.Ellington,and Cagri A.Savran Ribozyme-Mediated Signal Augmentation on a Mass-Sensitive Biosensor J.Am.Chem.Soc.,128(50),15936 -15937,2006.
    [13]V.M.Mecca Is quartz crystal microbalance really a mass sensor? Sens Actuators A 128(2006) 270-277
    
    [14] P.A. Tarazaga, Y. Halevi. D.J. Inmana The quadratic compression method for model updating and its noise filtering properties Mechanical Systems and Signal Processing 21 (2007)58-73
    
    [15] L. Rodriguez-Pardo, J. Farina. C. Gabrielli, H. Perrot, R. Brendel Simulation of QCM sensors based on high stability classical oscillator configurations in damping media Sens Actuators B 123 (2006) 560-567
    
    [16] Henrik Anderson, Mats Fonsson, Lars Vestling, Ulf Lindberg, Teodor Aastrup, Quartz crystal microbalance sensor design I. Experimental study of sensor response and performance Sens Actuators B 123 (2007) 27-34
    
    [17] Xiao-Li Su, Yanbin Li A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance Biosensors and Bioelectronics 21(2005)840-848
    [18] F. Lu, H.P. Lee, P. Lub, S.P. Lima Finite element analysis of interference for the laterally coupledquartz crystal microbalances Sens Actuators A 119 (2005) 90-99
    [19] Malin Edvardsson, Michael Rodahl, Bengt Kasemo, and Fredrik Hook, A Dual-Frequency QCM-D Setup Operating at Elevated Oscillation Amplitudes Anal. Chem., 77 (15). 4918 -4926. 2005.
    
    [20] Lisa A. Theisen and Stephen J. Martin A Model for the Quartz Crystal Microbalance Frequency Response to Wetting Characteristics of Corrugated Surfaces Anal. Chem. 2004. 76. 796-804
    [21] R. Etchenique and V. L. Brudny, Characterization of Porous Thin Films Using Quartz Crystal Shear Resonators Langmuir 2000,16, 5064-5071
    
    [22] F. Nelson Nunalee and Kenneth R. Shull* Contact Mechanics Studies with the Quartz Crystal Microbalance: Origins of the Contrast Factor for Polymer Gels and Solutions Langmuir 2004. 20, 7083-7089
    [23] T. Nomura. M. Jima, Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal, Anal. Chim. Acta, 131(1981) 97-102
    [24] Michael P. Owen, Geoffrey A. Lawrance, Scott W. Donne. An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide Electrochimica Acta 52 (2007) 4630-4639
    [25]Matthew I.Jeffrey and Ronald Woods,Frequency changes observed with the EQCM resulting from hydrophilic/hydrophobic transitions Colloids and Surfacees 302(2007)488-493
    [26]Silvio Koehler,Mikito Ueda,Igor Efimov,Andreas Bund,An EQCM study of the deposition and doping/dedoping behavior of polypyrrole from phosphoric acid solutions Electrochimica Acta 52(2007)3040-3046
    [27]B.Asenjo,A.M.Chaparro,M.T.Gutierrez,J.Herrero,Electrochemical growth and properties of CulnS_2 thin films for solar energy conversion Thin Solid Films,511(2006)117-120
    [28]Catherine Debiemme-Chouvy,Hubert Cachet,Claude Deslouis,Investigation by EQCM of the electrosynthesis and the properties of polypyrrole films doped with sulphate ions and/or a Keggin-type heteropolyanion,SiMo_(12)O_(40)~(4-),Electrochimica Acta,51(2006)3622-3631.
    [29]J.T.Matsushima,F.Trivinho-Strixino,E.C.Pereira,Investigation of cobalt deposition using the electrochemical quartz crystal microbalance Electrochimica Acta,51(2006)1960-1966
    [30]Keijiro Tada,Katsuaki Shimazu,Kinetic studies of reduction of nitrate ions at Sn-modified Pt electrodes using a quartz crystal microbalance J.Electroanal.Chem.,577(2005)303-309.
    [31]M.Lukaszewski and A.Czerwifiski,Dissolution of noble metals and their alloys studied by electrochemical quartz crystal microbalance J.Electroanal.Chem.589(2006)38-45.
    [32]C.C.Buron,C.Filiatre,F.Membrey,H.Perrot,A.Foissy,Mass and charge balance in self-assembled multilayer films on gold.Measurements with optical reflectometry and quartz crystal microbalance J.Colloid and Interface Science,296(2006)09-418.
    [33]H.Ashassi-Sorkhabi,A.Mirrnohseni,H.Harrafi,Evaluation of initial deposition rate of electroless Ni-P layers by QCM method Electrochimica Acta,50(2005)5526-5532.
    [34]陈令新,关亚风,杨丙成,申大忠,压电晶体传感器的研究进展,化学进展,14(2002)69-76
    [35]T.W.Chao,C.J.Liu,A.H.Hsieh,H.M.Chang,Y.S.Huang,D.S.Tsai Quartz crystal microbalance sensor based on nanostructured IrO_2 Sens Actuators B 122(2007)95-100
    [36]Ali Gulbag,Fevzullah Temurtas,.A study on transient and steady state sensor data for identification of individual gas concentrations in their gas mixtures Sens Actuators B 121(2007)590-599
    [37]Masanobu Matsuguchi,Yoshito Kadowaki,Kazutoshi Noda,Ryuichi Naganawa,HCl gas monitoring based on a QCM using morpholine-functional styrene-co-chloromethylstyrene copolymer coatings Sens Actuators B 120 (2007) 462-466
    [38] Sung J.H., Ko H.J., Park T.H., Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli Biosens Bioelectron. 21 (2006), 1981-1986.
    [39] A.M. Reznik , A.A. Galinskaya, O.K. Dekhtyarenko ,D.W. Nowicki, Preprocessing of matrix QCM sensors data for the classification by means of neural network Sens Actuators B, 106 (2005), 158-163
    [40] Pi-Guey Su, Yi-Lu Sun, Chu-Chieh Lin, Novel low humidity sensor made of TiO_2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance Talanta, 69 (2006), 946-951.
    [41] A. Ozmen, F. Tekce, M.A. Ebeoglu, C. Tasaltin, Z.Z. Ozturk, Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network Sens Actuators B, 115 (2006), 450-454.
    [42] I.A. Koshets, Z.I. Kazantseva, Yu. M. Shirshov, S.A. Cherenok, V.I. Kalchenko, Calixarene films as sensitive coatings for QCM-based gas sensors Sens Actuators B. 106 (2005),177-181.
    [43] Masanobu Matsuguchi, Yoshito Kadowaki , Masanori Tanaka, A QCM-based NO_2 gas detector using morpholine-functional cross-linked copolymer coatings Sens Actuators B, 108 (2005), 572-575.
    [44] P.G Su, Y.L. Sun, C.C. Lin, A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films Sens Actuators B, 115 (2006), 338-343.
    [45] Chang-Yong Yang, Chi-Lin Li, Chia-Jung Lu, A vapor selectivity study of microsensor arrays employing various functionalized ligand protected gold nanoclusters Anal. Chim. Acta. 565 (2006), 17-26.
    [46] R. Capan ., Y. Acykba, M. Evyapan A study of Langmuir-Blodgett thin film for organic vapor detection Materials Letters 61 (2007) 417-420
    [47] Minoru Yoshimoto, Yasuhiro Maruyama, Shigeru Kurosawa, K. Keiji Kanazawa Dependence on the electric power of the immersion-angle dependence of the resonant-frequency shift of a quartz crystal microbalance in a liquid Anal. Chim. Acta 589 (2007)39-43
    [48] A. Parra, E. Casero, F. Pariente, L. Vazquez, E. Lorenzo, Cholesterol oxidase modified gold electrodes as bioanalytical devices Sens Actuators B 124 (2007) 30-37
    [49] Gomes M, Costa J, Rui M L et al. The quantification of sodium in mineral waters usinga quartz crystal microbalance. Anal. Chim. Acta, 2003, 59(2): 247-252
    [50] Dazhong Shen, Haiting Zhang, Qi Kang, Huaijin Zhang, Duorong Yuan, Oscillating frequency response of a langasite crystal microbalance in liquid phases Sens Actuators 5 119(2006)99-104
    [51] Akira Monkawa, Toshiyuki Ikoma, Shunji Yunoki, Tomohiko Yoshioka, Junzo Tanaka, Dinko Chakarov, Bengt Kasemo Fabrication of hydroxyapatite ultra-thin layer on gold surface and its application for quartz crystal microbalance technique Biomaterials 27 (2006) 5748-5754
    [52] Naoto Tsuru, Masashi Kikuchi, Haruma Kawaguchi, Seimei Shiratori, A quartz crystalmicrobalance sensor coated with MIP for "Bisphenol A" and its properties Thin Solid Films 499(2006)380-385
    [53] Minoru Yoshimoto, Shun-ichiro Yoshimura, Shigeru Kurosawa Characteristics of immersion angle dependence of the resonant frequency shift of the quartz crystal microbalance in solutions Anal. Chim. Acta 557 (2006) 101-105
    [54] Monika Michalzik ., Ralph Wilke, Stephanus B uttgenbach Miniaturized QCM-based flow system for immunosensor application in liquid Sens Actuators B 111-112 (2005) 410-415
    
    [55] Dianxia Wang, Paria Mousavi, Peter J. Hauser, William Oxenham, Christine S. Grant, Quartz crystal microbalance in elevated temperature viscous liquids: Temperature effect compensation and lubricant degradation monitoring Colloids and Surfaces A: Physicochem. Eng. Aspects 268 (2005) 30-39
    [56] Yuan-Guey Lee, Ku-Shang Chang, Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid Talanta 65 (2005) 1335-1342
    [57] Hui Zeng, Hua Wang, Fangping Chen, Hongya Xin, Guangping Wang, Le Xiao, Kui Song, Dengshu Wu, Qun He, Guoli Shen Development of quartz-crystal-microbalance-based immunosensor array for clinical immunophenotyping of acute leukemias Analytical Biochemistry 351 (2006) 69-76
    
    [58] Christopher D. Corso BS, Desmond D. Stubbs MS, Sang-Hun Lee MS.Michael Goggins MD, Ralph H. Hruban MD, William D. Hunt PhD, Real-time detection of mesothelin in pancreatic cancer cell line supernatant using an acoustic wave immunosensor Cancer Detection and Prevention 30 (2006) 180-187
    
    [59] Jing Li, Christiane Thielemann, Ute Reuning, Diethelm Johannsmann, Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model mode Biosensors and Bioelectronics 20 (2005) 1333-1340
    
    [60] Tzong-Zeng Wu, Chih-Cheng Su, Li-Kuang Chen, Hui-Hua Yang, Dar-Fu Tai, Kou-Cheng Peng, Piezoelectric immunochip for the detection of dengue fever in viremia phase Biosensors and Bioelectronics 21 (2005) 689-695
    
    [61] Andreas Huenerbein, Christian E.H. Schmelzer, Reinhard H.H. Neubert Real-time monitoring of peptic and tryptic digestions of bovine β-casein using quartz crystal microbalance Anal. Chim. Acta 584 (2007) 72-77
    [62] Hongjuan Zeng, Yadong Jiang, Guangzhong Xie, Junsheng Yu Polymer coated QCM sensor with modified electrode for the detection of DDVP Sens Actuators B 122 (2007) 1-6
    [63] A.K.M. Shafiqul Islam, Z. Ismail, M.N. Ahmad, B. Saad, A.R. Othman, A.Y.Md. Shakaff. A. Daud, Z. Ishak Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs) Sens Actuators B 109 (2005) 238-243
    [64] A.V. Nabok, A. Tsargorodskaya, A. Holloway, N.F. Starodub, O. Gojster Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods Biosensors and Bioelectronics 22 (2007) 885-890
    
    [65] M'onica Avila, Mohammed Zougagh, Alberto Escarpa Angel R'yos, Supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer for the determination of vanillin in food samples Talanta 72 (2007) 1362-1369
    
    [66] Nora Adanyi, Maria Varadi, Namsoo Kim, Istvan Szendro Development of new immunosensors for determination of contaminants in food Current Applied Physics 6 (2006) 279-286
    
    [67] Severino Mu~noz-Aguirre, Akihito Yoshino, Takamichi Nakamoto, Toyosaka Moriizumi Odor approximation of fruit flavors using a QCM odor sensing system Sens Actuators B 123 (2007)1101-1106
    [68] Roongnapa Suedee, Wimon Intakong, Franz L. Dickert The use of trichloroacetic acid imprinted polymer coated quartz crystal microbalance as a screening method for determination of haloacetic acids in drinking water Talanta 70 (2006) 194-201
    [69] Christelle Gautier, Charles Cougnon, Jean-Franc ,ois Pilard, Nathalie Casse, Beno^it Ch'enais, Marc Laulier Detection and modelling of DNA hybridization by E1S measurements Mention of a polythiophene matrix suitable for electrochemically controlled gene delivery Biosensors and Bioelectronics 22 (2007) 2025-2031
    [70] Myriam Passamano, Monica Pighini QCM DNA-sensor for GMOs detection Sens Actuators 5 118 (2006) 177-181
    [71] E.J. Noh, C. Kang, S.T. Hong, S.E. Yun Freezing of soybeans influences the hydrophobicity of soy protein Food Chemistry 97 (2006) 212-216
    [72] Jongwon Park, Shigeru Kurosawa, Madoka Takai, Kazuhiko Ishihara, Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor Colloids and Surfaces B: Biointerfaces 55 (2007) 164-172
    [73] Massood Z. Atashbar, Bruce Bejcek, Aditya Vijh, Srikanth Singamaneni QCM biosensor with ultra thin polymer film Sens Actuators B 107 (2005) 945-951
    [74] Zdenka Fohlerov'a, Petr Skl'adal, Jaroslav Tur'anek Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor Biosensors and Bioelectronics 22 (2007) 1896-1901
    [75] Youyu Zhang, Yingsing Fung, Hui Sun, Derong Zhu, Shouzhuo Yao Study of protein adsorption on polymer coatings surface by combining quartz crystal microbalance with electrochemical impedance methods Sens Actuators B 108 (2005) 933-942
    [76] Groot R.D, Warren PB. Dissipative particle dyanamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 1997; 107: 4423-4435.
    [77] John C. Shelley, Mee Y. Shelley, Computer simulation of surfactant solutions, Current Opinion in Colloid & Interface Science 5(2000),101-110
    
    [78] P.J. Hoogerbrugge, J.M.V.A.Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett.1992,19,155-160
    
    [79] P.Espagnol, P.Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett.1995,30,191-196
    [80]Daw M S,Baskes M I.Embedded2atom method:Derivation and application to impurities.surfaces,and other defects in metals[J].Phys Rev B,1984,29:6443
    [81]Cash,R.L.,Cayis,J.L.,J.Colloid and Interface Sci.1977,59
    [82]J.Benjamins,A.Cagna,F.H.Lucassen-Reynder,Colloids Surf.A 114(1996)245-254.
    [83]R Rajagopalan.Curr,Opin.in Colloid & Interface Sci.,2001,6:357-365.
    [84]C B E Guerin,I Szleifer.L angmuir,1999,15:7901-7911.
    [85]R G L arson.Curr,Opin,in Colloid Interface Sci.1997,2:361-364.
    [86]M Tarek,S Bandyopadhyay,M L Klein.J Mol Liq,1998,78:1-6.
    [87]S Bandyopadhyay,M Tarek,M L Klein.Curr,Opin,in Colloid Interface Sci.1998,3:242-246.
    [88]J C Shelley,M Y Shelley.Curr,Opin.in Colloid & Interface Sci,2000,5:101-110.
    [89]苑世领,蔡政亭,徐桂英.化学学报,2002,60(2):241-245.
    [90]苑世领,徐桂英,蔡政亭.化学学报,2002,60(4):585-589.
    [91]苑世领,刘成卜,徐桂英等.高等学校化学学报,2003,24(6):1048-1051.
    [92]S L Yuan,Z T Cai,G Y Xu.Ch in.J.Chem,2023,21:112-116.
    [93]H Dom inguez,M L Berkow itz.J.Phys.Chem.B,2000,104(22):5302-5308.
    [94]A M Stoneham,J H Harding.A ctaM ater,1998,46(7):2255-2261.
    [95]A Dhathath reyan,S J Co llins.L angmuir,2002,18:928-931.
    [96]Goundla S,Steven O N,Preston B M.Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface.J.Am.Chem.Soc,2006,128(3):848-853
    [97]Kunal S,Patrick C,Mayank J.Morphology and mechanical properties of surfactant aggregates at water-silica interfaces:molecular dynamics simulations.Langmuir,2005.21(12):5337-5342
    [98]Kunal S,Patrick C,Susan B.Sinnott.Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and water-graphite interfaces from molecular dynamics simulations.Journal of Colloid and Interface Science 296(2006)342-349
    [99]R A Johnson,R N agarajan.Co llo ids and Surfaces A,2000,167:21-30.
    [100]R A Johnson,R N agarajan.Co llo ids and Surfaces A,2000,167:31-46.
    [101]S Bandyopadhyay,J C Shelley,M Tarck et al.J.Phys.Chem.B,1998,102(33):6318- 6322.
    [102]SM anne,J P Cleveland,H E Gaub et al.L angmuir,1994,10:4409-4413.
    [103]O J Rojas,L M acakova,E Blomberg et al.L angmuir,2002,18:8085-8095.
    [104]T W Davey,G GW arr,M A lmgren et al.L angmuir,2001,17:5283-5287.
    [105]R Rajagopalan.Curr.Op in.in Co llo id & Interface Sci.,2001,6:357-365.
    [106]A Dhathath reyan,S J Co llins.L angmuir,2002,18:928-931.
    [107]G.Sauerbrey.The use of quartz oscillators for weighting thin layers and for microweighting,Z.Physik,155(1959)206-222.
    [108]A.Gellan,C.H.Rochester,J.Chem.Soc.Faraday Trans.,1985,81,2235.
    [109]D.S.Ballantine,R.M.White,S.J.Martin,E.T.Zeilers Acoustic Wave Sensors Theory,Design and Physico-Chemical Applications 1997 Academic Press.
    [110]姚守拙,压电化学与生物传感,湖南师范大学出版社,长沙,1997.
    [111]陈令新,关亚风,杨丙成,申大忠,压电晶体传感器的研究进展,化学进展,14(2002)69-76.
    [112]Marx K.A.,Quartz Crystal Microbalance:A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface,Biomacromolecules,4(2003)1099-1120.
    [113]T.Nomura.M.Jima,Anal.Chim.Acta,131(1981)97.
    [114]Yamada M.,Nishihara H.,Electrodeposition of Biferrocene Derivative- Attached Gold Nanoparticles:Solvent Effects and Lithographic Assembly,Langmuir,19(2003)8050-8056.
    [115]Nicic,I.;Liang,J.;Cammarata,V.;Alanyalioglu,M.;Demir,U.;Shannon,C.;Underpotential Deposition of Te Monolayers on Au Surfaces from Perchloric Acid Solution Studied by Chronocoulometry and EQCM,J.Phys.Chem.B,106(2002)12247-12252.
    [116]Todd M.McEvoy,Keith J.Stevenson,Electrochemical quartz crystal microbalance study of the electrode position mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution,Anal.Chim.Acta,496(2003)39-51.
    [117]Ki-Deok Song,Kwang Bum Kim,Seong Ho Han,Hong Ke Lee,A study on effect of hydrogen reduction reaction on the initial stage of Ni electrode position using EQCM. Electrochem. Commun, 5(2003)460-466.
    [118] Marcus D. Lay, Kris Varazo, Nattapong Srisook, John L. Stickney, Cd underpotential deposition (upd) from a sulfate electrolyte on Au (111): studies by in situ STM and UHV-EC, J. Electroanal. Chem., 554 /555(2003) 221-231.
    [119] Zotti G., Zecchin S., Schiavon G., Vercelli B., Berlin A., Dalcanale E., Groenendaal L. B., Potential-Driven Conductivity of Polypyrroles, Poly-N- Alkylpyrroles and Polythiophenes: Role of the Pyrrole NH Moiety in the Doping-Charge Dependence of Conductivity, Chem. Mater, 15(2003) 4642-4650
    [120] Grumelli D. E., Forzani E. S., Morales G. M., Miras M. C., Barbero C. A., CalvoE.J., Microgravimetric Study of Electrochemically Controlled Nucleophilic Addition of Sulfite to Polyaniline, Langmuir, 20(2004) 2349-235.
    [121] Miguel Vilas-Boas, Isabel C. Santos, Mark J. Henderson, Cristina Freire, A. Robert Hillman, Eric Vieil, Electrochemical Behavior of a New Precursor for the Design of Poly [Ni (salen)]-Based Modified Electrodes, Langmuir, 19 (2003) 7460-7468.
    [122] R. Sharma, Surfactant adsorption and surface solubilization, American Chemical Society, 1995. Washington, D.C.,
    [123] P. Somasundaran, E.D. Snell, Q. Xu, Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica, J.Colloid Interface Sci. 1991,144,165-173.
    [124] P. L. Desbene, F. Poret, C. Treiner, Adsorption of Pure Nonionic Alkylethoxylated Surfactants down to Low Concentrations t a Silica/Water Interface as Determined Usinga HPLC Technique J.Colloid Interface Sci., 1997,190,350-356.
    [125] W. K. Backhaus, E. Klumpp, H.D. Narres, M.J. Schwuger, Adsorption of 2,4-Dichlorophenol on Montmorillonite and Silica: Influence of Nonionic Surfactants J.Colloid Interface Sci., 2001.242.6-13.
    [126] Y.H. Shen, Preparations of organobentonite using nonionic surfactants Chemosphere, 2001,44,989-995.
    [127] J. Penfold, E.J. Staples, I. Tucker, R.K. Thomas, Adsorption of Mixed Cationic and Nonionic Surfactants at the Hydrophilic Silicon Surface from Aqueous Solution: The Effect of Solution Composition and Concentration,Langmuir 2000,16,8879-8883.
    [128]F.Tiberg,and T.Ederth,Interfacial Properties of Nonionic Surfactants and Decane-Surfactant Microemulsions at the Silica-Water Interface.An Ellipsometry and Surface Force Study,J.Phys.Chem.B 2000,104,9689-9695.
    [129]S.Manne,J.P.Cleveland,H.E.Gaub,G.D.Stucky,P.K.Hansma,Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer,Langmuir 1994,10,4409-4413.
    [130]P.G.Cummins,E.Staples,J.Penfold,Temperature dependence of the adsorption of hexaethylene glycol monododecyl ether(C12E6)on silica sols,J.Phys.Chem.,1991,95,5902- 5905.
    [131]M.Schonhoff,O.Soderman,Z.X.Li,R.K.Thomas,Bullettn of Magnetic Resonance,1999,20 25.
    [132]Y.Lijour,J.Y.Calves,P.Saumagne,J.Chem.Soc.Faraday Trans.,1987,83,3283.
    [133]F.Caruso,H.A.Rinia,D.N.Furlong,Gravimetric Monitoring of Nonionic Surfactant Adsorption from Nonaqueous Media onto Quartz Crystal Microbalance Electrodes and Colloidal Silica,Langrnuir 1996,12,2145-2152.
    [134]赵国玺,朱步瑶。表面活性剂作用原理[M].北京:中国轻工业出版社,2003:205-206:
    [135]郑忠,胡纪华。表面活性剂的物理化学原理[M].广州:华南理工大学出版社,1997:212-213;
    [136]Ban dyopadhyay,S.;Chanda,J.Langrnuir 2003,19,10443.
    [137]Chanda.J,Chakrabo~y,S;Ban dyopadhyay,S.Phys.Chem.B 2005,109,471.
    [138]Hoover,W.G.Phys.Rev.A 1985,31,1695.
    [139]Kawai,T.Kamio,H;Kondo.J.Phys.Chem.B 2005,109,4497.
    [140]Watanabe K,Klein ML.Molecular dynamics studies of sodium octanoate and water:the liquid crystal mesophase with two-dimensional hexagonal symmetry.J Phys Chem 991;95:4158-4166.
    [141]Maaloum,P.Muller,M.P.Krafft,Langmuir 20(2004)2261.
    [142]Ducker W A,Wanless E J.Adsorption of Hexadecyltrimethylammonium bromide to mica:Nanometer-scale study of binding-site competition effects.Langmuir,1999,15:160-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700