PET的扩链及热致相分离法制膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)具有优异的透明性,耐化学性和阻隔性被广泛的应用于包装领域,但是在熔融的加工过程中,PET易发生热降解、热氧化和水降解等反应,使其分子量下降,影响了加工性,也使制品的机械性能和化学性能降低,限制了其应用。针对上述问题,本课题使用化学扩链法增加PET的粘度和降低端羧基含量,满足PET的加工需求。
     使用氰酸酯(BADCy)作为扩链剂,与常用的扩链剂环氧和二苯基甲烷二异氰酸酯(MDI)进行对比,对熔融状态的PET进行扩链。比较了扩链后的PET的熔体扭矩,特性粘度和粘均分子量,结果表明BADCy对PET的扩链效果较MDI和环氧E-51好。采用红外谱图来验证PET和BADCy的扩链反应,并对BADCy的扩链机理进行了详细说明。通过对扩链后PET扭矩,特性粘度以及羧基含量的测试,研究了反应时间,BADCy的含量以及不同转速对PET扩链效果的影响。结果表明,随着反应时间的延长会增加PET的分子量,但是时间过长会引起热降解。随着氰酸酯含量的增加,扩链反应速度增加,PET的扩链效果增加。转速的加快有利于剪切作用的加强,使得混合效果加强,但强烈的剪切会引发PET的降解。通过熔体流动速率(MFR)仪,扩展流变仪以及DSC测试,对扩链后的PET的流变性能以及结晶性能进行了表征。研究发现,PET的扩链限制了PET分子链的运动,使熔体的流动性能降低,结晶不完善,结晶困难,熔点温度低。
     氰酸酯可在热或在催化剂作用下可发生环化反应,形成带有三嗪环结构的均聚物-氰酸酯的三聚体。本课题利用其三聚体的多官能度,高网络结构来提高其作为PET扩链剂的扩链效果。利用红外谱图计算出氰酸酯单体的转化率用来表征三聚体的含量。通过GPC来进一步测试三聚体的分子量及分子量分布。通过扭矩,特性粘度,羧基含量以及凝胶含量的测试对比了三聚体的含量对PET扩链的影响。结果表明,三聚体的存在可以使PET的扩链效果增加,但是当三聚体含量过高时,总的官能团活性降低,扩链效果减弱。通过熔体流动速率(MFR)仪,扩展流变仪以及DSC的测试,对扩链后的PET的流变性能以及结晶性能进行了表征。进一步的证明了扩链的发生,改善了PET的流变性能,阻碍了PET的结晶。
     本课题尝试使用热致相分离(TIPS)法制备PET膜,选择二甲基亚砜(DMSO),二苯甲酮,N-甲基吡咯烷酮(NMP)作为PET的稀释剂。通过扫描电镜(SEM)对稀释剂种类,PET初始浓度和分子量以及冷却温度对膜结构的影响进行了研究。结果表明,稀释剂与聚合物的相互作用不同,所制得的微孔膜结构不同。相容性好的PET/二苯甲酮体系,PET富集相呈现球状结构,随着聚合物浓度的增加,PET球尺寸减小。相容性差的PET/NMP和PET/DMSO体系分别呈现蜂窝状和双连续的结构。随着浓度和分子量的增加,孔径变小,体系由液-液相分离转变为固-液相分离。随着冷却温度的增加,其孔径增加,PET的富集相由球状成长为片状。
Poly(ethylene terephthalate) (PET) has been widely used in packaging fields due to its transparency, chemical resistance, and barrier properties. However, during melt processing the molecular weight of PET may be easily reduced when subjected to thermal oxidation and hydrolytic degradation. Both degradations lead to reduction in molecular weight and an overall decrease in melt viscosity and melt strength, which limited its processing and application.
     In the research work of this group, bisphenol-A dicyanate (BADCy) was tried as an extender of PET and compared with conventional ones like diglycidyl ether of bisphenol-A (DGEBA) and methylenediphenyl diisocyanate (MDI). It was found that BADCy being more effective and worthy further studying. FTIR was employed to confirm the reaction between the PET and BADCy during the chain extension. The extending effect was characterized with torque, intrinsic viscosity, and the carboxyl content. As a result, a longer time of chain extension did not result in higher molecular weight, because of the negative effect of reaction heat. The more the amount of BADCy introduced the higher and the earlier the torque maximum exhibited. The enhanced stirring rate enhanced a higher rate of the chain extension reactions, which led to higher temperatures. However, the high temperature accelerated the chain cleavage. Measurement of MFR, storage modulus and dynamic viscosity showed that BADCy indeed extended the molecular weight of PET and reduced mobility of the extended PET. DSC analysis represented that less perfect crystallization of the extended PET for the difficulty in crystallization, lower melting temperatures.
     It was noticed that BADCy could undergo a cyclotrimerization forming a tri-mer. Such a tri-mer possesses three reactive sites and 3-fold larger molecular weight than the BADCy monomer. It was natural to consider that the tri-mer might be a potential chain extender for PET and the idea was tried in this work.
     The content of tri-mers was determined using FTIR. The average molecular weights (Mn and Mw) and polydispersity of BADCy tri-mers were determined by GPC for investigating the details of cyclotrimerization. The melt torque, intrinsic viscosity, carboxyl content, and gel content of modified PET were characterized. With increasing the cyclotrimerization reaction temperature of BADCy monomer, the conversion to tri-mers was increased. With a fraction of BADCy tri-mer in the chain extender, the modified PET exhibited higher melt torque, intrinsic viscosity, melt modulus, and melt viscosity than those modified BADCy monomer alone. BADCy tri-mer had a positive effect on the chain extension of PET. However, the fraction of tri-mers in the monomer/tri-mer mixture should be limited to a certain value, otherwise the chain extension would be weakened.
     In this Paper, the PET membrane was obtained by thermally induced Phase separation (TIPS). The solvent of dimethyl sulfoxide (DMSO), diphenylmethanone and N-methyl pyrrolidone (NMP) were selected as the diluents of PET in TIPS process. SEM was employed to study the structure and morphology of membranes. It was found that the membrane morphology can be controlled with different diluents for the interactions between polymer and diluents. The membrane of cellular structure and lacy structure were formed by liquid-liquid phase separation in PET/NMP and PET/DMSO system with weak interactions, respectively, while the particulate structure was formed by solid-liquid phase separation in PET/di-phenylmethanone system with strong interaction. The pore or particulate size decreased with the increasing of PET concentration and molecular weight. As the cooling temperature increased, the pore or particulate size increased.
引文
[1]张师民.聚酯的生产及应用[M].北京,中国石化出版社,1997.1-27
    [2]郭大生.聚酯纤维科学与工程[M].北京,中国纺织出版社,2001.14-26
    [3]P J Varma, E A Lofgren, S A Jabarin. Properties and Kinetics of Thermally Crystallized Oriented Poly(ethylene terephthalate) (PET).Ⅱ:Physical and Optical Properties[J].Polym. Eng. Sci.,1998,38(2):245-253
    [4]D N Bikiaris, G P Karayannidis. Effect of Carboxylic End Groups on Thermooxidative Stability of PET and PBT[J].Polym. Degrad. Stab.,1999,63:213-218
    [5]S Bumkil, Y Augros, Y Leterrier, et al. Rheological Properties of Hyperbranched Polymer/ Poly(ethylene terephthalate) Reactive Blends[J]. Polym. Eng. Sci.,2003,43(2):329-343
    [6]F R Ruxandra, A S Robert, N B Sati. Synthesis and Characterisation of Branched Poly(ethylene terephthalate)[J]. Polym. Int.,1997,42:267-275
    [7]F R Ruxandra, A S Robert, N B Sati. Shear Rheology and Thermal Properties of Linear and Branched Poly(ethylene terephthalate) Blends[J]. Polymer,1999,40:5891-5898
    [8]J S Forsythe, K Cheah, D R Nisbet, et al. Rheological Properties of High Melt Strength Poly(ethylene terephthalate) Formed by Reactive Extrusion[J]. J. Appl. Polym. Sci.,2006, 100:3646-3652
    [9]边界.PET及其共聚酯的结晶行为[D].杭州:浙江大学,2001
    [10]PJ Flory. Polymerization Process[P]. 美国专利,2172374,1939-09-12
    [11]黄彬,沈焕明,李怡森.聚酯固相缩聚技术进展[J].现代塑料加工应用,1998,10(1):54-57
    [12]N R James, C Ramesh, S Sivaram. Development of structure and Morphology during Crystallization and Solid State Polymerization of Polyester Oligomers[J]. Macromol. Chem. Phys.,2001,202(7):1200-1206
    [13]鞠兰.PET固相缩聚反应与结晶性能研究[D].杭州:浙江大学,2005
    [14]邵惠丽,胡学超,黄彬.PET固相缩聚反应机理的研究[J].合成纤维工业,1996,19(5):11-16
    [15]邱高,杨金魁.固定床中PET固相聚合的研究[J].中国纺织大学学报,1995,21(1):30-39
    [16]K Ravindranath, R A Mashelkar. Modeling of Poly(ethylene terephthalate) Reactors. IX. Solid State Polycondensation Process[J]. J. Appl. Polym. Sci.,1990,39(6):1325-1345
    [17]D Wu, F Chen, R Li. Reaction Kinetics and Simulations for Solid-state Polymerization of Poly(ethylene terephthalate)[J]. Macromolecules,1997,30(22):6737-6742
    [18]D E Kokkalas, D N Bikiaris, G P Karayannidis. Effect of the Sb2O3 Catalyst on the Solid-state Postpolycondensation of Poly(ethylene terephthalate)[J]. J. Appl. Polym. Sci.,1995,55(5): 787-791
    [19]R J Gaymans, J Amirtharaj, H Kamp. Nylon 6 Polymerization in the Solid State[J]. J. Appl. Polym. Sci.,1982,27(7):2513-2526
    [20]B Gantillon, R Spitz, T F Mckenna. The Solid State Postcondensation of PET,2 Toward the Development of a New Dispersed Phase Solid State Process[J]. Macromol. Mater. Eng.,2004, 289(1):106-112
    [21]B Duh. Effect of Antimony Catalyst on Solid-state Polycondensation of Poly(ethylene terephthalate) [J]. Polmyer,2002,43(11):3147-3154
    [22]魏高富,钟伟宏.催化剂用量对共聚酯合成及性能的影响[J].聚酯工业,2001,14(6):27-29.
    [23]T M Chang. Kinetics of Thermally Induced Solid State Polycondensation of Poly(ethylene terephthalate) [J]. Polym. Eng. Sci.,1970,10(6):364-368
    [24]B Gantillon, R Spitz, J L Lepage, et al. The Solid State Postcondensation of PET,4 Solid State Polycondensation in Gas and Slurry Directly from Prepolymers[J]. Macromol. Mater. Eng.,2004,289(1):119-130
    [25]A A Haralabakopoulos, D Tsiourvas, C M Paleos. Chain Extension of Poly(ethylene terephthalate) by Reactive Blending Using Diepoxides[J]. J. Appl. Polym. Sci.,1999,71(13): 2121-2127
    [26]R Dhavalikar, M Xanthos. Parameters Affecting the Chain Extension and Branching of PET in the Melt State by Polyepoxides[J]. J. Appl. Polym. Sci.,2003,87(4):643-652
    [27]R Dhavalikar, M Yamaguchi, M Xanthos. Molecular and Structural Analysis of a Triepoxide-modified Poly(ethylene terephthalate) from Rheological Data[J]. J. Polym. Sci., Part A: Polym. Chem.2003,41(7):958-969
    [28]R Dhavalikar, M Xanthos. Monitoring the Evolution of PET Branching through Chemorheology [J]. Polym. Eng. Sci.,2004,44(3):474-486
    [29]D N Bikiaris, G P Karayannidis. Chain Extension of Polyesters PET and PBT with Two New Diimidodiepoxides. II[J]. J. Polym. Sci., Part A:Polym. Chem.1996,34:1337-1342
    [30]D N Bikiaris, G P Karayannidis. Thermomechanical Analysis of Chain-Extended PET and PBT [J]. J. Appl. Polym. Sci.,1996,60(1):55-61
    [31]D N Bikiaris, G P Karayannidis. Dynamic Thermomechanical and Tensile Properties of Chain-Extended Poly(ethylene terephthalate)[J]. J. Appl. Polym. Sci.,1998,70(4):797-803
    [32]F Fenouillot, C Hedreul, J Forsythe, et al. Reaction and Miscibility of Two Diepoxides with Poly(ethylene terephthalate)[J]. J. Appl. Polym. Sci.,2003,87(12):1995-2003
    [33]U Yilmazer, M Xanthos, G Bayram, et al. Viscoelastic Characteristics of Chain Extended/ Branched and Linear Polyethylene Terephthalate Resins[J]. J. Appl. Polym. Sci.,2000, 75(11):1371-1377
    [34]F Awaja, F Daver, E Kosior. Recycled Poly(ethylene terephthalate) Chain Extension by a Reactive Extrusion Process[J]. Polym. Eng. Sci.,2004,44(8):1579-1587
    [35]H Inata, S Matsumuar. Chain Extenders of Polyesters. Ⅰ. Addition-type Chain Extenders Reactive with Carboxyl End Groups of Polyesters[J]. J. Appl. Polym. Sci.,1985,30(8): 3325-3337
    [36]H Inata, S Matsumura. Chain Extenders for Polyester. Ⅱ. Reactivities of Carboxyl-addition-type Chain Extenders;Bis Cyclic-imino-ethers[J]. J. Appl. Polym. Sci.,1986,32(5): 5193-5202
    [37]H Inata, S Matsumura. Chain extenders for Polyester. Ⅲ. Addition-type Nitrogen-containing Chain extenders reactive with hydroxyl end groups of polyesters[J]. J. Appl. Polym. Sci., 1986,32(4):4581-4594
    [38]H Inata, S Matsumura. Chain extenders for Polyester.Ⅳ. Properties of the Polyesters Chain-extended by 2,2'-bis(2-oxazoline)[J]. J. Appl. Polym. Sci.,1987,33(8):3069-3079
    [39]H Inata, S Matsumura. Chain extenders for Polyester.Ⅴ. Reactivities of Hydroxyl-addition-type Chain-extender:2,2'-bis(4H-3,1-benzoxazin-4-one)[J]. J. Appl. Polym. Sci.,1987,34 (7):2609-2617
    [40]G P Karayannidis, E A Psalida. Chain Extension of Recycled Poly(ethylene terephthalate) with 2,2'-(1,4-phenylene)bis(2-oxazoline)[J]. J. Appl. Polym. Sci.,2000,77(10):2206-2211
    [41]N Torres, J J Robin, B Boutevin. Chemical Modification of Virgin and Recycled Poly(ethylene terephthalate) by Adding of Chain Extenders during Processing[J]. J. Appl. Polym. Sci.,2001,79(10):1816-1824
    [42]D N Bikiaris, G P Karayannidis. Synthesis and Characterisation of Branched and Partially Crosslinked Poly(ethylene terephthalate)[J]. Polym. Int.,2003,52(7):1230-1239
    [43]F N Cavalcanti, E T Teofilo, M S Rabello, et al. Chain Extension and Degradation During Reactive Processing of PET in the Presence of Triphenyl Phosphite[J]. Polym. Eng. Sci., 2007,47(12):2155-2163
    [44]杨始堃.聚2,6-萘二酸乙二酯的热行为[J].合成技术及应用,1998,13(3):1-3
    [45]王琛主编.高分子材料改性技术[M].北京,中国纺织出版社,2007:61-179
    [46]王国全,王秀芬.聚合物改性[M].北京,中国轻工业出版社,2000:43-47
    [47]H C Chin, F Chih Chang. Reactive Compatibilization of PET/LCP Blends by a Multifunctional Epoxy Coupler[J]. Polymer,1997,38(12):2947-2956
    [48]M L Dias, A P F Silva. Transesterification Reactions in Triphenyl Phosphite Additivated-Poly(ethylene terephthalate)/Poly(ethylene naphthalate) Blends[J]. Polym. Eng. Sci.,2000, 40(8):1777-1782
    [49]H Yang, J He, B Liang. Transesterification Kineties of Poly(ethylene terephthalate) and Poly(ethylene 2,6-naphthalate) Blends with the Addition of 2,2'-bis(1,3-oxazoline)[J]. J. Polym. Sci., Part B:Polym. Phys.2001,39(21):2607-2614.
    [50]T Y Bae, K Y Park, D H Kim, et al. Poly(ethylene terephthalate)/Polypropylene Reactive Blends through Isocyanate Functional Group[J]. J. Appl. Polym. Sci.,2001,81(5):1056-1062
    [51]J S Lee, K Y Park, D J Yoo, et al. In Situ Compatibilization of PET/PS Blends through Carbamate-Functionalized Reactive Copolymers[J]. J. Polym. Sci., Part B:Polym. Phys. 2000,38(10):1396-1404
    [52]S H Park, K Y Park, K D Suh. Compatibilizing Effect of Isocyanate Functional Group on Polyethylene Terephthalate/Low Density Polyethylene Blends[J]. J. Polym. Sci., Part B: Polym. Phys.1998,36(3):447-453
    [53]W C Jung, K Y Park, J Y Kim, et al. Evaluation of Isocyanate Functional Groups as a Reactive Group in the Reactive Compatibilizer[J]. J. Appl. Polym. Sci.,2003,88(11): 2622-2629
    [54]D H Kim, K Y Park, J Y Kim, et al. Improved Compatibility of High-Density Polyethylene/ Poly(ethylene terephthalate) Blend by the Use of Blocked Isocyanate Group[J]. J. Appl. Polym. Sci.,2000,78(5):1017-1024
    [55]S C Li, L N Lu. Melt Rheological Properties of Reactive Compatibilized HDPE/PET Blends[J]. J. Appl. Polym. Sci.,2008,108(6):3559-3564
    [56]C Guerrero, T Lozano, V Gonzalez, et al. Properties and Morphology of Poly(ethylene terephthalate) and High-Density Polyethylene Blends[J]. J. Appl. Polym. Sci.,2001,82(6): 1382-1390
    [57]P Laurienzo, B Immirzi, M Malinconico. A Preliminary Investigation on the Use of Poly[(ethylene terephthalate)-co-(ε-caprolactone)] Copolymer as Compatibiliser of HDPE/PET Blends[J]. Macromol. Mater:Eng.,2001,286(4):248-253
    [58]T L Dimitrova, F P La Mantia, F Pilati, et al. On the Compatibilization of PET/HDPE Blends through a New Class of Copolyesters[J]. Polymer,2001,41(13):4817-4824
    [59]N K Kalfoglou, D S Skafidas, J K Kallitsis, et al. Comparison of Compatibilizer Effectiveness for PET/HDPE Blends[J]. Polymer,1995,36(23):4453-4462
    [60]T Demir, T Tincer. Preparation and Characterization of Poly(ethylene terephthalate) Powder-Filled High-Density Polyethylene in the Presence of Silane Coupling Agents[J]. J. Appl. Polym. Sci.,2001,79(5):827-835
    [61]G Burillo, P Herrera-Franco, M Vazquez, et al. Compatibilization of Recycled and Virgin PET with Radiation-oxidized HDPE[J]. Radiat. Phys. Chem.,2002,63(3-6):241-244
    [62]A F Avila, M V Duarte. A Mechanical Analysis on Recycled PET/HDPE Composites [J]. Polym. Degrad. Stab.,2003,80(2):373-382
    [63]M Y Ju, F C Chang. Compatibilization of PET/PS Blends through SMA and PMPI Dual Compatibilizers[J]. Polymer,2000,41(5):1719-1730
    [64]X Tang, W Guo, G Yin, et al. Reactive Extrusion of Recycled Poly(ethylene terephthalate) with Polycarbonate by Addition of Chain Extender[J]. J. Appl. Polym. Sci.,2007,104(4): 2602-2607
    [65]W Guo, H Zhang, G Yin, et al. Properties and Morphology of Recycled Poly(ethylene terephthalate)/Bisphenol a Polycarbonate/Poly(styrene-b-(ethylene-co-butylene)-b-styrene) Blends by Low-temperature Solid-state Extrusion[J]. Polym. Adv. Technol.,2007,18(7): 549-555
    [66]Z Z Yu, M S Yang, S C Dai, et al. Toughening of Recycled Poly(Ethylene Terephthalate) with a Maleic Anhydride Grafted SEBS Triblock Copolymer[J]. J. Appl. Polym. Sci.,2004, 93(3):1462-1472
    [67]J G Park, D H Kim, K D Suh. Blends of Polyethyleneterephthalate with EPDM through Reactive Mixing[J]. J. Appl. Polym. Sci.,2000,78(12):2227-2233
    [68]I Vieira, V L S Severgnini, D J Mazera, et al. Effects of Maleated Ethylene Propylene Diene Rubber (EPDM) on the Thermal Stability of Pure Polyamides, and Polyamide/EPDM and Polyamide/Poly(ethylene terephthalate) Blends:Kinetic Parameters and Reaction Mechanism[J]. Polym. Degrad. Stab.,2001,74(1):151-157
    [69]S Al-Malaika, W Kong. Reactive processing of polymers:Functionalisation of Ethylene-Propylene Diene Terpolymer (EPDM) in the Presence and Absence of a Co-agent and Effect of Functionalised EPDM on Compatibilisation of Poly(ethylene terephthalate)/EPDM Blends[J]. Polym. Degrad. Stab.,2005,90(2):197-210
    [70]N Papke, J Karger-Kocsis. Thermoplastic Elastomers Based on Compatibilized Poly(ethylene terephthalate) Blends:Effect of Rubber Type and Dynamic Curing[J]. Polymer,2001,42(3): 1109-1120
    [71]H J Yoo, Y C Jung, J W Cho. Effect of Interaction Between Poly(ethylene terephthalate) and Carbon Nanotubes on the Morphology and Properties of Their Nanocomposites[J]. J. Polym. Sci., Part B:Polym. Phys.2008,46(9):900-910
    [72]S Doroudiani, C B Park, M T Kortschot. Effect of the Crystallinity and Morphology on the Microcellular Foam Structure of Semicrystalline Polymers[J]. Polym. Eng. Sci.,1996, 36(21):2645-2662
    [73]M Xanthos, U Yilmazer, S K Dey, et al. Melt Viscoelasticity of Polyethylene Terephthalate Resins for Low Density Extrusion Foaming[J]. Polym. Eng. Sci.,2000,40(3):554-566
    [74]M Xanthos, M W Young, G P Karayanndis, et al. Reactive Modification of Polyethylene Terephthalate With Polyepoxides[J]. Polym. Eng. Sci.,2001,41(4):643-655
    [75]M Xanthos, C Wan, R Dhavalikar, et al. Identification of Rheological and Structural Characteristics of Foamable Poly(ethylene terephthalate) by Reactive Extrusion[J]. Polym. Int.,2004,53(8):1161-1168
    [76]L Di Maio, I Coccorullo, S Montesano, et al. Chain Extension and Foaming of Recycled PET in Extrusion Equipment[J]. Macromol. Symp.,2005,228(1):185-200
    [77]A Kabumoto, K Nakayama, M Ito, et al. Method for Manufacturing a Foamed Plastics of Saturated Polyester Using a Cyclic Tetramer as Foaming Agent[P]美国专利,5458832,1995-10-17
    [78]A Kabumoto, N Yoshida, M Ito, M Okada. Method of Manufacturing Thermoplastic Polyester Foam Sheet[P].美国专利,5723510,1 998-03-03
    [79]朱长乐主编.膜科学技术[M].北京:高等教育出版社,1992.2
    [80]W J Koros, Y H MA, Shimidzu T. Terminology for Membranes and Membrane Processes[J]. Pure Appl. Chem.,1996,68(7):1479-1489
    [81]H Gankema, M A HemPenius, M Moller, et al. Gel Template Leaching:an Approach to Functional Nanoporous Membranes[J]. Macromol. Symp.,1996,102:381-390
    [82]P M Biesheuvel, H Verweij. Design of Ceramic Membrane Supports:Permeability, Tensile Strength and Stress[J]. J. Membr. Sci.,1999,156(1):141-152
    [83]J J Kim, T S Jang, Y D Kwon. Structural Study of Microporous Polypropylene Hollow Fiber Membranes Make by the Melt-Spinning and Cold-Streching Method[J]. J. Membr. Sci.,1994, 93(3):209-215
    [84]徐又一,王树源,孟东峰.聚丙烯中空纤维微孔膜的制备新方法[P].中国专利:90100317.4.1990-01-17
    [85]L Q Shen, Z K Xu, Y Y Xu. Preparation and Characterization of Microporous Polyethylene Hollow Fiber Membranes[J]. J. Appl. Polym. Sci.,2002,84(1):203-210.
    [86]M L Druin, J T Loft, S G Plovan. Novel Open-Celled Microporous Film[P].美国专利:3801404.1974-04-02
    [87]Z Siwy, P Apel, D Dobrev, et al. Ion Transport Through Asymmetric Nanopores Prepared by Ion Traek Etching. Nucl. Instrum. Methods Phys. Res., Sect. B,2003,208:143-148.
    [88]I M Yamazaki, R Paterson, L R Geraldo. A New Generation of Track Etched Membranes for Microfiltration and Ultrafiltration. Part I. Preparation and Characterization[J]. J. Membr. Sci., 1996,118(2):239-245
    [89]P Apel. Track Etching Technique in MembraneTechnology[J]. Radiation Measurements,2001, 34(1-6):559-566.
    [90]I Wienk, R M Boom, M A M Beerlage, et al. Recent Advances in the Formation of Phase Inversion Membranes Made from Amorphous or Semi-Crystalline Polymers[J]. J. Membr. Sci.,1996,113(2):361-371
    [91]L Zeman, T Fraser. Formation of Air-Cast Cellulose-Acetate Membrane.1. Study of Macrovoid Formation[J]. J. Membr. Sci.,1993,84(1):93-101
    [92]L Zeman, T Fraser. Formation of Air-Cast Cellulose-Acetate Membrane.2. Kinetics of Demixing and Microvoid Growth[J]. J. Membr. Sci.,1994,87(3):269-279
    [93]L Yilmas, A J Mchugh. Analysis of Nonsolvent-Solvent-Polymer Phase Diagrams and Their Relevance to Membrane Formation Modeling[J]. J. Appl. Polym. Sci.,1986,31(4):997-1018
    [94]H K Lee, J Y Kim, Y D Kim, et al. Liquid-liquid Phase Separation in a Ternary System of Segmented Polyetherurethane/Dimethylformamide/Water:Effect of Hard Segment Content[J]. Polymer,2001,42(8):3893-3900
    [95]C Stropnik, V Kaiser. Polymeric Membranes Preparation by Wet Phase Separation: Mechanisms and Elementary Processes[J]. Desalination,2002,145:1-10
    [96]W W Y Lau, M D Guiver, T Matsuurab. Phase Separation in Polysulfone/Solvent/Water and Polyethersulfone/Solvent/Water Systems[J]. J. Membr. Sci.,1991,59(2):219-227
    [97]A J Reuvers, J W A van den Berg, C A Smolders. Formation of Membranes by Means of Immersion Precipitation:Part I. A Model to Describe Mass Transfer During Immersion Precipitation[J]. J. Membr. Sci.,1987,34(1):45-65.
    [98]A J Reuvers, J W A van den Berg, C A Smolders. Formation of Membranes by Means of Immersion Precipitation:Part II. the Mechanism of Formation of Membranes Prepared from the System CelluloseAcetate-Acetone-Water[J]. J. Membr. Sci.,1987,34(1):67-86
    [99]Y S Kang, H J Kim, U Y Kim. Asymmetric MembranesFormation via Immersion-Precipitation Method I. Kinetic Effect[J]. J. Membr. Sci.,1991,60(2-3):219-232
    [100]P Radovanovic, S W Thiel, S Hwang. Formation of Asymmetric Polysulfone Membranes by Immersion Precipitation. Part II. The Effects of Casting Solution and Gelation Bath Compositions on Membrane Structure and Skin Formation[J]. J. Membr. Sci.,1992,65(3): 231-246
    [101]C A Smolders, A J Reuvers, R M Boom, et al. Microstructures in Phase-Inversion Membranes. Part 1. Formation of Macrovoids[J]. J. Membr. Sci.,1992,72(2-3):259-275
    [102]R M Boom, I M Wienk, T vandenBoomgaard, et al. Microstructures in Phase Inversion Membranes. Part 2. The Role of a Polymeric Additive[J]. J. Membr. Sci.,1992,72(2-3): 277-292
    [103]左丹英.溶液相转化法制备PVDF微孔膜过程中的结构控制及其性能研究[D].杭州:浙江大学,2005
    [104]A J Castro. Methods for Making Micro Porous Products[P].美国专利,4247498.1981-01-27
    [105]H Matsuyama, T Maki, M Teramoto, et al. Effect of Polypropylenemolecular Weight on Porous Membrane Formation by Thermally Induced Phase Separation[J]. J. Membr. Sci., 2002,204(1-2):323-328
    [106]H Matsuyamal, K Ohga, T Maki, et al. Porous Cellulose Acetate Membrane Prepared by Thermally Induced Phasese Paration[J]. J. Appl. Polym. Sci.,2003,89(14):3951-3955
    [107]G T Caneba, D S Soong. Polymer Membrane Formation Through the Thermal-Inversion Process.1. Experimental Study of Membrane Structure Formation[J]. Macromolecules,1985, 18(12):2538-2545
    [108]G T Caneba, D S Soong. Polymer Membrane Formation Through the Thermal-Inversion Process.2. Mathematical Modeling of Membrane Structure Formation[J]. Macromolecules, 1985,18(12):2545-2555
    [109]P M Atkinson, D R Lloyd. Anisotropic Flat Sheet Membrane Formation via TIPS:Thermal Effects. J. Membr. Sci.,2000,171(1):1-18
    [110]G B A Lim, S S Kim, Q Ye. Microporous Membrane Formation via Thermally-Induced Phase Separation. Ⅳ. Effect of Isotactic Polypropylene Crystallization Kinetics on Membrane Structure[J]. J. Membr. Sci.,1991,64(1-2):31-40
    [111]K Kimmerle, H Strathmann. Analysis of The Structure-determining Process of Phase Inversion Membranes[J]. Desalination,1990,79(2-3):283-293
    [112]A A Alwattari, D R Lloyd. Microporous Membrane Formation via Thermally-Induced Phase Separation. VI. Effect of Diluent Morphology and Relative Crystallization Kinetics on Polypropylene Membrane Structure[J]. J. Membr. Sci.,1991,64(1-2):55-67
    [113]H Matsuyamaa, S Berghmansa, M T Batarseh. Effects of Thermal History on Anisotropic and Asymmetric Membranes Formed by Thermally Induced Phase Separation[J]. J. Membr. Sci., 1998,142(1):27-42
    [114]H Matsuyama, S Berghmans, D R Lloyd. Formation of Anisotropic Membranes via Thermally Induced Phase Separation[J]. Polymer,1999,40(9):2289-2301
    [115]H Matsuyama, Y Takidaa, T Maki. Preparation of Porous Membrane by Combined Use of Thermally Induced Phase Separation and Immersion Precipitation [J]. Polymer,2002,43(19): 5243-5248
    [116]H Matsuyama, M Yuasa, Y Kitamura. Structure Control of Anisotropic and Asymmetric Polypropylene Membrane Prepared by Thermally Induced Phase Separation[J]. J. Membr. Sci.,2000,179(1-2):91-100
    [117]E Uchida, H Iwata, Y Ikada. Surface Structure of Poly (ethylene terephthalate) Film Grafted with Poly (methacrylic acid)[J]. Polymer,2000,41(10):3609-3614.
    [118]T Jacobs, R Morent, N De Geyter, et al. Effect of He/CF4 DBD Operating Parameters on PET Surface Modification[J]. Plasma Process. Polym.,2009,6(S1):S412-S418
    [119]E Uchida, Y Uyama, Y Ikada. A Novel Method for Graft Polymerization onto PET Film Surface by UV Irradiation without Degassing[J]. J. Appl. Polym. Sci.,1990,41(3-4):677-687
    [120]E Uchida, Y Uyama, Y Ikada. Sorption of Low-molecular-weight Anions into Thin Polycation Layers Grafted onto a Film[J]. Langmuir,1993,9(4):1121-1124
    [121]E Uchida, Y Uyama, Y Ikada. Grafting of Water-Soluble Chains onto a Polymer Surface[J]. Langmuir,1994,10(2):481-485
    [122]B Gupta, S Mishra, S Saxena. Preparation of Thermosensitive Membranes by Radiation Grafting of Acrylic Acid/N-isopropyl Acrylamide Binary Mixture on PET Fabric[J]. Radia. Phys. Chem.,2008,77(5):553-560
    [123]A Wirsen, H Sun, A C Albertssonn. Solvent Free Vapor Phase Photografting of Maleic Anhydride onto Poly (Ethylene Terephthalate) and Surface Coupling of Fluorinated Probes, PEG, and an RGD-Peptide[J]. Biomacromolecules,2005,6(4):2281-2289
    [124]W R Burghardt. Phase Diagrams for Binary Polymer Systems Exhibiting both Crystallization and Limited Liquid-Liquid Miscibility[J]. Macromolecules,1989,22(5):2482-2486
    [125]江明.高分子合金的物理化学[M].成都:四川教育出版社,1988.60-69
    [126]K Kamide, H Iijma, S Matsuda.Thermodynamics of Formation of Porous Polymeric Membrane by Phase Separation Method I. Nucleation and Growth of Nuclei. Polym. J.,1993, 25:1113-1131
    [127]J A Ronner, S G Wassink, C A Smolders. Investigation of Liquid-Liquid Demixing and Aggregate Formation in a Membrane-Forming System by Means of Pulse-Induced Critical Scattering (PICS)[J]. J. Membr. Sci.,1989(1-2),42:27-36
    [128]F J Tsai, J M Torkelson. The Roles of Phase Separation Mechanism and Coarsening in the Formation of Poly(methyl methacrylate) Asymmetric Membranes[J]. Macromolecules,1990, 23(3):775-784
    [129]B Lin, G DuQ, Y Lyang. The Phase Diagrams of Mixtures of EVAL and PEG in Relation to Membrane Formation[J]. J. Membr. Sci.,2000,180(1):81-92
    [130]P M Atkinson, D R Lloyd. Anisotropic Flat Sheet Membrane Formation via TIPS: Atmospheric Convection and Polymer Molecular Weight Effects [J]. J. Membr. Sci.,2000, 175(2):225-238
    [131]M C Yang, J S Perng. Microporous Polypropylene Tubular Membranes via Thermally Induced Phase Separation Using a Novel Solvent-Camphene[J]. J. Membr. Sci.,2001, 187(1-2):13-22
    [132]D R Lloyd, S S Kim, K E Kinzer. Microporous Membrane Formation via Thermally-Induced Phase Separation. II. Liquid-Liquid PhaseSeparation[J]. J. Membr. Sci.,1991,64(1-2):1-11
    [133]S S Kim, D R Lloyd. Microporous Membrane Formation via Thermally-Induced Phase Separation. III. Effect of Thermodynamic Interactions on the Structure of Isotactic Polypropylene Membranes[J]. J. Membr. Sci.,1991,64(1-2):13-29
    [134]H Matsuyama, S Berghmans, D R Lloyd. Formation of Hydrophilic Microporous Membranes via Thermally Induced Phase Separation[J]. J. Membr. Sci.,1998,142(2):213-224
    [135]C Gao, A Li, L Feng, et al. Factors Controlling Surface Morphology of Porous Polystyrene Membranes Prepared by Thermally Induced Phase Separation [J]. Polym. Int.,2000,49(4): 323-328
    [136]B Z Luo, J Zhang, X L Wang, et al. Effects of Nucleating Agents and Extractants on the Structure of Polypropylene Microporous Membranes via Thermally Induced Phase Separation[J]. Desalination,2006,192(1-3):142-50
    [137]K S McGuire, D R Lloyd, G B A Lim. Microporous Membrane Formation via Thermally-Induced Phase Separation. VII. Effect of Dilution, Cooling Rate, and Nucleating Agent Addition on Morphology[J]. J. Membr. Sci.,1993,79(1):27-34
    [138]T Tanaka, D R Lloyd. Formation of Poly(L-lactic acid) Microfiltration Membranes via Thermally Induced Phase Separation [J]. J. Membr. Sci.,2004,238(1-2):65-73
    [139]R L Luo, T Hyoung, Y M Sun. Structure Formation and Characterization of EVAL Membranes with Co-Solvent of Isopropanol and Water[J]. Polymer,2003,44:157-166
    [140]S S Kim, G B A Lim, A A Alwattari, et al. Microporous Membrane Formation via Thermally-Induced Phase Separation. V. Effect of Diluent Mobility and Crystallization on the Structure of Isotactic Polypropylene Membranes[J]. J. Membr. Sci.,1991,64(1-2):41-53
    [141]A Laxminarayan, K S MeGuire, S S Kim, et al. Effect of Initial Composition, Phase Separation Temperature and Polymer Crystallization on the Formation of Microcellular Structure via Thermally Induced Phase Separation [J]. Polymer,1994,35(14):3060-3068
    [142]H A Pohl. Determination of Carboxyl End Groups in Polyester, Polyethylene Terephthalate[J]. Anal. Chem.,1954,26(10):1614-1616
    [143]黄发荣.先进树脂基复合材料[M].北京:化学工业出版社,2008:103-119
    [144]T Iijima, S Katusurayama, W Fukuda, et al. Modification of Cyanate Ester Resin by Poly(ethylenephthalate) and Related Copolyesters[J]. J. Appl. Polym. Sci.,2000,76(2): 208-219
    [145]G Luengo, F J Schmitt, R Hill, et al. Thin film rheology and tribology of confined polymermelts:contrasts with bulk properties[J]. Macromolecules,1997,30(8):2482-2485
    [146]Groeninckx G, Reyaers H, Berghmans H, et al. Morphology and Melting Behavior of Semicrystalline Poly(ethylene terephthalate). I. Isothermally Crystallized PET[J]. J. Polym. Sci., Part B:Polym. Phys.1980,18(6):1311-1325
    [147]杨始堃,陈学信,林少琨,等.聚对苯二甲酸乙二酯的结晶性能研究.Ⅱ.本体结晶形态[J].高分子通讯,1983,2(4):132-137
    [148]J K Stille, R G Nelb, S O Norris. The Cross-Linking of Thermally Stable Aromatic Polymers by Aryl Cyanate Cyclotrimerization[J]. Macromolecules,1976,9(3):516-523
    [149]O Georjon, J Galy. Effects of Crosslink Density on Mechanical Properties of High Glass Transition Temperature Polycyanurate Networks[J]. J. Appl. Polym. Sci.,1997,65(12):2471-2479
    [150]W Mormann, J G Zimmermann. Liquid Crystalline Thermosets through Cyclotrimerization of Diaromatic Dicyanates[J]. Macromolecules,1996,29(4):1105-1109
    [151]K S Santhosh Kumar, C P Reghunadhan Nair, K N Ninan. Investigations on the Cure Chemistry and Polymer Properties of Benzoxazine-Cyanate Ester Blends[J]. Eur. Polym. J., 2009,45(2):494-502
    [152]A M Gupta, C W Macosko. Characterization and Modeling of Rigid Branched Polycyanates [J]. Macromolecules,1993,26(10):2455-2463
    [153]S L Simon, J Kgillham. Cure Kinetics of a Thermosetting Liquid Dicyanate Ester Monomer/ High-Tg Polycyanurate Material[J]. J. Appl. Polym. Sci.,1993,47(3):461-485
    [154]S Rajabzadeh, T Maruyama, Y Ohmukai, et al. Preparation of PVDF/PMMA Blend Hollow Fiber Membrane via Thermally Induced Phase Separation (TIPS) Method[J]. Sep. Purif. Technol.,2009,66(7):76-83
    [155]K W D Lee, P K Chan, M R Kamal. Thermally Induced Phase Separation in Liquid Crystalline Polymer/Polycarbonate Blends[J]. J. Appl. Polym. Sci.,2010,117(5):2651-2668
    [156]N Li, CF Xiao. Effect of the Preparation Conditions on the Permeation of Ultrahigh-Molecular-Weight Polyethylene/Silicon Dioxide Hybrid Membranes[J]. J. Appl. Polym. Sci.,2010,117(5):2817-2824
    [157]C Mandoli, B Mecheri, G Forte, et al. Thick Soft Tissue Reconstruction on Highly Perfusive Biodegradable Scaffolds[J]. Macromol. Biosci.,2010,10(2):127-138
    [158]H Ma, J Hu, P X Ma. Polymer Scaffolds for Small-Diameter Vascular Tissue Engineering[J]. Adv. Funct. Mater.,2010,20(17):2833-2841
    [159]金日光,华幼卿主编.高分子物理(第二版)[M].北京:化学工业出版社,2000:56-76
    [160]何曼君,陈维孝,董西峡.高分子物理(修订版)[M].上海:复旦大学出版社,1990:114-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700