电子束辐照对碳氮薄膜结构和力学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶碳氮薄膜由于具有良好的物理性质而备受关注,在防护涂层、电子学器件以及生物医学等领域有着广阔的应用前景。辐照是常用的材料改性手段之一。本文通过双对向靶直流磁控溅射法制备了非晶碳氮薄膜,并对制备后的样品进行电子束辐照,研究了电子束辐照对薄膜结构和力学性质的影响。
     结构分析表明,随着氮分压的增大,薄膜中氮含量CN先由8.9%增大至22%,然后逐渐减小,sp3键含量减少而sp2键区域的尺寸和数目都有所增加,薄膜趋于石墨化。经电子束辐照后,由于薄膜表面处发生氮化和氧化,各氮分压条件下制备的薄膜中氮含量均有不同程度的提高,最大值为25.4%。薄膜表面各元素的价键结构在辐照后有了较大改变。由于电子束对薄膜的电离和位移效应,薄膜内sp3C键被破坏,形成未饱和的sp2C悬键并形成sp2团簇,薄膜更加趋于石墨化。
     纳米刻痕测试表明,随着氮分压的增加,薄膜硬度从17.9 GPa缓慢下降14.4 GPa然后逐渐回升,与氮含量随氮分压的变化趋势相反。辐照后由于结构的变化使薄膜硬度有所下降。
Amorphous carbon nitride films have attracted the attentions of various investigators due to their great physic properties and wide range of promising applications such as protecting coatings, electronic devices and biomedicine devices. Irradiation is one of the most commonly used techniques for tailoring materials’properties. In this paper, carbon nitride films were fabricated by a dc facing-target magnetron reactive sputtering system, and then the prepared samples were irradiated by electron beam. The effects of electron beam irradiation on the structure and mechanical properties of carbon nitride films have been carefully studied.
     As the structure characterization shows, with the increase of nitrogen partial pressure (PN), the nitrogen content (CN) in the films increases from 8.9% to 22% firstly, and then decreases gradually, the content of sp3 bonding decreases and the number and size of sp2 clusters increase, graphitization occurs in the CN films. After electron beam irradiation the CN in films prepared at different PN conditions increase variously because of the oxide and nitride effects occurring at the surface. The maximized CN reaches 25.4%. The bonding structures at the films’surface have changed a lot after irradiation. The bond breaking event and displacement event take place when electron beam is introduced into the films .The sp3C bonds are break, and change to the unsaturated sp2C hanging bonds. When these sp2 bonds connect with each other, sp2 clusters form. Graphitization behaves more deeply in the films.
     The results of nanoindention tests indicate that the hardness of films decrease from 17.9 GPa to 14.4 GPa firstly, and then increase gradually, which is contrary to the trend of CN vs. PN. The hardness decreases after electron irradiation, which is consistent with the change of structure.
引文
[1] Liu A Y,Cohen M L. Prediction of New Low Compressibility Solid. Science, 1989,245 :841
    [2] Cohen. M L. Calculation of bulk moduli of diamond and zinc-blende solids. 1985, 32:7988
    [3] Teter D M, Hemley R J., Low–compressibility carbon nitrides, Science, 1996, 271: 53
    [4] Zhang, X.W., Ke, N., Cheung, W.Y., et al ,Synthesis and structure of nitrogen- ated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition, Diamond and Related Materials, 2003, 12(1):1
    [5] Y. F. Lu, Z. M. Ren, W. D. Song, et al, Studies of carbon nitride thin films synthesized by KrF excimer laser ablation of graphite in a nitrogen atmosphere, Journal of Applied Physics, 1998, 84(5):2909
    [6] D. Papadimitriou , G. Roupakas ,C. A. Dimitriadis, et al, Raman scattering and photoluminescence of nitrogenated amorphous carbon films, Journal of Applied Physics, 2002, 92(2):870
    [7] Mubumbila, N., Tessier, P.-Y., Angleraud, B., et al, Effect of nitrogen incorporation in CNx thin films deposited by RF magnetron sputtering, Surface and Coatings Technology, 2002, 151-152:175
    [8] Chen, Liang-Yih, Cheng, Chiao-Yang, Chau-Nan Hong, et al, Properties of carbon nitride (CNx) films deposited by a high-density plasma ion plating method, Diamond and Related Materials, 2002, 11(3-6):1172
    [9] Ujvári, T.; Kolitsch, A.; Tóth, A, et al, XPS characterization of the composition and bonding states of elements in CNx layers prepared by ion beam assisted deposition, Diamond and Related Materials, 2002, 11(3-6):1149
    [10] Z. Y. Chen, J. P. Zhao, T. Yano, et al, Effect of temperature on carbon nitride films synthesized by ion-beam-assisted pulsed laser deposition, Journal of Applied Physics, 2000, 88(12):7060
    [11] Lejeune, M., Durand-Drouhin, O., Ballutaud, D., et al, Optical investigations of the microstructure of carbon nitride films deposited by magnetron sputtering, Surface and Coatings Technology, 2002, 151-152:242
    [12] Chunming Niu, Yuan Z. Lu, Charles M. Lieber, Experimental realization ofthe covalent solid carbon nitride, Science, 1993, 261:334
    [13] Robertson J., Diamond–like amorphous carbon, Materials Science and Engineering R, 2002, 37:129
    [14] A. C. Ferrari, S. E. Rodil, J. Robertson, et al, Interpretation of infrared and Raman spectra of amorphous carbon nitrides, Phys. Rev. B, 2003, 67:155306
    [15] G. Abrasonis, R. Gago, M. Vinnichenko, et al, Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study, Phys. Rev. B, 2006, 73:125427
    [16] Robertson, J, Structural models of a-C and a-C:H, Diamond and Related Materials, 1995, 4(4):297
    [17] Fujimoto F, Ogata K, Synthesis and properties of CNx films, Jpn. J Appl Phys, 1993, 32:420
    [18] A. Zocco, A. Perrone, E. Broitman,et al, Mechanical and tribological proper- ties of CN films deposited by reactive pulsed laser ablation, Diamond and Rel- ated Materials, 2002, 11:98
    [19] Broitman, E., Hellgren, N., W?nstrand, O., et al, Mechanical and tribological properties of CNx films deposited by reactive magnetron sputtering, Wear ,2001, 248(1-2):55
    [20] Zocco, A., Perrone, A., Broitman, E., et al, Mechanical and tribological properties of CNx films deposited by reactive pulsed laser ablation, Diamond and Related Materials, 2002, 11(1) :98
    [21] S.E. Rodil, S. Muhl, Bonding in amorphous carbon nitride, Diamond and Related Materials, 2004,13:1521
    [22] R. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi., 1996, 15:627
    [23] J. Schwan, V. Batori, S. Ulrich,et al, Nitrogen doping of amorphous carbon thin films Journal of Applied Physics, 1998, 84(4):2071
    [24] J. K. Walters,M. Kühn, C. Spaeth, et al, X-ray diffraction studies of the effects of N incorporation in amorphous CNx materials, Journal of Applied Physics, 1998, 83(7):3529
    [25] Kleinsorge, B., Ferrari, A.C., Robertson, J., et al, Bonding regimes of nitrogen in amorphous carbon, Diamond and Related Materials, 2000, 9(3-6):643
    [26] Bulí?, J., Jelínek, M., Vorlí?ek, V., et al, Study of nitrogen pressure effect on the laser-deposited amorphous carbon films, Thin Solid Films, 1997,292(1-2):318
    [27] Lee, Soonil, Park, Sung Jin, Oh, Soo-ghee, et al, Optical and mechanical properties of amorphous CN films, Thin Solid Films ,1997, 308-309(1-4):135
    [28] Weber, F.-R., Low-energy plasma beam deposition of carbon nitride layers withβ-C3N4-like fractions, Thin Solid Films, 1999, 73:355
    [29] Takada, N., Arai, K., Nitta, S., et al, Preparation and properties of reactive- sputtered amorphous CNx films,Applied Surface Science, 1997, 113-114:274
    [30] Iwasaki, T., Aono, M., Nitta, S., et al, Structural and electronic properties of highly photoconductive amorphous carbon nitride, Diamond and Related Materials, 1999, 8(2-5):440
    [31] Rodil, S.E., Muhl, S., Maca, S., et al, Optical gap in carbon nitride films, Thin Solid Films, 2003, 433(1-2):119
    [32] G. Lazar, K. Zellama, M. Clin, et al, Band tail hopping conduction mechanism in highly conductive amorphous carbon nitride thin films, Applied Physics Letters, 2004, 85(25):6176
    [33] Monclus, D.C. Cameron, A.K.M.S. Chowdhury, Electrical properties of reactively sputtered CNx films, Thin Solid Films, 1999, 341:94
    [34] Wei, J., Hing, P., Electrical properties of reactively sputtered carbon nitride films, Thin Solid Films, 2002, 410(1-2):21
    [35] N. Konofaos, E. K. Evangelou, S. Logothetidis, et al, Electrical properties of carbon nitride films on silicon Journal of Applied Physics, 2002, 91(12):9915
    [36] Z. Y. Chen, J. P. Zhao, T. Yano, et al, Effect of temperature on carbon nitride films synthesized by ion-beam-assisted pulsed laser deposition, Journal of Applied Physics, 2000, 88(12):7060
    [37] Derradji, N.E., Mahdjoubi, M.L., Belkhir, H., et al, Nitrogen effect on the electrical properties of CNx thin films deposited by reactive magnetron sputtering, Thin Solid Films, 2005, 482(1-2):258
    [38] P. Hammer, N.M. Victoria, F. Alvarez, Effects of increasing nitrogen concentration on the structure of carbon nitride films deposited by ion beam assisted deposition, Journal of Vacuum Science & Technology A, 2000, 18:2277
    [39] Zhang, Weili, Xia, Yiben, Ju, Jianhua, et al, Electrical conductivity of nitride carbon films with different nitrogen content, Solid State Communications, 2003, 126(3):163
    [40] Stephen Muhl, Juan Manuel Mendez, A review of the preparation of carbon nitride films, Diamond and Related Materials, 1999, 8:1809
    [41] Florian Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys., 1999, 62:1181
    [42] Florian Banhart, Formation and transformation of carbon nanoparticles under electron irradiation, Phil. Trans. R. Soc. Lond. A, 2004, 362:2205
    [43] Haken H, Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems, Rev. Mod. Phys., 1975, 47:67
    [44] Seeger A, Frank W, Theory of radiation-induced self-organization of defect structures, Solid State Phenomena, 1988, 3/4:125
    [45] Martin G, Soisson F, Bellon P, Phase Stability and Microstructural Evolution in Concentrated Alloys Under Irradiation, J. Nucl. Mater., 1993, 205:301
    [46] A. A. Gippius, R. A. Khmelnitsky, V. A. Dravin, et al, Diamond-graphite transformation induced by light ions implantation, Diamond Relat. Mater., 2003, 12(3-7):538
    [47] Kazuhiro Yamamoto, iroaki Yoshida, Surface modification of diamond using low-energy nitrogen ions, Diamond Relat. Mater., 2004, 13(4-8):736
    [48] Johan F. Prins, Using ion implantation to dope diamond—an update on selected issues, Diamond Relat. Mater., 2001, 10(9-10):1756
    [49] C. Uzan-Saguy, C. Cytermann, R. Brener, et al, Damage threshold for ion-beam Induced graphitization of diamond, Applied Physics Letters, 1995, 67(9):1194
    [50] S Talapatra, JY Cheng, N Chakrapani, et al, Ion irradiation induced structural modifications in diamond nanoparticles, Nanotechnology, 2006, 17:305
    [51] Terrones, M., Terrones, H. Banhart, F., et al, The coalescence of single- walled nanotubes, Science, 2000, 288:1226
    [52] Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high-resolution electron microscopy, J. Cryst. Growth., 1980, 50:675
    [53] D Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, 1992, 359:707
    [54] Michael Zaiser, Florian Banhart, Radiation-Induced Transformation of Grap- hite to Diamond, Phys. Rev. Lett., 1997, 79:3680
    [55] Zaiser, M., Lyutovich, Y., Banhart, F., The irradiation-induced transformation of graphite to diamond: a quantitative study, Phys. Rev. B, 2000, 62:3058
    [56] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbonnanotubes, J. Chem. Phys., 1996, 104:2089
    [57] Roddatis, V. V., Kuznetsov, V. L., Butenko, Yu. V., et al, Transformation of diamond nanoparticles into carbon onions under electron irradiation, Phys. Chem. Phys., 2002, 4:1964
    [58] S Talapatra, PG Ganesan, T Kim, et al, Irradiation-Induced Magnetism in Carbon Nanostructures, Physical Review Letters, 2005, 95:097201
    [59] P. Esquinazi, D. Spemann, R. Hohne, et al, Induced Magnetic Ordering by Proton Irradiation in Graphite, Phys. Rev. Lett., 2003, 91:227201
    [60] P. O. Lehtinen, A. S. Foster, Y. Ma, et al, Irradiation-Induced Magnetism in Graphite: A Density Functional Study, Phys. Rev. Lett., 2004, 93:187202
    [61] T. L. Makarova, Magnetic properties of carbon structures, Semiconductors, 2004, 38:615
    [62] Mei Zhang , Yoshikazu Nakayama, Effect of ultraviolet light irradiation on amorphous carbon nitride films, Journal of Applied Physics, 1997, 82- (10):4912
    [63] Yong Hwan Kim, Deuk Yeon Lee, In Kyo Kim, et al, Effects of electron- beam irradiation on the properties of CN thin films deposited by direct dual ion beams, Journal of Vacuum Science & Technology A, 2000, 19(1):145
    [64] Angleraud B, Mubumbila N, Tessier P Y, et al, Bonding structure of carbon nitride films deposited by reactive plasma beam sputtering, Diamond and Related Materials, 2001, 10:1142
    [65] McCann R, Roy S S, Papakonstantinou P, et al, Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition, Journal of Applied Physics, 2005, 97:073522.
    [66]王怡,姜恩永,白海力等,对向靶溅射制备CN膜的键态,材料研究学报,1999,13(5):449
    [67] S.Mathew, B.Stpati, B.Joseph, et al, Magnetism in C60 films induced by proton irradiation, Physical Review B, 2007, 75:075426
    [68] T.Itoh, M.Aono, S.Yoshida, et al, Structire stability for UV irradiation and dielectric properties of a-CNx films, Journal of Non-Crystalline Solids, 2000, 266-299:825

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700